1
|
Ramírez-López F, García-Montes JR, Millán-Aldaco D, Palomero-Rivero M, Túnez-Fiñana I, Drucker-Colín R, Roldán-Roldán G. Transcranial Magnetic Stimulation Attenuates Dyskinesias and FosB and c-Fos Expression in a Parkinson's Disease Model. Brain Sci 2024; 14:1214. [PMID: 39766413 PMCID: PMC11674860 DOI: 10.3390/brainsci14121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dopamine replacement therapy for Parkinson's disease (PD) may lead to disabling incontrollable movements known as L-DOPA-induced dyskinesias. Transcranial magnetic stimulation (TMS) has been applied as non-invasive therapy to ameliorate motor symptoms and dyskinesias in PD treatment. Recent studies have shown that TMS-induced motor effects might be related to dopaminergic system modulation. However, the mechanisms underlying these effects of TMS are not fully understood. OBJECTIVES To assess the expression of FosB and c-Fos in dopamine-D1 receptor-containing cells of dyskinetic rats and to analyze the effect of TMS on dyskinetic behavior and its histological marker (FosB). METHODS We investigated the outcome of TMS on cellular activation, using c-Fos immunoreactivity, on D1 receptor-positive (D1R+) cells into the motor cortex and striatum of dyskinetic (n = 14) and intact rats (n = 14). Additionally, we evaluated the effect of TMS on the dyskinesia global score and its molecular marker, FosB, in the striatum (n = 67). RESULTS TMS reduces c-Fos expression in D1R+cells into the motor cortex and striatum. Moreover, TMS treatment attenuated dyskinesias, along with a low stratal FosB expression. CONCLUSIONS The current study shows that TMS depressed FosB and c-Fos expression in D1R+ cells of the dorsal striatum and motor cortex, in accordance with previous evidence of its capacity to modulate the dopaminergic system, thus suggesting a mechanism by which TMS may mitigate dyskinesias. Additionally, our observations highlight the potential therapeutic effect of TMS on dyskinesias in a PD model.
Collapse
Affiliation(s)
- Fernanda Ramírez-López
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | | | - Diana Millán-Aldaco
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | - Marcela Palomero-Rivero
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | - Isaac Túnez-Fiñana
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, 14014 Cordoba, Spain;
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14014 Cordoba, Spain
| | - René Drucker-Colín
- Departamento de Neuropatología Molecular, Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (F.R.-L.); (D.M.-A.); (M.P.-R.); (R.D.-C.)
| | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Coutant B, Frontera JL, Perrin E, Combes A, Tarpin T, Menardy F, Mailhes-Hamon C, Perez S, Degos B, Venance L, Léna C, Popa D. Cerebellar stimulation prevents Levodopa-induced dyskinesia in mice and normalizes activity in a motor network. Nat Commun 2022; 13:3211. [PMID: 35680891 PMCID: PMC9184492 DOI: 10.1038/s41467-022-30844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.
Collapse
Affiliation(s)
- Bérénice Coutant
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Elodie Perrin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adèle Combes
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Thibault Tarpin
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Caroline Mailhes-Hamon
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Bertrand Degos
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
3
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
5
|
Radlicka A, Kamińska K, Borczyk M, Piechota M, Korostyński M, Pera J, Lorenc-Koci E, Rodriguez Parkitna J. Effects of L-DOPA on Gene Expression in the Frontal Cortex of Rats with Unilateral Lesions of Midbrain Dopaminergic Neurons. eNeuro 2021; 8:ENEURO.0234-20.2020. [PMID: 33257528 PMCID: PMC7877460 DOI: 10.1523/eneuro.0234-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022] Open
Abstract
The development of Parkinson's disease (PD) causes dysfunction of the frontal cortex, which contributes to the hallmark motor symptoms and is regarded as one of the primary causes of the affective and cognitive impairments observed in PD. Treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) alleviates motor symptoms but has mixed efficacy in restoring normal cognitive functions, which is further complicated by the psychoactive effects of the drug. We investigated how L-DOPA affects gene expression in the frontal cortex in an animal model of unilateral PD. We performed RNA sequencing (RNA-Seq) analysis of gene expression in the frontal cortex of rats with 6-hydroxydopamine (6-OHDA)-induced unilateral dopaminergic lesions treated with L-DOPA, for two weeks. The analysis of variance identified 48 genes with a significantly altered transcript abundance after L-DOPA treatment. We also performed a weighted gene coexpression network analysis (WGCNA), which resulted in the detection of five modules consisting of genes with similar expression patterns. The analyses led to three primary observations. First, the changes in gene expression induced by L-DOPA were bilateral, although only one hemisphere was lesioned. Second, the changes were not restricted to neurons but also appeared to affect immune or endothelial cells. Finally, comparisons with databases of drug-induced gene expression signatures revealed multiple nonspecific effects, indicating that a part of the observed response is a common pattern activated by multiple types of drugs in different target tissues. Taken together, our results identify cellular mechanisms in the frontal cortex that are involved in the response to L-DOPA treatment.
