1
|
Zhang H, Ye Y, Zhao Y, Li S, Jiao P, Yang Y, Jin Y, Zeng L, Zhang H, Chen M, Jiang H, Zhou L, Li J, Li D, Li R. Obesity is associated with lower levels of negative emotions in polycystic ovary syndrome in clinical and animal studies. Ann Med 2024; 56:2373199. [PMID: 38956857 PMCID: PMC11225633 DOI: 10.1080/07853890.2024.2373199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in women of reproductive age. It is frequently comorbid with obesity and negative emotions. Currently, there are few reports on the relationship between obesity and negative emotions in patients with PCOS. Here we performed both basic and clinical studies to study the relationship between obesity and negative emotions in PCOS. METHODS We performed a cross-sectional study including 608 patients with PCOS and 184 healthy participants to assess the mental health status of people with different body mass indices (BMI). Self-rated anxiety, depression, and perceived stress scales were used for subjective mood evaluations. Rat PCOS models fed 45 and 60% high-fat diets were used to confirm the results of the clinical study. Elevated plus maze and open field tests were used to assess anxiety- and depression-like behaviors in rats. RESULTS We observed overweight/obesity, increased depression, anxiety, and perceived stress in women with PCOS, and found that anxiety and depression were negatively correlated with BMI in patients with severe obesity and PCOS. Similar results were confirmed in the animal study; the elevated plus maze test and open field test demonstrated that only 60% of high fat diet-induced obesity partly reversed anxiety- and depression-like behaviors in PCOS rats. A high-fat diet also modulated rat hypothalamic and hippocampal luteinizing hormone and testosterone levels. CONCLUSION These results reveal a potential relationship between obesity and negative emotions in PCOS and prompt further investigation. The interactions between various symptoms of PCOS may be targeted to improve the overall well-being of patients.
Collapse
Affiliation(s)
- Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shi Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Peijie Jiao
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yang Yang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yuxin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Lin Zeng
- Research Centre of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Hua Zhang
- Research Centre of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Meishuang Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hong Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, China
| | - Lifei Zhou
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Jiayi Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| |
Collapse
|
2
|
Wang H, Wang X, Wang H, Shao S, Zhu J. Chronic Corticosterone Administration-Induced Mood Disorders in Laboratory Rodents: Features, Mechanisms, and Research Perspectives. Int J Mol Sci 2024; 25:11245. [PMID: 39457027 PMCID: PMC11508944 DOI: 10.3390/ijms252011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Mood disorders mainly affect the patient's daily life, lead to suffering and disability, increase the incidence rate of many medical illnesses, and even cause a trend of suicide. The glucocorticoid (GC)-mediated hypothalamus-pituitary-adrenal (HPA) negative feedback regulation plays a key role in neuropsychiatric disorders. The balance of the mineralocorticoid receptor (MR)/glucocorticoid receptor (GR) level contributes to maintaining the homeostasis of the neuroendocrine system. Consistently, a chronic excess of GC can also lead to HPA axis dysfunction, triggering anxiety, depression, memory loss, and cognitive impairment. The animal model induced by chronic corticosterone (CORT) administration has been widely adopted because of its simple replication and strong stability. This review summarizes the behavioral changes and underlying mechanisms of chronic CORT administration-induced animal models, including neuroinflammatory response, pyroptosis, oxidative stress, neuroplasticity, and apoptosis. Notably, CORT administration at different doses and cycles can destroy the balance of the MR/GR ratio to make dose-dependent effects of CORT on the central nervous system (CNS). This work aims to offer an overview of the topic and recommendations for future cognitive function research.
Collapse
Affiliation(s)
- Hao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Huan Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Shuijin Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Jing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| |
Collapse
|
3
|
Takeuchi E, Hatanaka T, Iijima T, Kimura M, Katoh A. The effects of corticotropin-releasing factor on motor learning. Sci Rep 2024; 14:17056. [PMID: 39048594 PMCID: PMC11269602 DOI: 10.1038/s41598-024-66736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Corticotropin-releasing factor (CRF) is mainly secreted from the hypothalamic paraventricular nuclei and plays a crucial role in stress-related responses. Recent studies have reported that CRF is a neuromodulator in the central nervous system. In the cerebellum, CRF is essential for the induction of long-term depression (LTD) at the parallel fiber-Purkinje cell synapses. Given that LTD is thought to be one of the fundamental mechanisms of motor learning, CRF may affect motor learning. However, the role of CRF in motor learning in vivo remains unclear. In this study, we aimed to examine the role of CRF in motor learning. This was achieved through a series of behavioral experiments involving the in vivo administration of CRF and its antagonists. Rats injected with CRF directly into the cerebellum exhibited superior performance on the rotarod test, especially during initial training phases, compared to control subjects. Conversely, rats receiving a CRF receptor antagonist demonstrated reduced endurance on the rotating rod compared to controls. Notably, CRF mRNA expression levels in the cerebellum did not show significant variance between the CRF-injected and control groups. These findings imply a critical role of endogenous CRF in cerebellar motor learning and suggest that exogenous CRF can augment this process. (199 words).
Collapse
Affiliation(s)
- Eri Takeuchi
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Tomomi Hatanaka
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Course of Pharmacy, Graduated School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takatoshi Iijima
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Minoru Kimura
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akira Katoh
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
4
|
Montgomery KR, Bridi MS, Folts LM, Marx-Rattner R, Zierden HC, Wulff AB, Kodjo EA, Thompson SM, Bale TL. Chemogenetic activation of CRF neurons as a model of chronic stress produces sex-specific physiological and behavioral effects. Neuropsychopharmacology 2024; 49:443-454. [PMID: 37833589 PMCID: PMC10724197 DOI: 10.1038/s41386-023-01739-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/15/2023]
Abstract
Trauma and chronic stress exposure are the strongest predictors of lifetime neuropsychiatric disease presentation. These disorders often have significant sex biases, with females having higher incidences of affective disorders such as major depression, anxiety, and PTSD. Understanding the mechanisms by which stress exposure heightens disease vulnerability is essential for developing novel interventions. Current rodent stress models consist of a battery of sensory, homeostatic, and psychological stressors that are ultimately integrated by corticotropin-releasing factor (CRF) neurons to trigger corticosteroid release. These stress paradigms, however, often differ between research groups in the type, timing, and duration of stressors utilized. These inconsistencies, along with the variability of individual animals' perception and response to each stressor, present challenges for reproducibility and translational relevance. Here, we hypothesized that a more direct approach using chemogenetic activation of CRF neurons would recapitulate the effects of traditional stress paradigms and provide a high-throughput method for examining stress-relevant phenotypes. Using a transgenic approach to express the Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor hM3Dq in CRF-neurons, we found that the DREADD ligand clozapine-N-oxide (CNO) produced an acute and robust activation of the hypothalamic-pituitary-adrenal (HPA) axis, as predicted. Interestingly, chronic treatment with this method of direct CRF activation uncovered a novel sex-specific dissociation of glucocorticoid levels with stress-related outcomes. Despite hM3Dq-expressing females producing greater corticosterone levels in response to CNO than males, hM3Dq-expressing males showed significant typical physiological stress sensitivity with reductions in body and thymus weights. hM3Dq-expressing females while resistant to the physiological effects of chronic CRF activation, showed significant increases in baseline and fear-conditioned freezing behaviors. These data establish a novel mouse model for interrogating stress-relevant phenotypes and highlight sex-specific stress circuitry distinct for physiological and limbic control that may underlie disease risk.
Collapse
Affiliation(s)
- Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Morgan S Bridi
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lillian M Folts
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruth Marx-Rattner
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emmanuela A Kodjo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Dutton M, Boyes A, Can AT, Mohamed AZ, Hajishafiee M, Shan ZY, Lagopoulos J, Hermens DF. Hippocampal subfield volumes predict treatment response to oral ketamine in people with suicidality. J Psychiatr Res 2024; 169:192-200. [PMID: 38042058 DOI: 10.1016/j.jpsychires.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Ongoing stress results in hippocampal neuro-structural alterations which produce pathological consequences, including depression and suicidality. Ketamine may ameliorate stress related illnesses, including suicidality, via neuroplasticity processes. This novel study sought to determine whether oral ketamine treatment specifically affects hippocampal (whole and subfield) volumes in patients with chronic suicidality and MDD. It was hypothesised that oral ketamine treatment would differentially alter hippocampal volumes in trial participants categorised as ketamine responders, versus those who were non-responders. Twenty-eight participants received 6 single, weekly doses of oral ketamine (0.5-3 mg/kg) and underwent MRI scans at pre-ketamine (week 0), post-ketamine (week 6), and follow up (week 10). Hippocampal subfield volumes were extracted using the longitudinal pipeline in FreeSurfer. Participants were grouped according to ketamine response status and then compared in terms of grey matter volume (GMV) changes, among 10 hippocampal regions, over 6 and 10 weeks. Mixed ANOVAs were used to analyse interactions between time and group. Post treatment analysis revealed a significant main effect of group for three left hippocampal GMVs as well in the left and right whole hippocampus. Ketamine acute responders (Week 6) showed increased GMVs in both left and right whole hippocampus and in three subfields compared to acute non-responders, across all three timepoints, suggesting that pre-treatment increased hippocampal GMVs (particularly left hemisphere) may be predictive biomarkers of acute treatment response. Future studies should further investigate the potential of hippocampal volumes as a biomarker of ketamine treatment response.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
| | - Amanda Boyes
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Maryam Hajishafiee
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
6
|
Ngoupaye GT, Mokgokong M, Madlala T, Mabandla MV. Alteration of the α5 GABA receptor and 5HTT lead to cognitive deficits associated with major depressive-like behaviors in a 14-day combined stress rat model. Int J Neurosci 2023; 133:959-976. [PMID: 34937496 DOI: 10.1080/00207454.2021.2019033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/13/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Current models used to study the pathophysiology of major depressive disorder (MDD) are laborious and time consuming. This study examined the effect of a 14-day combined stress model (CS; corticosterone injection and restraint stress) in male Sprague-Dawley rats and also compare the effect of CS versus 28-day corticosterone treatment on depressive-like behaviour and cognitive deficits. MATERIEL AND METHODS Depressive-like behaviours and cognitive deficits were assessed in the forced swim test (FST), sucrose preference (SPT), Morris water maze (MWM) and novel object recognition (NORT) tests. Real-time PCR and ELISA were respectively used to detect expression of the serotonin transporter (5-HTT), serotonin 1 A receptor (5-HT1A), α5 GABAA receptor, and the concentrations of corticosterone (plasma), GABA and acetylcholinesterase (AChE) in the hippocampus and Prefrontal cortex (PFC).Results CS group showed increased immobility time in the FST, time to reach the MWM platform, higher corticosterone level, and increased expressions of hippocampal and PFC 5-HT1A and α5 GABAA receptors, and AChE compared to their control groups. In contrast, reductions in SPT ratio, discrimination index in NORT, time in target quadrant, and hippocampal 5-HTT expression was noted relative to their control group. Compared to the 28-day corticosterone only group, PFC 5-HT1A, Hippocampal 5-HTT were reduced, while PFC 5-HTT, Hippocampal α5 GABAA receptors, and AChE concentrations were higher in the CS group. CONCLUSION Our CS model induced depressive-like behaviour with early cognitive deficits in rats affecting both hippocampus and PFC. The CS model may be useful in investigating new and comprehensive treatment strategies for MDD.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Makwena Mokgokong
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thobeka Madlala
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Colding-Jørgensen P, Hestehave S, Abelson KSP, Kalliokoski O. Hair glucocorticoids are not a historical marker of stress - Exploring the time-scale of corticosterone incorporation into hairs in a rat model. Gen Comp Endocrinol 2023; 341:114335. [PMID: 37302763 DOI: 10.1016/j.ygcen.2023.114335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Hair glucocorticoids are increasingly popular biomarkers, used across numerous research fields, and studied species, as a measure of stress. Although they are suggested to be a proxy of the average HPA axis activity spanning a period of weeks or months into the past, this theory has never been tested. In the present study, adrenalectomized rats with no endogenous (adrenal) glucocorticoid production were used to study how circulating glucocorticoid levels would be reflected in the glucocorticoid levels found in hair samples. By dosing the animals daily with high levels of corticosterone for seven days, while sampling hairs before, during, and after treatments, a timeline for glucocorticoid uptake into hairs was constructed. This kinetic profile was compared to two hypothetical models, and the theory that hair glucocorticoids are a record of historical stress had to be rejected. Corticosterone concentrations in hairs were found to increase within three hours of the first injection, the highest concentrations were found on the seventh day of treatments, and the decrease in concentrations post-treatment suggests rapid elimination. We speculate that hair glucocorticoid levels can only be used to characterize a stress-response for a few days following a postulated stressor. An updated model, where glucocorticoids diffuse into, along, and out of hairs needs to be adopted to reconcile the experimentally obtained data. The inescapable consequence of this updated model is that hair glucocorticoids become a marker of - and can only be used to study - recent, or ongoing, stress, as opposed to historical events, weeks or months in the past.
Collapse
Affiliation(s)
- Pernille Colding-Jørgensen
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sara Hestehave
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Cell and Developmental Biology, University College London, United Kingdom
| | - Klas S P Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Otto Kalliokoski
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Chronically dysregulated corticosterone impairs dopaminergic transmission in the dorsomedial striatum by sex-divergent mechanisms. Neuropsychopharmacology 2023:10.1038/s41386-023-01551-1. [PMID: 36810463 PMCID: PMC10353992 DOI: 10.1038/s41386-023-01551-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Individuals with MDD exhibit decreased motivation and deficits in reward processing. In a subset of MDD patients, chronic dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs, resulting in increased levels of the 'stress hormone' cortisol during the normal rest period (i.e., evening and night). However, the mechanistic relationship between chronically elevated resting cortisol and behavioral deficits in motivation and reward processing remains unclear. Given that women are diagnosed with MDD at twice the rate of men, it is important to understand whether the mechanisms linking cortisol to the symptoms of MDD differ by sex. In this study, we used subcutaneous implants to chronically elevate free plasma corticosterone (the rodent homolog of cortisol; 'CORT') during the rest period in male and female mice and examined changes in behavior and dopamine system function. We found that chronic CORT treatment impaired motivated reward-seeking in both sexes. In female but not male mice, CORT treatment reduced dopamine content in the dorsomedial striatum (DMS). In male but not female mice, CORT treatment impaired the function of the dopamine transporter (DAT) in DMS. From these studies, we conclude that chronic CORT dysregulation impairs motivation by impairing dopaminergic transmission in the DMS, but via different mechanisms in male and female mice. A better understanding of these sex-specific mechanisms could lead to new directions in MDD diagnosis and treatment.
Collapse
|
9
|
Li H, Li J, Zhang T, Xie X, Gong J. Antidepressant effect of Jujuboside A on corticosterone-induced depression in mice. Biochem Biophys Res Commun 2022; 620:56-62. [DOI: 10.1016/j.bbrc.2022.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
|
10
|
Corticosterone induces discrete epigenetic signatures in the dorsal and ventral hippocampus that depend upon sex and genotype: focus on methylated Nr3c1 gene. Transl Psychiatry 2022; 12:109. [PMID: 35296634 PMCID: PMC8927334 DOI: 10.1038/s41398-022-01864-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. Males under CORT showed lower glycemia and increased anxiety- and depression-like behavior compared to females that showed instead opposite affective behavior in response to CORT. Rank-rank-hypergeometric overlap (RRHO) was used to identify genes from a continuous gradient of significancy that were concordant across groups. RRHO showed that CORT-induced differentially expressed genes (DEGs) in WT mice and hMet mice converged in the dHPC of males and females, while in the vHPC, DEGs converged in males and diverged in females. The vHPC showed a higher number of DEGs compared to the dHPC and exhibited sex differences related to glucocorticoid receptor (GR)-binding genes and epigenetic modifiers. Methyl-DNA-immunoprecipitation in the vHPC revealed differential methylation of the exons 1C and 1F of the GR gene (Nr3c1) in hMet females. Together, we report behavioral and endocrinological sex differences in response to CORT, as well as epigenetic signatures that i) differ in the dHPC and vHPC,ii) are distinct in males and females, and iii) implicate differential methylation of Nr3c1 selectively in hMet females.