Collapse
Affiliation(s)
- Anna Radlicka
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Malgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-503, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| |
Collapse
|
6
|
Han CL, Liu YP, Sui YP, Chen N, Du TT, Jiang Y, Guo CJ, Wang KL, Wang Q, Fan SY, Shimabukuro M, Meng FG, Yuan F, Zhang JG. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY) 2020; 12:718-739. [PMID: 31929116 PMCID: PMC6977703 DOI: 10.18632/aging.102652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
Abstract
Levodopa-induced dyskinesia (LID) is a common complication of chronic dopamine replacement therapy in the treatment of Parkinson's disease (PD). Long noncoding RNAs regulate gene expression and participate in many biological processes. However, the role of long noncoding RNAs in LID is not well understood. In the present study, we examined the lncRNA transcriptome profile of a rat model of PD and LID by RNA sequence and got a subset of lncRNAs, which were gradually decreased during the development of PD and LID. We further identified a previously uncharacterized long noncoding RNA, NONRATT023402.2, and its target genes glutathione S-transferase omega (Gsto)2 and prostaglandin E receptor (Ptger)3. All of them were decreased in the PD and LID rats as shown by quantitative real-time PCR, fluorescence in situ hybridization and western blotting. Pearson's correlation analysis showed that their expression was positively correlated with the dyskinesia score of LID rats. In vitro experiments by small interfering RNA confirmed that slicing NONRATT023402 inhibited Gsto2 and Ptger3 and promoted the inflammatory response. These results demonstrate that NONRATT023402.2 may have inhibitive effects on the development of PD and LID.
Collapse
Affiliation(s)
- Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun-Peng Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yun-Peng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Ning Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Ying Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chen-Jia Guo
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Shi-Ying Fan
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Michitomo Shimabukuro
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang Yuan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lanza K, Chemakin K, Lefkowitz S, Saito C, Chambers N, Bishop C. Reciprocal cross-sensitization of D1 and D3 receptors following pharmacological stimulation in the hemiparkinsonian rat. Psychopharmacology (Berl) 2020; 237:155-165. [PMID: 31435690 DOI: 10.1007/s00213-019-05353-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
In the majority of Parkinson's disease (PD) patients, long-term dopamine (DA) replacement therapy leads to dyskinesia characterized by abnormal involuntary movements (AIMs). There are various mechanisms of dyskinesia, such as the sensitization of striatal DA D1 receptors (D1R) and upregulation of DA D3 receptors (D3R). These receptors interact physically and functionally in D1R-bearing medium spiny neurons to synergistically drive dyskinesia. However, the cross-receptor-mediated effects due to D1R-D3R cooperativity are still poorly understood. In pursuit of this, we examined whether or not pharmacological D1R or D3R stimulation sensitizes the dyskinetic response to the appositional agonist, a process known as cross-sensitization. First, we established D1R-D3R behavioral synergy in a cohort of 6-OHDA-lesioned female adult Sprague-Dawley rats. Then, in a new cohort, we tested for cross-sensitization in a between-subject design. Five groups received a sub-chronic regimen of either saline, the D1R agonist SKF38393 (1.0 mg/kg), or the D3R agonist PD128907 (0.3 mg/kg). For the final injection, each group received an acute injection of the other agonist. AIMs were monitored following each injection. Sub-chronic administration of both SKF38393 and PD128907 induced the development of dyskinesia. More importantly, cross-agonism tests revealed reciprocal cross-sensitization; chronic treatment with either SKF38393 or PD128907 induced sensitization to a single administration of the other agonist. This reciprocity was not marked by changes to either D1R or D3R striatal mRNA expression. The current study provides key behavioral data demonstrating the role of D3R in dyskinesia and provides behavioral evidence of D1R and D3R functional interactions.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Benzopyrans/pharmacology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dyskinesia, Drug-Induced/metabolism
- Female
- Oxazines/pharmacology