Collapse
|
11
|
Canet G, Zussy C, Hernandez C, Chevallier N, Marchi N, Desrumaux C, Givalois L. Chronic Glucocorticoids Consumption Triggers and Worsens Experimental Alzheimer's Disease-Like Pathology by Detrimental Immune Modulations. Neuroendocrinology 2022; 112:982-997. [PMID: 34923495 DOI: 10.1159/000521559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Among the risk factors identified in the sporadic forms of Alzheimer's disease (AD), environmental and lifestyle elements are of growing interest. Clinical observations suggest that stressful events can anticipate AD onset, while stress-related disorders can promote AD. Here, we tested the hypothesis that a chronic treatment with glucocorticoids is sufficient to trigger or exacerbate AD molecular hallmarks. METHODS We first validated a rat model of experimental chronic glucocorticoids (GC) consumption (corticosterone [CORT] in drinking water for 4 weeks). Then, to evaluate the consequences of chronic GC consumption on the onset of amyloid-β (Aβ) toxicity, animals chronically treated with GC were intracerebroventricularly injected with an oligomeric solution of Aβ25-35 (oAβ) (acute model of AD). We evaluated AD-related cognitive deficits and pathogenic mechanisms, with a special emphasis on neuroinflammatory markers. RESULTS Chronic CORT consumption caused the inhibition of the nonamyloidogenic pathways, the impairment of Aβ clearance processes and the induction of amyloidogenic pathways in the hippocampus. The principal enzymes involved in glucocorticoid receptor activation and Tau phosphorylation were upregulated. Importantly, the AD-like phenotype triggered by chronic CORT was analogous to the one caused by oAβ. These molecular commonalities across models were independent from inflammation, as chronic CORT was immunosuppressive while oAβ was pro-inflammatory. When chronic CORT consumption anticipated the induction of the oAβ pathology, we found a potentiation of neuroinflammatory processes associated with an exacerbation of synaptic and memory deficits but also an aggravation of AD-related hallmarks. DISCUSSION/CONCLUSION This study unravels new functional outcomes identifying chronic CORT consumption as a main risk factor for AD and suggests that glucocorticoid-based therapies should be prescribed with caution in populations with AD risk.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Nicola Marchi
- Department of Neuroscience, Laboratory of Cerebrovascular and Glia Research, Institute of Functional Genomics, UMR CNRS-5203, INSERM-U1191, University of Montpellier, Montpellier, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, P-9717, Québec, Québec, Canada
| |
Collapse
|
12
|
The underestimated sex: a review on female animal models of depression. Neurosci Biobehav Rev 2021; 133:104498. [PMID: 34953920 DOI: 10.1016/j.neubiorev.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023]
Abstract
Major depression (MD) is the most common psychiatric disorder, predicted to affect around 264 million people worldwide. Although the etiology of depression remains elusive, the interplay between genetics and environmental factors, such as early life events, stress, exposure to drugs and health problems appears to underlie its development. Whereas depression is twice more prevalent in women than in men, most preclinical studies are performed in male rodents. In fact, females' physiology and reproductive experience are associated with changes to brain, behavior and endocrine profiles that may influence both stress, an important precipitating factor for depression, and response to treatment. These specificities emphasize the need to choose the most suitable models and readouts in order to better understand the pathophysiological mechanisms of depression in females. With this review, we aim to provide an overview of female animal models of depression highlighting the major differences between models, regarding behavioral, physiological, and molecular readouts, but also the major gaps in research, attending to the role of etiological factors, protocol variability and sex.
Collapse
|
13
|
Timmerman BM, Mooney-Leber SM, Brummelte S. The effects of neonatal procedural pain and maternal isolation on hippocampal cell proliferation and reelin concentration in neonatal and adult male and female rats. Dev Psychobiol 2021; 63:e22212. [PMID: 34813104 DOI: 10.1002/dev.22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Preterm births accounted for over 10% of all U.S. live births in 2019 and the rate is rising. Neonatal stressors, especially procedural pain, experienced by preterm infants in the neonatal intensive care unit (NICU) have been associated with neurodevelopmental impairments. Parental care can alleviate stress during stressful or painful procedures; however, infants in the NICU often receive reduced parental care compared with their peers. Animal studies suggest that decreased maternal care similarly impairs neurodevelopment but also influences the effects of neonatal pain. It is important to mimic both stressors in animal models of neonatal stress exposure. In this study, researchers investigated the individual and combined impact of neonatal pain and maternal isolation on reelin protein levels and cellular proliferation in the hippocampal dentate gyrus of 8 days old and adult rats. Exposure to either stressor individually, but not both, increased reelin levels in the dentate gyrus of adult females without significantly altering reelin levels in adult males. However, cell proliferation levels at either age were unaffected by the early-life stressors. These results suggest that each early-life stressor has a unique effect on markers of brain development and more research is needed to further investigate their distinct influences.
Collapse
Affiliation(s)
- Brian M Timmerman
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
| | - Sean M Mooney-Leber
- Department of Psychology, University of Wisconsin-Stevens Points, Stevens Point, Wisconsin, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, Michigan, USA.,Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
14
|
Wolf DC, Desgent S, Sanon NT, Chen JS, Elkaim LM, Bosoi CM, Awad PN, Simard A, Salam MT, Bilodeau GA, Duss S, Sawan M, Lewis EC, Weil AG. Sex differences in the developing brain impact stress-induced epileptogenicity following hyperthermia-induced seizures. Neurobiol Dis 2021; 161:105546. [PMID: 34742878 DOI: 10.1016/j.nbd.2021.105546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Febrile seizures (FS) are common, affecting 2-5% of children between the ages of 3 months and 6 years. Complex FS occur in 10% of patients with FS and are strongly associated with mesial temporal lobe epilepsy. Current research suggests that predisposing factors, such as genetic and anatomic abnormalities, may be necessary for complex FS to translate to mesial temporal lobe epilepsy. Sex hormones are known to influence seizure susceptibility and epileptogenesis, but whether sex-specific effects of early life stress play a role in epileptogenesis is unclear. Here, we investigate sex differences in the activity of the hypothalamic-pituitary-adrenal (HPA) axis following chronic stress and the underlying contributions of gonadal hormones to the susceptibility of hyperthermia-induced seizures (HS) in rat pups. Chronic stress consisted of daily injections of 40 mg/kg of corticosterone (CORT) subcutaneously from postnatal day (P) 1 to P9 in male and female rat pups followed by HS at P10. Body mass, plasma CORT levels, temperature threshold to HS, seizure characteristics, and electroencephalographic in vivo recordings were compared between CORT- and vehicle (VEH)-injected littermates during and after HS at P10. In juvenile rats (P18-P22), in vitro CA1 pyramidal cell recordings were recorded in males to investigate excitatory and inhibitory neuronal circuits. Results show that daily CORT injections increased basal plasma CORT levels before HS and significantly reduced weight gain and body temperature threshold of HS in both males and females. CORT also significantly lowered the generalized convulsions (GC) latency while increasing recovery time and the number of electrographic seizures (>10s), which had longer duration. Furthermore, sex-specific differences were found in response to chronic CORT injections. Compared to females, male pups had increased basal plasma CORT levels after HS, longer recovery time and a higher number of electrographic seizures (>10s), which also had longer duration. Sex-specific differences were also found at baseline conditions with lower latency to generalized convulsions and longer duration of electrographic seizures in males but not in females. In juvenile male rats, the amplitude of evoked excitatory postsynaptic potentials, as well as the amplitude of inhibitory postsynaptic currents, were significantly greater in CORT rats when compared to VEH littermates. These findings not only validate CORT injections as a stress model, but also show a sex difference in baseline conditions as well as a response to chronic CORT and an impact on seizure susceptibility, supporting a potential link between sustained early-life stress and complex FS. Overall, these effects also indicate a putatively less severe phenotype in female than male pups. Ultimately, studies investigating the biological underpinnings of sex differences as a determining factor in mental and neurologic problems are necessary to develop better diagnostic, preventative, and therapeutic approaches for all patients regardless of their sex.
Collapse
Affiliation(s)
- Daniele C Wolf
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada.
| | - Sébastien Desgent
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada
| | - Nathalie T Sanon
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Jia-Shu Chen
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lior M Elkaim
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ciprian M Bosoi
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Patricia N Awad
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Alexe Simard
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Muhammad T Salam
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | - Guillaume-Alexandre Bilodeau
- LITIV Lab., Département de génie informatique et génie logiciel, Polytechnique Montréal, Montréal, Québec, Canada
| | - Sandra Duss
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Mohamad Sawan
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | | | - Alexander G Weil
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada; Neurosurgery Service, Department of Surgery, Université de Montréal, Québec, Canada
| |
Collapse
|
15
|
Lopez J, Bagot RC. Defining Valid Chronic Stress Models for Depression With Female Rodents. Biol Psychiatry 2021; 90:226-235. [PMID: 33965195 DOI: 10.1016/j.biopsych.2021.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Women are twice as likely to experience depression than men, yet until recently, preclinical studies in rodents have focused almost exclusively on males. As interest in sex differences and sex-specific mechanisms of stress susceptibility increases, chronic stress models for inducing depression-relevant behavioral and physiological changes in male rodents are being applied to females, and several new models have emerged to include both males and females, yet not all models have been systematically validated in females. An increasing number of researchers seek to include female rodents in their experimental designs, asking the question "what is the ideal chronic stress model for depression in females?" We review criteria for assessing female model validity in light of key research questions and the fundamental distinction between studying sex differences and studying both sexes. In overviewing current models, we explore challenges inherent to establishing an ideal female chronic stress model, with particular emphasis on the need for standardization and adoption of validated behavioral tests sensitive to stress effects in females. Taken together, these considerations will empower female chronic stress models to provide a better understanding of stress susceptibility and allow the development of efficient sex-specific treatments.