- Oxidopamine
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D3/metabolism
Collapse
Affiliation(s)
- Kathryn Lanza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Katherine Chemakin
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Sarah Lefkowitz
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Carolyn Saito
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
8
|
Moench KM, Breach MR, Wellman CL. Prior stress followed by a novel stress challenge results in sex-specific deficits in behavioral flexibility and changes in gene expression in rat medial prefrontal cortex. Horm Behav 2020; 117:104615. [PMID: 31634476 PMCID: PMC6980662 DOI: 10.1016/j.yhbeh.2019.104615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Chronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge. Chronic stress resulted in a reversible impairment in extradimensional set-shifting in males, but had no effect on attentional set-shifting in females. Surprisingly, chronically stressed female, but not male, rats had impaired extradimensional set-shifting following a novel stress challenge. Alterations in the balance of excitation and inhibition of mPFC have been implicated in behavioral deficits following chronic stress. Thus, in a separate group of rats, we examined changes in the expression of genes related to glutamatergic (NR1, NR2A, NR2B, GluR1) and GABAergic (Gad67, parvalbumin, somatostatin) neurotransmission in mPFC after acute and chronic stress, rest, and their combination. Stress significantly altered the expression of NR1, GluR1, Gad67, and parvalbumin. Notably, the pattern of stress effects on NR1, Gad67, and parvalbumin expression differed between males and females. In males, these genes were upregulated following the post-chronic stress rest period, while minimal changes were found in females. In contrast, both males and females had greater GluR1 expression following a rest period. These findings suggest that chronic stress leads to sex-specific stress adaptation mechanisms that may contribute to sex differences in response to subsequent stress exposure.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA.
| |
Collapse
|
9
|
Hyland BI, Seeger-Armbruster S, Smither RA, Parr-Brownlie LC. Altered Recruitment of Motor Cortex Neuronal Activity During the Grasping Phase of Skilled Reaching in a Chronic Rat Model of Unilateral Parkinsonism. J Neurosci 2019; 39:9660-9672. [PMID: 31641050 PMCID: PMC6880456 DOI: 10.1523/jneurosci.0720-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease causes prominent difficulties in the generation and execution of voluntary limb movements, including regulation of distal muscles and coordination of proximal and distal movement components to achieve accurate grasping. Difficulties with manual dexterity have a major impact on activities of daily living. We used extracellular single neuron recordings to investigate the neural underpinnings of parkinsonian movement deficits in the motor cortex of chronic unilateral 6-hydroxydopamine lesion male rats performing a skilled reach-to-grasp task the. Both normal movements and parkinsonian deficits in this task have striking homology to human performance. In lesioned animals there were several differences in the activity of cortical neurons during reaches by the affected limb compared with control rats. These included an increase in proportions of neurons showing rate decreases, along with increased amplitude of their average rate-decrease response at specific times during the reach, suggesting a shift in the balance of net excitation and inhibition of cortical neurons; a significant increase in the duration of rate-increase responses, which could result from reduced coupling of cortical activity to specific movement components; and changes in the timing and incidence of neurons with pure rate-increase or biphasic responses, particularly at the end of reach when grasping would normally be occurring. The changes in cortical activity may account for the deficits that occur in skilled distal motor control following dopamine depletion, and highlight the need for treatment strategies targeted toward modulating cortical mechanisms for fine distal motor control in patients.SIGNIFICANCE STATEMENT We show for the first time in a chronic lesion rat model of Parkinson's disease movement deficits that there are specific changes in motor cortex neuron activity associated with the grasping phase of a skilled motor task. Such changes provide a possible mechanism underpinning the problems with manual dexterity seen in Parkinson's patients and highlight the need for treatment strategies targeted toward distal motor control.