Collapse
Affiliation(s)
- Joëlle Lopez
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montréal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Montréal, Quebec, Canada.
| |
Collapse
|
16
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
17
|
Brymer KJ, Kulhaway EY, Howland JG, Caruncho HJ, Kalynchuk LE. Altered acoustic startle, prepulse facilitation, and object recognition memory produced by corticosterone withdrawal in male rats. Behav Brain Res 2021; 408:113291. [PMID: 33836169 DOI: 10.1016/j.bbr.2021.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 12/30/2022]
Abstract
The symptoms of human depression often include cognitive deficits. However, cognition is not frequently included in the behavioral assessments conducted in preclinical models of depression. For example, it is well known that repeated corticosterone (CORT) injections in rodents produce depression-like behavior as measured by the forced swim test, sucrose preference test, and tail suspension test, but the cognitive impairments produced by repeated CORT have not been thoroughly examined. The purpose of this experiment was to assess the effect of repeated CORT injections on several versions of object recognition memory and modulation of the acoustic startle response by relatively low intensity prepulses, along with the more traditional assessment of depression-like behavior using the forced swim test. Rats received 21 days of CORT (40 mg/kg) or vehicle injections followed by a battery of behavioral tests. Importantly, during behavioral testing CORT treatment did not occur (CORT withdrawal). Corticosterone decreased body weight, increased immobility in the forced swim test, lowered startle amplitudes, and facilitated responding to trials with a short interval (30 ms) between the prepulse and pulse. Corticosterone also impaired both object location and object-in-place recognition memory, while sparing performance on object recognition memory. Collectively, our data suggest that CORT produces selective disruptions in prepulse facilitation, object location, and object-in-place recognition memory, and that these impairments should be considered as part of the phenotype produced by repeated CORT, and perhaps chronic stress.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| | - Erin Y Kulhaway
- Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
18
|
Nambu Y, Horie K, Kurganov E, Miyata S. Chronic running and a corticosterone treatment attenuate astrocyte-like neural stem cell proliferation in the area postrema of the adult mouse brain. Neurosci Lett 2021; 748:135732. [PMID: 33592302 DOI: 10.1016/j.neulet.2021.135732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/25/2023]
Abstract
The discovery of neural stem cells (NSCs) in the adult mammalian brain has provided insights into an extra level of brain plasticity. The proliferation and differentiation of NSCs is modulated by various physiological, pathological, and pharmacological stimuli. NSCs were recently detected in the medulla oblongata of adult rodents and humans; however, their functional significance currently remains unknown. In the present study, we examined the effects of chronic wheel-running and a corticosterone (CORT) treatment on the proliferation of astrocyte-like NSCs in the area postrema (AP) and dentate gyrus (DG). Chronic running significantly decreased the number of bromodeoxyuridine (BrdU)-labeled astrocyte-like NSCs in the AP of adult mice, but markedly increased that of BrdU+ NSCs/neural progenitor cells in the DG. The chronic CORT treatment markedly reduced the number of BrdU+ astrocyte-like NSCs in the AP, but not in the DG. These results demonstrate that the proliferation of astrocyte-like NSCs in the medulla oblongata is decreased by chronic running and a CORT treatment.
Collapse
Affiliation(s)
- Yuri Nambu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kohei Horie
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
19
|
Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021; 91:24-47. [PMID: 32755644 DOI: 10.1016/j.bbi.2020.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable chronic mild stress (UCMS) is one of the most commonly used, robust and translatable models for studying the neurobiological basis of major depression. Although the model currently has multiple advantages, it does not entirely follow the trajectory of the disorder, whereby depressive symptomology can often present months after exposure to stress. Furthermore, patients with depression are more likely to withdraw in response to their stressful experience, or as a symptom of their depression, and, in turn, this withdrawal/isolation can further exacerbate the stressful experience and the depressive symptomology. Therefore, we investigated the effect(s) of 6 weeks of UCMS followed by another 6 weeks of social isolation (referred to as UCMSI), on behaviour, corticosterone stress responsivity, immune system functioning, and hippocampal neurogenesis, in young adult male mice. We found that UCMSI induced several behavioural changes resembling depression but did not induce peripheral inflammation. However, UCMSI animals showed increased microglial activation in the ventral dentate gyrus (DG) of the hippocampus and astrocyte activation in both the dorsal and ventral DG, with increased GFAP-positive cell immunoreactivity, GFAP-positive cell hypertrophy and process extension, and increased s100β-positive cell density. Moreover, UCMSI animals had significantly reduced neurogenesis in the DG and reduced levels of peripheral vascular endothelial growth factor (VEGF) - a trophic factor produced by astrocytes and that stimulates neurogenesis. Finally, UCMSI mice also had normal baseline corticosterone levels but a smaller increase in corticosterone following acute stress, that is, the Porsolt Swim Test. Our work gives clinically relevant insights into the role that microglial and astrocyte functioning, and hippocampal neurogenesis may play in the context of stress, social isolation and depression, offering a potentially new avenue for therapeutic target.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
20
|
Haas GS, Wang W, Saffar M, Mooney-Leber SM, Brummelte S. Probiotic treatment (Bifidobacterium longum subsp. longum 35624™) affects stress responsivity in male rats after chronic corticosterone exposure. Behav Brain Res 2020; 393:112718. [DOI: 10.1016/j.bbr.2020.112718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|
21
|
Kokras N, Krokida S, Varoudaki TZ, Dalla C. Do corticosterone levels predict female depressive-like behavior in rodents? J Neurosci Res 2020; 99:324-331. [PMID: 32640495 DOI: 10.1002/jnr.24686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
Dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis is often linked to the neurobiology of depression, though the presence and type of this dysregulation is not a consistent finding. Meanwhile, significant sex differences exist regarding depression and the HPA axis. Animal models of depression simulate certain aspects of the human disease and aim to advance our knowledge regarding its neurobiology and discover new antidepressant treatments. Most animal models of depression induce a depressive-like phenotype taking advantage of stressful experimental conditions, that also increase corticosterone, the main stress hormone in rodents. In this review we present inconsistent results in male and female rodents regarding the interaction between the depressive-like behavioral phenotype and corticosterone. In commonly used models, the female depressive-like phenotype in rodents seems significantly less dependent on the stress hormone corticosterone, whereas the male behavioral response is more evident and associates with variations of corticosterone. Further research and clarification of this sex-dependent interaction will have significant ramifications on the improvement of the validity of animal models of depression.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephanie Krokida
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theoni Zoi Varoudaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Wang P, Liang Y, Chen K, Yau SY, Sun X, Cheng KKY, Xu A, So KF, Li A. Potential Involvement of Adiponectin Signaling in Regulating Physical Exercise-Elicited Hippocampal Neurogenesis and Dendritic Morphology in Stressed Mice. Front Cell Neurosci 2020; 14:189. [PMID: 32774242 PMCID: PMC7381385 DOI: 10.3389/fncel.2020.00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Adiponectin, a cytokine secreted by mature adipocytes, proves to be neuroprotective. We have previously reported that running triggers adiponectin up-regulation which subsequently promotes generation of hippocampal neurons and thereby alleviates depression-like behaviors in non-stressed mice. However, under the stressing condition, whether adiponectin could still exert antidepressant-like effects following exercise remained unexplored. In this study, by means of repeated corticosterone injections to mimic stress insult and voluntary wheel running as physical exercise intervention, we examined whether exercise-elicited antidepressive effects might involve adiponectin's regulation on hippocampal neurogenesis and dendritic plasticity in stressed mice. Here we show that repeated injections of corticosterone inhibited hippocampal neurogenesis and impaired dendritic morphology of neurons in the dentate gyrus of both wild-type and adiponectin-knockout mice comparably, which subsequently evoked depression-like behaviors. Voluntary wheel running attenuated corticosterone-suppressed neurogenesis and enhanced dendritic plasticity in the hippocampus, ultimately reducing depression-like behaviors in wild-type, but not adiponectin-knockout mice. We further demonstrate that such proneurogenic effects were potentially achieved through activation of the AMP-dependent kinase (AMPK) pathway. Our study provides the first evidence that adiponectin signaling is essential for physical exercise-triggered effects on stress-elicited depression by retaining the normal proliferation of neural progenitors and dendritic morphology of neurons in the hippocampal dentate gyrus, which may depend on activation of the AMPK pathway.