Collapse
Affiliation(s)
| | | | - Roseanna A Smither
- Department of Physiology and
- Department of Anatomy, School of Biomedical Science and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand and the Brain Research New Zealand Centre of Research Excellence
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Science and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand and the Brain Research New Zealand Centre of Research Excellence
| |
Collapse
|
10
|
Lanza K, Perkins AE, Deak T, Bishop C. Late aging-associated increases in L-DOPA-induced dyskinesia are accompanied by heightened neuroinflammation in the hemi-parkinsonian rat. Neurobiol Aging 2019; 81:190-199. [PMID: 31306813 DOI: 10.1016/j.neurobiolaging.2019.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/21/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022]
Abstract
Aging is a primary risk factor for the development of Parkinson's disease (PD), and aging differentially predicts the incidence of L-DOPA-induced dyskinesia (LID). The goal of this work was to establish whether late aging-associated exacerbation of LID would be related to neuroinflammation in the hemi-parkinsonian rat. Two studies were conducted in which adult (3 months) and aged (18 months) male Fischer 344 rats bearing unilateral 6-hydroxydopamine lesions of the medial forebrain bundle were injected acutely with vehicle or L-DOPA (6 mg/kg). LID was quantified, and neuroinflammation was assessed postmortem via gene expression markers in the striatum (experiment 1) or through concurrent large-molecule microdialysis (experiment 2). In addition to exacerbating LID despite similar levels of striatal dopamine loss, late aging was associated with persistently elevated IL-1β gene expression ipsilateral to lesion, as well as a trend toward greater extracellular concentrations of IL-1β in response to acute L-DOPA treatment. In contrast, aged sham-operated rats displayed greater extracellular IL-6. Taken together, these data demonstrate an age-related vulnerability to LID and highlight potential neuroinflammatory mediators associated with these effects.
Collapse
Affiliation(s)
- Kathryn Lanza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
11
|
Sellnow RC, Newman JH, Chambers N, West AR, Steece-Collier K, Sandoval IM, Benskey MJ, Bishop C, Manfredsson FP. Regulation of dopamine neurotransmission from serotonergic neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathol Commun 2019; 7:8. [PMID: 30646956 PMCID: PMC6332643 DOI: 10.1186/s40478-018-0653-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Levodopa-induced dyskinesias (LID) are a prevalent side effect of chronic treatment with levodopa (L-DOPA) for the motor symptoms of Parkinson’s disease (PD). It has long been hypothesized that serotonergic neurons of the dorsal raphe nucleus (DRN) are capable of L-DOPA uptake and dysregulated release of dopamine (DA), and that this “false neurotransmission” phenomenon is a main contributor to LID development. Indeed, many preclinical studies have demonstrated LID management with serotonin receptor agonist treatment, but unfortunately, promising preclinical data has not been translated in large-scale clinical trials. Importantly, while there is an abundance of convincing clinical and preclinical evidence supporting a role of maladaptive serotonergic neurotransmission in LID expression, there is no direct evidence that dysregulated DA release from serotonergic neurons impacts LID formation. In this study, we ectopically expressed the DA autoreceptor D2Rs (or GFP) in the DRN of 6-hydroxydopamine (6-OHDA) lesioned rats. No negative impact on the therapeutic efficacy of L-DOPA was seen with rAAV-D2Rs therapy. However, D2Rs treated animals, when subjected to a LID-inducing dose regimen of L-DOPA, remained completely resistant to LID, even at high doses. Moreover, the same subjects remained resistant to LID formation when treated with direct DA receptor agonists, suggesting D2Rs activity in the DRN blocked dyskinesogenic L-DOPA priming of striatal neurons. In vivo microdialysis confirmed that DA efflux in the striatum was reduced with rAAV-D2Rs treatment, providing explicit evidence that abnormal DA release from DRN neurons can affect LID. This is the first direct evidence of dopaminergic neurotransmission in DRN neurons and its modulation with rAAV-D2Rs gene therapy confirms the serotonin hypothesis in LID, demonstrating that regulation of serotonergic neurons achieved with a gene therapy approach offers a novel and potent antidyskinetic therapy.
Collapse
|
12
|
Haghparast E, Esmaeili-Mahani S, Abbasnejad M, Sheibani V. Apelin-13 ameliorates cognitive impairments in 6-hydroxydopamine-induced substantia nigra lesion in rats. Neuropeptides 2018; 68:28-35. [PMID: 29329678 DOI: 10.1016/j.npep.2018.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022]
Abstract
Although Parkinson's disease (PD) is well known with its motor deficits, the patients often suffer from cognitive dysfunction. Apelin, as the endogenous ligand of the APJ receptor, is found in several brain regions such as substantia nigra and mesolimbic pathway. However, the role of apelin in cognition and cognitive disorders has not been fully clarified. In this study the effects of apelin-13 were investigated on cognitive disorders in rat Parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was administrated into the substantia nigra. Apelin-13 (1, 2 and 3μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Morris water maze (MWM), object location and novel object recognition tests were performed one month after the apelin injection. 6-OHDA-treated animals showed a significant impairment in cognitive functions which was revealed by the increased in the escape latency and traveled distance in MWM test and decreased in the exploration index in novel object recognition and object location tasks. Apelin-13 (3μg/rat) significantly attenuates the mentioned cognitive impairments in 6-OHDA-treated animals. In conclusion, the data support the pro-cognitive property of apelin-13 in 6-OHDA-induced cognitive deficit and provided a new pharmacological aspect of the neuropeptide apelin.
Collapse
Affiliation(s)
- Elham Haghparast
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Lindenbach D, Das B, Conti MM, Meadows SM, Dutta AK, Bishop C. D-512, a novel dopamine D 2/3 receptor agonist, demonstrates greater anti-Parkinsonian efficacy than ropinirole in Parkinsonian rats. Br J Pharmacol 2017; 174:3058-3071. [PMID: 28667675 DOI: 10.1111/bph.13937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Symptoms of Parkinson's disease are commonly managed using selective dopamine D2/3 receptor agonists, including ropinirole. While D2/3 agonists are useful in early-stage Parkinson's disease, they tend to lose efficacy in later disease stages and do not appear to modify disease progression. We have recently developed a novel 'multifunctional' compound, D-512: a high-affinity D2/3 receptor agonist with antioxidant and other neuroprotective properties that may limit Parkinson's disease progression. This study sought to compare the anti-Parkinsonian properties of the clinically used compound, ropinirole, with those of the novel compound, D-512. EXPERIMENTAL APPROACH A rat model of Parkinson's disease was created by unilaterally infusing 6-hydroxydopamine, a dopamine neurotoxin, into the medial forebrain bundle. D-512 was compared with ropinirole for ability to stimulate spontaneous motor activity and reverse Parkinsonian akinesia. These beneficial effects were compared against each drug's liability to provoke dyskinesia, a common motor side effect. KEY RESULTS Both compounds increased spontaneous movement, but D-512 showed a longer duration of action. Only D-512 was able to significantly reverse forelimb akinesia. Drug-induced dyskinesia was similar for equivalent doses. CONCLUSIONS AND IMPLICATIONS Compared with ropinirole, D-512 showed greater peak-dose efficacy and a longer duration of action, despite a similar side-effect profile. Our results add to earlier data showing that D-512 is superior to available D2/3 agonists and could merit clinical investigation.