Collapse
Affiliation(s)
- Pingjie Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Yiyao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kai Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
23
|
Comparison of high-intensity interval training and moderate-intensity continuous training in their effects on behavioral functions and CORT levels in streptozotocin-induced diabetic mice. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00661-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Olescowicz G, Sampaio TB, de Paula Nascimento-Castro C, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Protective Effects of Agmatine Against Corticosterone-Induced Impairment on Hippocampal mTOR Signaling and Cell Death. Neurotox Res 2020; 38:319-329. [DOI: 10.1007/s12640-020-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
25
|
Chronic aromatase inhibition increases ventral hippocampal neurogenesis in middle-aged female mice. Psychoneuroendocrinology 2019; 106:111-116. [PMID: 30974324 DOI: 10.1016/j.psyneuen.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
Letrozole, a third-generation aromatase inhibitor, prevents the production of estrogens in the final step in conversion from androgens. Due to its efficacy at suppressing estrogens, letrozole has recently taken favor as a first-line adjuvant treatment for hormone-responsive breast cancer in middle-aged women. Though patient response to letrozole has generally been positive, there is conflicting evidence surrounding its effects on the development of depression. It is possible that the potential adverse effects of letrozole on mood are a result of the impact of hormonal fluctuations on neurogenesis in the hippocampus. Thus, to clarify the effects of letrozole on the hippocampus and behavior, we examined how chronic administration affects hippocampal neurogenesis and depressive-like behavior in middle-aged, intact female mice. Mice were given either letrozole (1 mg/kg) or vehicle by injection (i.p.) daily for 3 weeks. Depressive-like behavior was assessed during the last 3 days of treatment using the forced swim test, tail suspension test, and sucrose preference test. The production of new neurons was quantified using the immature neuronal marker doublecortin (DCX), and cell proliferation was quantified using the endogenous marker Ki67. We found that letrozole increased DCX and Ki67 expression and maturation in the dentate gyrus, but had no significant effect on depressive-like behavior. Our findings suggest that a reduction in estrogens in middle-aged females increases hippocampal neurogenesis without any adverse impact on depressive-like behavior; as such, this furthers our understanding of how estrogens modulate neurogenesis, and to the rationale for the utilization of letrozole in the clinical management of breast cancer.
Collapse
|
26
|
Prouty EW, Chandler DJ, Gao WJ, Waterhouse BD. Selective vulnerability of dorsal raphe-medial prefrontal cortex projection neurons to corticosterone-induced hypofunction. Eur J Neurosci 2019; 50:1712-1726. [PMID: 30687960 DOI: 10.1111/ejn.14355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 01/11/2023]
Abstract
Glucocorticoid hormones and serotonin (5-HT) are strongly associated with the development and treatment of depression, respectively. Glucocorticoids regulate the function of serotonergic neurons in the dorsal raphe nucleus (DR), which are the major source of 5-HT to the forebrain. DR 5-HT neurons are electrophysiologically heterogeneous, though whether this phenotypic variation aligns with specific brain functions or neuropsychiatric disease states is largely unknown. The goal of this work was to determine if chronic exogenous glucocorticoid administration differentially affects the electrophysiological profile of DR neurons implicated in the regulation of emotion versus visual sensation by comparing properties of cells projecting to medial prefrontal cortex (mPFC) versus lateral geniculate nucleus (LGN). Following retrograde tracer injection into mPFC or LGN, male Sprague-Dawley rats received daily injections of corticosterone (CORT) for 21 days, after which whole-cell patch clamp recordings were made from retrogradely labeled DR neurons. CORT-treatment significantly increased the action potential half-width of LGN-projecting DR neurons, but did not significantly affect the firing frequency or excitatory postsynaptic currents of these cells. CORT-treatment significantly reduced the input resistance, evoked firing frequency, and spontaneous excitatory postsynaptic current frequency of mPFC-projecting DR neurons, indicating a concurrent reduction of both intrinsic excitability and excitatory drive. Our results suggest that the serotonergic regulation of cognitive and emotional networks in the mPFC may be more sensitive to the effects of glucocorticoid excess than visual sensory circuits in the LGN and that reduced 5-HT transmission in the mPFC may underlie the association between glucocorticoid excess and depression.
Collapse
Affiliation(s)
- Eric W Prouty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Barry D Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| |
Collapse
|
27
|
Kott J, Brummelte S. Trick or treat? Evaluating contributing factors and sex-differences for developmental effects of maternal depression and its treatment. Horm Behav 2019; 111:31-45. [PMID: 30658054 DOI: 10.1016/j.yhbeh.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Maternal depression and treatment with selective serotonin reuptake inhibitors (SSRIs), the most common form of pharmaceutical intervention, can both have an impact on infant development. As such, it is difficult for healthcare providers to recommend a course of treatment to expectant mothers suffering from depression, or to women on antidepressant medication prior to pregnancy. This review will discuss the existing research on the developmental impacts of maternal depression and its treatment with SSRIs, with a particular focus on contributing factors that complicate our attempt to disentangle the consequences of maternal depression and its treatment such as the timing or severity of the depression. We will explore avenues for translational animal models to help address the question of "Trick or Treat", i.e.: which is worse for offspring development: exposure to maternal depression, or the SSRI treatment? Further, we will explore sex-dependent outcomes for the offspring in human and animal studies as male and female offspring may react differently to the presence of maternal depression or antidepressant treatment. Without more clinical and preclinical data, it remains difficult for women to make an informed decision regarding their depression treatment before, during, and after their pregnancy.
Collapse
Affiliation(s)
- Jennifer Kott
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
28
|
Developmental outcomes after gestational antidepressant treatment with sertraline and its discontinuation in an animal model of maternal depression. Behav Brain Res 2019; 366:1-12. [PMID: 30836156 DOI: 10.1016/j.bbr.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 03/01/2019] [Indexed: 01/21/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to women before or during pregnancy to manage their depressive symptoms. However, there is still little knowledge regarding the long-term development effects of SSRI exposure for the fetus or the effects of discontinuing SSRI treatment during pregnancy. This study utilized a translational animal model of maternal depression (based on giving high levels of corticosterone (CORT, 40 mg/kg, s.c.) or vehicle (Oil) for 21 days prior to conception) to investigate the effects of sertraline (a frequently prescribed SSRI; 20 mg/kg p.o., treatment started ∼7 days prior to conception) and its discontinuation during pregnancy (on gestational day 16) compared to vehicle (water) treatment on the development of the offspring. Our results revealed that both corticosterone exposure prior to pregnancy and sertraline administration and its discontinuation during gestation had sex-specific effects on behavior in the adult offspring. In particular, pre-conceptional maternal corticosterone treatment impacted the stress response, anxiety-like behavior and cognitive performance in adult female offspring, while gestational SSRI exposure and its discontinuation compared to full-term exposure affected impulsivity in females, and exploratory behavior in males. More research is needed on the effects of exposure to antidepressant medication and its discontinuation compared to depression during pregnancy and how each impacts development to better help women make informed decisions about their medication use during pregnancy.
Collapse
|
29
|
Sánchez-Vidaña DI, Po KKT, Fung TKH, Chow JKW, Lau WKW, So PK, Lau BWM, Tsang HWH. Lavender essential oil ameliorates depression-like behavior and increases neurogenesis and dendritic complexity in rats. Neurosci Lett 2019; 701:180-192. [PMID: 30825591 DOI: 10.1016/j.neulet.2019.02.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/05/2023]
Abstract
Depression is a major health issue that causes severe societal economic and health burden. Aromatherapy, a practice that uses essential oils for preventive and therapeutic purposes, represents a promising therapeutic alternative for the alleviation of depressive symptoms. Lavender essential oil (LEO) has been the focus of clinical studies due to its positive effect on mood. An animal model of chronic administration of high dose corticosterone to induce depression- and anxiety-like behavior and reduced neurogenesis was used to explore the biological changes brought by aromatherapy. Twenty-four adult male Sprague Dawley rats were randomly assigned into four groups: Control, corticosterone (Cort) group with high dose of corticosterone, LEO group with daily exposure to LEO by inhalation, and LEO + Cort. At the end of the 14-day treatment period, behavioral tests were carried out. Serum samples were collected 2-3 days after the 14-day period treatment and before perfusion to carry out biochemical analyses to measure BDNF, corticosterone and oxytocin. After perfusion, brains were collected for immunohistochemical analysis to detect BrdU and DCX positive cells in the hippocampus and subventricular zone. Results showed that treatment with LEO ameliorated the depression-like behavior induced by the chronic administration of corticosterone as observed in the LEO + Cort group. Cort treatment reduced the number of BrdU positive cells in the hippocampus and the subventricular zone. Treatment with LEO prevented the corticosterone-induced reduction in the number of BrdU positive cells (LEO + Cort group) demonstrating the neurogenic effect of LEO under high corticosterone conditions. Chronic administration of high dose of corticosterone significantly reduced the dendritic complexity of immature neurons. On the contrary, treatment with LEO increased dendritic complexity of immature neurons under high corticosterone conditions (LEO + Cort group). The improved neurogenesis and dendritic complexity observed in the LEO + Cort group demonstrated a clear restorative effect of LEO under high corticosterone conditions. However, 2-3 days after the treatment, the levels of BDNF were upregulated in the LEO and LEO + Cort groups. Furthermore, the concentration of oxytocin in serum, 2-3 days after the treatment, showed to be upregulated in the LEO group alone. The present study has provided evidence of the biological effect of LEO on neuroplasticity and neurogenesis. Also, this study contributes to the understanding of the mechanism of action of LEO in an animal model where depression- and anxiety-like behavior and reduced neurogenesis were induced by high corticosterone administration.