Collapse
Affiliation(s)
- David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - Banibrata Das
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - Samantha M Meadows
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| |
Collapse
|
14
|
Effect of Intrastriatal 6-OHDA Lesions on Extrastriatal Brain Structures in the Mouse. Mol Neurobiol 2017; 55:4240-4252. [PMID: 28616718 DOI: 10.1007/s12035-017-0637-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor and non-motor symptoms. The underlying pathology of non-motor symptoms is poorly understood. Discussed are pathological changes of extrastriatal brain structures. In this study, we characterized histopathological alterations of extrastriatal brain structures in the 6-hydroxydopamine (6-OHDA) PD animal model. Lesions were induced by unilateral stereotactic injections of 6-OHDA into the striatum or medial forebrain bundle of adult male mice. Loss of tyrosine hydroxylase positive (TH+) fibers as well as glia activation was quantified following stereological principles. Loss of dopaminergic innervation was further investigated by western-blotting. As expected, 6-OHDA injection into the nigrostriatal route induced retrograde degeneration of dopaminergic neurons within the substantia nigra pars compacta (SNpc), less so within the ventral tegmental area. Furthermore, we observed a region-specific drop of TH+ projection fiber density in distinct cortical regions. This pathology was most pronounced in the cingulate- and motor cortex, whereas the piriform cortex was just modestly affected. Loss of cortical TH+ fibers was not paralleled by microglia or astrocyte activation. Our results demonstrate that the loss of dopaminergic neurons within the substantia nigra pars compacta is paralleled by a cortical dopaminergic denervation in the 6-OHDA model. This model serves as a valuable tool to investigate mechanisms operant during cortical pathology in PD patients. Further studies are needed to understand why cortical dopaminergic innervation is lost in this model, and what functional consequence is associated with the observed denervation.
Collapse
|
15
|
Alam M, Rumpel R, Jin X, von Wrangel C, Tschirner SK, Krauss JK, Grothe C, Ratzka A, Schwabe K. Altered somatosensory cortex neuronal activity in a rat model of Parkinson's disease and levodopa-induced dyskinesias. Exp Neurol 2017; 294:19-31. [PMID: 28445715 DOI: 10.1016/j.expneurol.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Abstract
Several findings support the concept that sensorimotor integration is disturbed in Parkinson's disease (PD) and in levodopa-induced dyskinesias. In this study, we explored the neuronal firing activity of excitatory pyramidal cells and inhibitory interneurons in the forelimb region of the primary somatosensory cortex (S1FL-Ctx), along with its interaction with oscillatory activity of the primary motor cortex (MCtx) in 6-hydroxydopamine lesioned hemiparkinsonian (HP) and levodopa-primed dyskinetic (HP-LID) rats as compared to controls under urethane (1.4g/kg, i.p.) anesthesia. Further, gene expression patterns of distinct markers for inhibitory GABAergic neurons were analyzed in both cortical regions. While firing frequency and burst activity of S1FL-Ctx inhibitory interneurons were reduced in HP and HP-LID rats, measures of irregularity were enhanced in pyramidal cells. Further, enhanced coherence of distinct frequency bands of the theta/alpha, high-beta, and gamma frequency, together with enhanced synchronization of putative pyramidal cells and interneurons with MCtx oscillatory activity were observed. While GABA level was similar, gene expression levels of interneuron and GABAergic markers in S1FL-Ctx and MCtx of HP-LID rats differed to some extent. Our study shows that in a rat model of PD with dyskinesias, neuronal activity in putative interneurons was reduced, which was accompanied by high beta and gamma coherence between S1FL-Ctx and MCtx, together with changes in gene expression, indicating maladaptive neuroplasticity after long term levodopa treatment.
Collapse
Affiliation(s)
- Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Regina Rumpel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Xingxing Jin
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Sarah K Tschirner
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany; Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany; Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany; Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Voulalas PJ, Ji Y, Jiang L, Asgar J, Ro JY, Masri R. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion. Neuroscience 2016; 343:94-105. [PMID: 27932310 DOI: 10.1016/j.neuroscience.2016.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022]
Abstract
Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. These changes were associated with a significant reduction in hindpaw withdrawal thresholds in lesioned animals compared to sham-operated controls. We investigated the consequences of diminished D1 receptor levels by quantifying D1-like receptor-mediated phosphorylation of ERK1,2 and CREB, events that have been observed in numerous brain structures. In naïve animals, western blot analysis revealed that ERK1,2, but not CREB phosphorylation was significantly increased in the PAG by the D1-like agonist SKF 81297. Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptations resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL.