Collapse
Affiliation(s)
| | - Kevin Kai-Ting Po
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Timothy Kai-Hang Fung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jason Ka-Wing Chow
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Way Kwok-Wai Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
30
|
Wei CL, Wang S, Yen JT, Cheng YF, Liao CL, Hsu CC, Wu CC, Tsai YC. Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Res 2019; 1711:202-213. [PMID: 30684456 DOI: 10.1016/j.brainres.2019.01.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Emerging evidence indicates that ingestion of specific probiotics, known as "psychobiotics", confer beneficial effects on mental health. This study investigated antidepressant-like effects and possible underlying mechanisms of Lactobacillus paracasei PS23 (PS23), live or heat-killed, in a mouse model of corticosterone-induced depression using fluoxetine as standard drug. PS23 were orally gavaged to mice from day 1 to 41 or fluoxetine from day 17 to 41 and injected with corticosterone from day 17 to 37. After the last corticosterone treatment, anxiety- and depression-like behaviors were tested within 4 days. On day 42, serum and brain tissue were collected 24 min after forced swim stress. Abnormal behavioral changes induced by corticosterone were ameliorated by treatment with live PS23 in open field and sucrose preference tests, with heat-killed PS23 in open field, forced swim and sucrose preference tests, and with fluoxetine in open field and forced swim tests. Furthermore, both live and heat-killed PS23 and fluoxetine reversed corticosterone-reduced protein levels of brain-derived neurotropic factor, mineralocorticoid, and glucocorticoid receptors in the hippocampus. In addition, live PS23 also reverses corticosterone-reduced serotonin levels in hippocampus, prefrontal cortex and striatum; whereas heat-killed PS23 reverses corticosterone-reduced dopamine levels in hippocampus and prefrontal cortex. And fluoxetine normalized reduced corticosterone level in serum. These studies showed that both live and heat-killed PS23 can reverse chronic corticosterone-induced anxiety- and depression-like behaviors and that may provide insights into the mechanism and a potential psychobiotic for depression management.
Collapse
Affiliation(s)
- Chia-Li Wei
- Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Rd., Chiayi City 60004, Taiwan.
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Jui-Ting Yen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Yun-Fang Cheng
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Chia-Li Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Chih-Chieh Hsu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan; Microbiome Research Center, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan.
| |
Collapse
|
31
|
Romay-Tallon R, Kulhawy E, Brymer KJ, Allen J, Rivera-Baltanas T, Olivares JM, Kalynchuk LE, Caruncho HJ. Changes in Membrane Protein Clustering in Peripheral Lymphocytes in an Animal Model of Depression Parallel Those Observed in Naïve Depression Patients: Implications for the Development of Novel Biomarkers of Depression. Front Pharmacol 2018; 9:1149. [PMID: 30374301 PMCID: PMC6196231 DOI: 10.3389/fphar.2018.01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Naïve depression patients show alterations in serotonin transporter (SERT) and serotonin 2A (5HT2A) receptor clustering in peripheral lymphocytes, and these alterations have been proposed as a biomarker of therapeutic efficacy in major depression. Repeated corticosterone (CORT) induces a consistent depression-like phenotype and has been widely used as an animal model to study neurobiological alterations underlying the depressive symptoms. In this experiment, we used the CORT paradigm to evaluate whether depression-like behavior is associated with similar changes in the pattern of SERT and 5HT2A membrane protein clustering as those observed in depression patients. We also analyzed the clustering of other proteins expressed in lipid rafts in lymphocytes. Rats received daily CORT or vehicle injections for 21 consecutive days. Afterward they underwent the forced swim test to evaluate depression-like behavior, and isolated lymphocytes were analyzed by immunocytochemistry coupled to image-analysis to study clustering parameters of the SERT, 5HT2A receptor, dopamine transporter (DAT), Beta2 adrenergic receptor (β2AR), NMDA 2B receptor (NR2B), Pannexin 1 (Pnx1), and prion cellular protein (PrPc). Our results showed that CORT increases the size of protein clusters for all proteins with the exception of β 2AR, which is decreased. CORT also increased the number of clusters for Pnx1 and PrPc only. Overall, these results indicate that alterations in SERT and 5HT2A protein clustering in naïve depression patients are paralleled by changes seen in an animal model of depression. The CORT paradigm may be a useful screen for examining additional proteins in lymphocytes as a preliminary step prior to their analysis as biomarkers of depression in human blood samples.
Collapse
Affiliation(s)
| | - Erin Kulhawy
- Innovate-Calgary, University of Calgary, Calgary, AB, Canada
| | - Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Jose M Olivares
- Division of Psychiatry, Hospital Alvaro Cunqueiro, CHUVI, Vigo, Spain
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
32
|
Ding H, Cui XY, Cui SY, Ye H, Hu X, Zhao HL, Liu YT, Zhang YH. Depression-like behaviors induced by chronic corticosterone exposure via drinking water: Time-course analysis. Neurosci Lett 2018; 687:202-206. [PMID: 30278245 DOI: 10.1016/j.neulet.2018.09.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis activity is commonly dysregulated in stress-related psychiatric disorders. The corticosterone rat model was developed to understand the influence of stress on depression-like symptomatology. To further understand the effects of corticosterone on the development of depression-like behavior, rats were continuously exposed to corticosterone (200 μg/ml) or vehicle via drinking water daily for 21 days. The rats underwent a series of behavioral tests, and electroencephalographical recordings were performed after 7, 14, and 21 days of treatment. The measurements included immobility time (i.e., despair) in the forced swim test, locomotor activity in the open field test, sucrose consumption (i.e., anhedonia) in the sucrose preference test, and sleep-wake parameters. The rats in the 7-day corticosterone exposure group exhibited depression-like behavior, including increases in despair, anhedonia, anxiety, and sleep impairments. The rats in the 14-day corticosterone exposure group exhibited normal patterns of behavior and sleep structure. When corticosterone exposure was extended to 21 days, depression-like symptoms recurred, including despair, anhedonia, anxiety, and sleep disturbances. Overall, the present study observed U-shaped depression-like effects across 3 weeks of corticosterone exposure via drinking water.
Collapse
Affiliation(s)
- Hui Ding
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China
| | - Xiang-Yu Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China
| | - Su-Ying Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China.
| | - Hui Ye
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China
| | - Xiao Hu
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China
| | - Hui-Ling Zhao
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China
| | - Yu-Tong Liu
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China
| | - Yong-He Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, Beijing, 100191, China.
| |
Collapse
|
33
|
Lou YX, Li J, Wang ZZ, Xia CY, Chen NH. Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats. Psychopharmacology (Berl) 2018; 235:2529-2540. [PMID: 30069586 DOI: 10.1007/s00213-018-4936-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 05/30/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE The decrease of astrocyte number and hypothalamic-pituitary-adrenal (HPA) axis overactivity are observed in individuals with major depressive disorder. Elevated levels of glucocorticoids induced by hyperactivation of the HPA axis may result in glucocorticoid receptor (GR) activation. However, it is unclear whether there is a direct link between GR activation and the decrease of astrocyte number. METHODS Animals were exposed to chronic unpredictable stress (CUS) for 28 days and treated with continuous subcutaneous injections of vehicle or corticosterone (CORT; 40 mg/kg/day) for 21 days. We then administered mifepristone on day 21 after CUS and on day 18 after the CORT treatment. We observed behavioral deficits in the sucrose preference test, open field test, and forced swim test. Protein expression was analyzed using immunofluorescence (IF) and western blot (WB). RESULTS Animals exposed to CUS exhibited behavioral deficits in tests measuring anhedonia, anxiety, and despair state. They also had decreases in glial fibrillary acidic protein (GFAP) expression and numbers of GFAP-positive cells in the hippocampus. The behavioral and cellular alterations induced by CUS were reversed by subchronic treatment with the GR antagonist mifepristone. We also found that the subcutaneous injection of glucocorticoids may induce depression-like behavior and reduce GFAP protein expression in rats, which was similarly reversed by mifepristone. CONCLUSIONS These findings provide experimental evidence that GR activation due to elevated CORT levels induces the decrease of hippocampal astrocyte number in rats.