Collapse
Affiliation(s)
- Pamela J Voulalas
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Yadong Ji
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Li Jiang
- University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD 21201, USA
| | - Jamila Asgar
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Jin Y Ro
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, Baltimore, MD 21201, USA; Kyung Hee University, School of Dentistry, Department of Oral Medicine, Seoul, Republic of Korea
| | - Radi Masri
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Lindenbach D, Conti MM, Ostock CY, George JA, Goldenberg AA, Melikhov-Sosin M, Nuss EE, Bishop C. The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats. J Neurosci 2016; 36:9873-87. [PMID: 27656025 PMCID: PMC5030350 DOI: 10.1523/jneurosci.1318-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Long-term treatment of Parkinson's disease with l-DOPA almost always leads to the development of involuntary movements termed l-DOPA-induced dyskinesia. Whereas hyperdopaminergic signaling in the basal ganglia is thought to cause dyskinesia, alterations in primary motor cortex (M1) activity are also prominent during dyskinesia, suggesting that the cortex may represent a therapeutic target. The present study used the rat unilateral 6-hydroxydopamine lesion model of Parkinson's disease to characterize in vivo changes in GABA and glutamate neurotransmission within M1 and determine their contribution to behavioral output. 6-Hydroxydopamine lesion led to parkinsonian motor impairment that was partially reversed by l-DOPA. Among sham-lesioned rats, l-DOPA did not change glutamate or GABA efflux. Likewise, 6-hydroxydopamine lesion did not impact GABA or glutamate among rats chronically treated with saline. However, we observed an interaction of lesion and treatment whereby, among lesioned rats, l-DOPA given acutely (1 d) or chronically (14-16 d) reduced glutamate efflux and enhanced GABA efflux. Site-specific microinjections into M1 demonstrated that l-DOPA-induced dyskinesia was reduced by M1 infusion of a D1 antagonist, an AMPA antagonist, or a GABAA agonist. Overall, the present study demonstrates that l-DOPA-induced dyskinesia is associated with increased M1 inhibition and that exogenously enhancing M1 inhibition may attenuate dyskinesia, findings that are in agreement with functional imaging and transcranial magnetic stimulation studies in human Parkinson's disease patients. Together, our study suggests that increasing M1 inhibitory tone is an endogenous compensatory response designed to limit dyskinesia severity and that potentiating this response is a viable therapeutic strategy. SIGNIFICANCE STATEMENT Most Parkinson's disease patients will receive l-DOPA and eventually develop hyperkinetic involuntary movements termed dyskinesia. Such symptoms can be as debilitating as the disease itself. Although dyskinesia is associated with dynamic changes in primary motor cortex physiology, to date, there are no published studies investigating in vivo neurotransmitter release in M1 during dyskinesia. In parkinsonian rats, l-DOPA administration reduced M1 glutamate efflux and enhanced GABA efflux, coincident with the emergence of dyskinetic behaviors. Dyskinesia could be reduced by local M1 modulation of D1, AMPA, and GABAA receptors, providing preclinical support for the notion that exogenously blunting M1 signaling (pharmacologically or with cortical stimulation) is a therapeutic approach to the treatment of debilitating dyskinesias.
Collapse
Affiliation(s)
- David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| | - Corinne Y Ostock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| | - Jessica A George
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| | - Adam A Goldenberg
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| | - Mitchell Melikhov-Sosin
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| | - Emily E Nuss
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13901
| |
Collapse
|
18
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
19
|
Neurosteroid allopregnanolone attenuates cognitive dysfunctions in 6-OHDA-induced rat model of Parkinson’s disease. Behav Brain Res 2016; 305:258-64. [DOI: 10.1016/j.bbr.2016.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/18/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
|