Collapse
Affiliation(s)
- Yu-Xia Lou
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China. .,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
34
|
Shome A, Sultana R, Siddiqui A, Romeo RD. Adolescent Changes in Cellular Proliferation in the Dentate Gyrus of Male and Female C57BL/6N Mice Are Resilient to Chronic Oral Corticosterone Treatments. Front Behav Neurosci 2018; 12:192. [PMID: 30197591 PMCID: PMC6118339 DOI: 10.3389/fnbeh.2018.00192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 01/08/2023] Open
Abstract
Adolescent development is marked by significant changes in neurobiological structure and function. One such change is the substantial adolescent-related decline in cellular proliferation and neurogenesis in the dentate gyrus of the hippocampal formation. Though the behavioral implications of these developmental shifts in cell proliferation are unclear, these changes might contribute to the altered cognitive and emotional functions associated with puberty and adolescence. The significant decrease in cellular proliferation throughout adolescence might make the hippocampus more vulnerable to perturbations during this developmental stage, particularly to factors known to disrupt neurogenesis, such as chronic exposure to stress-related hormones. To examine this possibility, we first measured cellular proliferation in the dentate gyrus of male and female C57BL/6N mice before and after adolescence and then assessed both cellular proliferation and the number of immature neurons in mice treated with oral corticosterone for 4 weeks during either adolescence or adulthood. We found significant age-related decreases in hippocampal cellular proliferation in both males and females. Though the greatest decrease in proliferation was during adolescence, we also observed that proliferation continued to decline through young adulthood. Despite the significant effect of chronic oral corticosterone on body weight gain in both the adolescent- and adult-treated males and females and the subtle, but significant suppressive effect of corticosterone on the number of immature neurons in the adolescent-treated males, cell proliferation in the hippocampus was unaffected by these treatments. These data show that the substantial adolescent-related change in cellular proliferation in the dentate gyrus is largely unaffected by chronic oral corticosterone exposure in males and females. Thus, despite being vulnerable to the metabolic effects of these chronic corticosterone treatments, these results indicate that the developmental changes in cellular proliferation in the dentate gyrus are relatively resilient to these treatments in mice.
Collapse
Affiliation(s)
- Ashna Shome
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| | - Razia Sultana
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| | - Alina Siddiqui
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| | - Russell D Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| |
Collapse
|
35
|
Kott J, Mooney-Leber S, Li J, Brummelte S. Elevated stress hormone levels and antidepressant treatment starting before pregnancy affect maternal care and litter characteristics in an animal model of depression. Behav Brain Res 2018; 348:101-114. [DOI: 10.1016/j.bbr.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022]
|
36
|
Van Laeken N, Pauwelyn G, Dockx R, Descamps B, Brans B, Peremans K, Baeken C, Goethals I, Vanhove C, De Vos F. Regional alterations of cerebral [18F]FDG metabolism in the chronic unpredictable mild stress- and the repeated corticosterone depression model in rats. J Neural Transm (Vienna) 2018; 125:1381-1393. [DOI: 10.1007/s00702-018-1899-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
37
|
Ngoupaye GT, Yassi FB, Bahane DAN, Bum EN. Combined corticosterone treatment and chronic restraint stress lead to depression associated with early cognitive deficits in mice. Metab Brain Dis 2018; 33:421-431. [PMID: 29199383 DOI: 10.1007/s11011-017-0148-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022]
Abstract
Many models, such as chronic mild stress, chronic stress or chronic corticosterone injections are used to induce depression associated with cognitive deficits. However, the induction period in these different models is still long and face constraints when it is short such as in the chronic mild stress done in a minimum period of 21 days. This study aimed to characterize a model of depression with early onset cognitive deficit. 14 days combined chronic injection of corticosterone followed by 2 h restraint stress using a restrainer was used to induce depression with early cognitive deficit onset. The forced swim test, sucrose test and plasma corticosterone concentration were used to assess depression-like characteristics. The Morris water maze, novel object recognition task, as well as hippocampal acetylcholinesterase activity were used to assess cognitive deficit. The combined corticosterone injection + chronic restraint stress group presented with marked depression-like behaviour and a higher plasma corticosterone concentration compared to corticosterone injection alone and restraint stress alone. It also showed an alteration in the learning process, memory deficit as well as increased acetylcholinesterase activity compared to corticosterone injection and restraint stress alone groups. These findings suggest that the combined corticosterone administration and chronic restraint stress can be used not only as an animal model for severe depression, but also for depression with early onset cognitive deficit.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
- Department of Animal Biology, University of Dschang, Dschang, 67, Cameroon.
| | - Francis Bray Yassi
- Department of Biological Science, University of Ngaoundéré, Ngaoundéré, 454, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Science, University of Ngaoundéré, Ngaoundéré, 454, Cameroon
- Institute of Mines and Petroleum Industries, University of Maroua, Maroua, 46, Cameroon
| |
Collapse
|
38
|
Olescowicz G, Neis VB, Fraga DB, Rosa PB, Azevedo DP, Melleu FF, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:395-407. [PMID: 28842257 DOI: 10.1016/j.pnpbp.2017.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Agmatine is an endogenous neuromodulator that has been shown to have beneficial effects in the central nervous system, including antidepressant-like effects in animals. In this study, we investigated the ability of agmatine (0.1mg/kg, p.o.) and the conventional antidepressant fluoxetine (10mg/kg, p.o.) to reverse the behavioral effects and morphological alterations in the hippocampus of mice exposed to chronic corticosterone (20mg/kg, p.o.) treatment for a period of 21days as a model of stress and depressive-like behaviors. Chronic corticosterone treatment increased the immobility time in the tail suspension test (TST), but did not cause anhedonic-like and anxiety-related behaviors, as assessed with the splash test and the open field test (OFT), respectively. Of note, the depressive-like behaviors induced by corticosterone were accompanied by a decrease in hippocampal cell proliferation, although no changes in hippocampal neuronal differentiation were observed. Our findings provide evidence that, similarly to fluoxetine, agmatine was able to reverse the corticosterone-induced depressive-like behaviors in the TST as well as the deficits in hippocampal cell proliferation. Additionally, fluoxetine but not agmatine, increased hippocampal differentiation. Agmatine, similar to fluoxetine, was capable of increasing both dendritic arborization and length in the entire dentate hippocampus, an effect more evident in the ventral portion of the hippocampus, as assessed with the modified Sholl analysis. Altogether, our results suggest that the increase in hippocampal proliferation induced by agmatine may contribute, at least in part, to the antidepressant-like response of this compound in this mouse model of stress induced by chronic exposure to corticosterone.
Collapse
Affiliation(s)
- Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Dayane P Azevedo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Fernando Falkenburger Melleu
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
39
|
Marks WN, Kalynchuk LE. Repeated corticosterone enhances the acquisition and recall of trace fear conditioning. Physiol Behav 2017; 182:40-45. [DOI: 10.1016/j.physbeh.2017.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/27/2022]
|
40
|
Numakawa T, Odaka H, Adachi N. Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis. Int J Mol Sci 2017; 18:ijms18112312. [PMID: 29099059 PMCID: PMC5713281 DOI: 10.3390/ijms18112312] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Altered neurogenesis is suggested to be involved in the onset of brain diseases, including mental disorders and neurodegenerative diseases. Neurotrophic factors are well known for their positive effects on the proliferation/differentiation of both embryonic and adult neural stem/progenitor cells (NSCs/NPCs). Especially, brain-derived neurotrophic factor (BDNF) has been extensively investigated because of its roles in the differentiation/maturation of NSCs/NPCs. On the other hand, recent evidence indicates a negative impact of the stress hormone glucocorticoids (GCs) on the cell fate of NSCs/NPCs, which is also related to the pathophysiology of brain diseases, such as depression and autism spectrum disorder. Furthermore, studies including ours have demonstrated functional interactions between neurotrophic factors and GCs in neural events, including neurogenesis. In this review, we show and discuss relationships among the behaviors of NSCs/NPCs, BDNF, and GCs.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan.
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan.
| | - Haruki Odaka
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan.
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8050, Japan.
| | - Naoki Adachi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda City, Hyogo 662-8501, Japan.
| |
Collapse
|
41
|
Ngema PN, Mabandla MV. Post 6-OHDA lesion exposure to stress affects neurotrophic factor expression and aggravates motor impairment. Metab Brain Dis 2017; 32:1061-1067. [PMID: 28321600 DOI: 10.1007/s11011-017-9988-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/03/2017] [Indexed: 11/26/2022]
Abstract
Chronic exposure to stress amplifies locomotor deficits and exacerbates dopamine neuron loss in an animal model for Parkinson's disease. The release of neurotrophic factors such as glial cell-line derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) following neuronal injury attenuates exacerbated degeneration of these neurons. In this study, the neurotoxin 6-hydroxydopamine (6-OHDA) was injected unilaterally into the medial forebrain bundle of male Sprague Dawley rats. A subset of these rats was subjected to post-lesion restraint stress after which the effect of exposure to stress on locomotor activity (forelimb akinesia test), neurotrophic factor (GDNF and NT-3) and corticosterone concentration was assessed. Exposure to post-lesion stress resulted in increased preference to use the unimpaired forelimb (forelimb ipsilateral to the lesioned hemisphere) in the forelimb akinesia test. The expected increase in both GDNF and NT-3 concentration following injury was not present in the stressed animals. However, both the non-stressed and stressed lesioned groups had decreased neurotrophic factor concentration at one and two weeks post lesion. This decrease was exaggerated in the stressed rats. The decrease in neurotrophic factor concentration was accompanied by an increase in corticosterone concentration in the stressed rats. These findings demonstrate that exposure to post-6-OHDA lesion stress exaggerates dopamine neurodegeneration and enhance motor impairment. This suggests that conditions that result in a hyper-activated hypothalamic-pituitary-adrenal axis such as depression which is concomitant to a Parkinson's disease diagnosis may be responsible for enhanced dopamine depletion by attenuating neurotrophic factor concentration elevation in the nigrostriatal pathway following neuronal injury.
Collapse
Affiliation(s)
- Phumzile Nomfundo Ngema
- University of KwaZulu-Natal College of Health Sciences, Kwazulu-Natal, Durban, South Africa.
| | - Musa Vuyisile Mabandla
- University of KwaZulu-Natal College of Health Sciences, Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
42
|
Claflin DI, Schmidt KD, Vallandingham ZD, Kraszpulski M, Hennessy MB. Influence of postnatal glucocorticoids on hippocampal-dependent learning varies with elevation patterns and administration methods. Neurobiol Learn Mem 2017; 143:77-87. [PMID: 28545908 DOI: 10.1016/j.nlm.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022]
Abstract
Recent interest in the lasting effects of early-life stress has expanded to include effects on cognitive performance. An increase in circulating glucocorticoids is induced by stress exposure and glucocorticoid effects on the hippocampus likely underlie many of the cognitive consequences. Here we review studies showing that corticosterone administered to young rats at the conclusion of the stress-hyporesponsiveness period affects later performance in hippocampally-mediated trace eyeblink conditioning. The nature and even direction of these effects varies with the elevation patterns (level, duration, temporal fluctuation) achieved by different administration methods. We present new time course data indicating that constant glucocorticoid elevations generally corresponded with hippocampus-mediated learning deficits, whereas acute, cyclical elevations corresponded with improved initial acquisition. Sensitivity was greater for males than for females. Further, changes in hippocampal neurogenesis paralleled some but not all effects. The findings demonstrate that specific patterns of glucocorticoid elevation produced by different drug administration procedures can have markedly different, sex-specific consequences on basic cognitive performance and underlying hippocampal physiology. Implications of these findings for glucocorticoid medications prescribed in childhood are discussed.
Collapse
Affiliation(s)
- Dragana I Claflin
- Department of Psychology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Kevin D Schmidt
- Department of Psychology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA; Applied Neuroscience Branch, Air Force Research Laboratory, 2510 Fifth St., Wright-Patterson AFB, OH 45433, USA.
| | - Zachary D Vallandingham
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Michal Kraszpulski
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Michael B Hennessy
- Department of Psychology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| |
Collapse
|
43
|
Lebedeva KA, Caruncho HJ, Kalynchuk LE. Cyclical corticosterone administration sensitizes depression-like behavior in rats. Neurosci Lett 2017; 650:45-51. [DOI: 10.1016/j.neulet.2017.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 04/09/2017] [Indexed: 11/30/2022]
|
44
|
Harlé G, Lalonde R, Fonte C, Ropars A, Frippiat JP, Strazielle C. Repeated corticosterone injections in adult mice alter stress hormonal receptor expression in the cerebellum and motor coordination without affecting spatial learning. Behav Brain Res 2017; 326:121-131. [DOI: 10.1016/j.bbr.2017.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
|
45
|
Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway. Psychiatry Res 2016; 243:135-42. [PMID: 27387555 DOI: 10.1016/j.psychres.2016.06.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/16/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
Abstract
The present study aimed to examine the antidepressant-like effects and the possible mechanisms of Schisandra chinensis on depressive-like behavior induced by repeated corticosterone injections in mice. Here we evaluated the effect of an ethanol extract of the dried fruit of S. chinensis (EESC) on BDNF/TrkB/CREB signaling in the hippocampus and the prefrontal cortex. Three weeks of corticosterone injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there was a significant increase in serum corticosterone level and a significant downregulation of BDNF/TrkB/CREB signaling pathway in the hippocampus and prefrontal cortex in CORT-treated mice. Treatment of mice with EESC (600mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. Moreover, pharmacological inhibition of BDNF signaling by K252a abolished entirely the antidepressant-like effect triggered by chronic EESC treatment. These results suggest that EESC produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated, at least in part, by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of BDNF/TrkB/CREB signaling pathway.
Collapse
|
46
|
Jaromin E, Sadowska ET, Koteja P. A dopamine and noradrenaline reuptake inhibitor (bupropion) does not alter exercise performance of bank voles. Curr Zool 2016; 62:307-315. [PMID: 29491918 PMCID: PMC5804238 DOI: 10.1093/cz/zow026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Physical performance is determined both by biophysical and physiological limitations and behavioral characteristic, specifically motivation. We applied an experimental evolution approach combined with pharmacological manipulation to test the hypothesis that evolution of increased aerobic exercise performance can be triggered by evolution of motivation to undertake physical activity. We used a unique model system: bank voles from A lines, selected for high swim-induced aerobic metabolism (VO2swim), which achieved a 61% higher mass-adjusted VO2swim than those from unselected C lines. Because the voles could float on the water surface with only a minimum activity, the maximum rate of metabolism achieved in that test depended not only on their aerobic capacity, but also on motivation to undertake intensive activity. Therefore, we hypothesized that signaling of neurotransmitters putatively involved in regulating physical activity (dopamine and noradrenaline) had changed in response to selection. We measured VO2swim after intraperitoneal injections of saline or the norepinephrine and dopamine reuptake inhibitor bupropion (20 mg/kg or 30 mg/kg). Additionally, we measured forced-exercise VO2 (VO2max). In C lines, VO2swim (mass-adjusted mean ± standard error (SE): 4.0 ± 0.1 mLO2/min) was lower than VO2max (5.0 ± 0.1 mLO2/min), but in A lines VO2swim (6.0 ± 0.1 mLO2/min) was as high as VO2max (6.0 ± 0.1 mLO2/min). Thus, the selection effectively changed both the physiological-physical performance limit and mechanisms responsible for the willingness to undertake vigorous locomotor activity. Surprisingly, the drug had no effect on the achieved level of VO2swim. Thus, the results did not allow firm conclusions concerning involvement of these neurotransmitters in evolution of increased aerobic exercise performance in the experimental evolution model system.
Collapse
Affiliation(s)
- Ewa Jaromin
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
47
|
Caruncho HJ, Brymer K, Romay-Tallón R, Mitchell MA, Rivera-Baltanás T, Botterill J, Olivares JM, Kalynchuk LE. Reelin-Related Disturbances in Depression: Implications for Translational Studies. Front Cell Neurosci 2016; 10:48. [PMID: 26941609 PMCID: PMC4766281 DOI: 10.3389/fncel.2016.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023] Open
Abstract
The finding that reelin expression is significantly decreased in mood and psychotic disorders, together with evidence that reelin can regulate key aspects of hippocampal plasticity in the adult brain, brought our research group and others to study the possible role of reelin in the pathogenesis of depression. This review describes recent progress on this topic using an animal model of depression that makes use of repeated corticosterone (CORT) injections. This methodology produces depression-like symptoms in both rats and mice that are reversed by antidepressant treatment. We have reported that CORT causes a decrease in the number of reelin-immunopositive cells in the dentate gyrus subgranular zone (SGZ), where adult hippocampal neurogenesis takes place; that down-regulation of the number of reelin-positive cells closely parallels the development of a depression-like phenotype during repeated CORT treatment; that reelin downregulation alters the co-expression of reelin with neuronal nitric oxide synthase (nNOS); that deficits in reelin might also create imbalances in glutamatergic and GABAergic circuits within the hippocampus and other limbic structures; and that co-treatment with antidepressant drugs prevents both reelin deficits and the development of a depression-like phenotype. We also observed alterations in the pattern of membrane protein clustering in peripheral lymphocytes in animals with low levels of reelin. Importantly, we found parallel changes in membrane protein clustering in depression patients, which differentiated two subpopulations of naïve depression patients that showed a different therapeutic response to antidepressant treatment. Here, we review these findings and develop the hypothesis that restoring reelin-related function could represent a novel approach for antidepressant therapies.
Collapse
Affiliation(s)
- Hector J Caruncho
- Neuroscience Cluster, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | - Kyle Brymer
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | | | - Milann A Mitchell
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Tania Rivera-Baltanás
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Justin Botterill
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Jose M Olivares
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Lisa E Kalynchuk
- Department of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|