1
|
Samanta S, Bagchi D, Gold MS, Badgaiyan RD, Barh D, Blum K. A Complex Relationship Among the Circadian Rhythm, Reward Circuit and Substance Use Disorder (SUD). Psychol Res Behav Manag 2024; 17:3485-3501. [PMID: 39411118 PMCID: PMC11479634 DOI: 10.2147/prbm.s473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The human brain not only controls the various physiological functions but is also the prime regulator of circadian rhythms, rewards, and behaviors. Environmental factors, professional stress, and social disintegration are regarded as the initial causative factors of addiction behavior. Shift work, artificial light exposure at night, and chronic and acute jet lag influence circadian rhythm dysfunction. The result is impaired neurotransmitter release, dysfunction of neural circuits, endocrine disturbance, and metabolic disorder, leading to advancement in substance use disorder. There is a bidirectional relationship between chronodisruption and addiction behavior. Circadian rhythm dysfunction, neuroadaptation in the reward circuits, and alteration in clock gene expression in the mesolimbic areas influence substance use disorder (SUD), and chronotherapy has potential benefits in the treatment strategies. This review explores the relationship among the circadian rhythm dysfunction, reward circuit, and SUD. The impact of chronotherapy on SUD has also been discussed.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Southern University, Houston, TX, 77004, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, BeloHorizonte, 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, 721172, West Bengal, India
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
- Institute of Psychology, Eotvos Loránd University, Budapest, 1053, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, 45435, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, 05405, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, 78701, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Tao H, Wan Q, Sun M, Cai K, Song Y, He M, Shen J. Involvement of Plasma Melatonin in Medication-Overuse Headache: A Cross-Sectional Study. Clin Neuropharmacol 2024; 47:12-16. [PMID: 37852214 DOI: 10.1097/wnf.0000000000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Patients with medication-overuse headache (MOH) are often complicated with anxiety, depression, and sleep disorders and are associated with dependence behavior and substance abuse. Melatonin has physiological properties including analgesia, regulation of circadian rhythms, soporific, and antidepressant and affects drug preference and addiction. This study aimed to investigate the role of melatonin in MOH compared with episodic migraine (EM) and healthy controls and to verify the relationship between plasma melatonin levels and psychiatric symptoms. METHODS Thirty patients affected by MOH, 30 patients with EM, and 30 matched healthy controls were enrolled. All subjects completed a detailed headache questionnaire and scales including the Hospital Anxiety and Depression Scale (HADS), the Pittsburgh Sleep Quality Index, the Leeds Dependence Questionnaire. Melatonin levels in plasma samples were measured by enzyme immunoassay method. RESULTS The levels of plasma melatonin were significantly different among 3 groups of subjects (MOH, 7.74 [5.40-9.89]; EM, 9.79 [8.23-10.62]; Control, 10.16 [8.60-17.57]; H = 13.433; P = 0.001). Significantly lower levels of melatonin were found in MOH patients compared with healthy controls ( P = 0.001). The level of plasma melatonin inversely correlated with the scores of HADS-Anxiety ( r = -0.318, P = 0.002), HADS-Depression ( r = -0.368, P < 0.001), Pittsburgh Sleep Quality Index ( r = -0.303, P = 0.004), and Leeds Dependence Questionnaire ( r = -0.312, P = 0.003). CONCLUSIONS This study innovatively detects the plasma melatonin levels in MOH patients and explores the association between melatonin levels and psychiatric symptoms. Melatonin may be potential complementary therapy in the treatment of MOH considering its comprehensive role in multiple aspects of MOH.
Collapse
Affiliation(s)
- Huimin Tao
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong
| | - Qi Wan
- Department of Neurology, First Clinical Medical College, Nanjing Medical University, Nanjing
| | - Mei Sun
- Department of Neurology, First Clinical Medical College, Nanjing Medical University, Nanjing
| | - Kefu Cai
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong
| | - Yan Song
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong
| |
Collapse
|
3
|
De A, Grasing KW. The antidepressant agomelatine attenuates morphine-induced reinstatement but not self-administration or precipitated withdrawal. Pharmacol Biochem Behav 2023; 223:173525. [PMID: 36758685 DOI: 10.1016/j.pbb.2023.173525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Exogenous melatonin appears to have anti-addictive properties and was recently shown to improve mental health and metabolic measures in patients receiving chronic opioid maintenance therapy. Agomelatine is a marketed antidepressant which acts as a melatonin agonist. We evaluated its effects using a rat model of morphine-reinforced behavior. METHODS After pretreatment with noncontingent morphine, male Wistar rats were trained to self-administer intravenous morphine (1.0 mg/kg-injection) under a progressive-ratio schedule. Rats were pretreated with vehicle or agomelatine during extinction, reinstatement, and reacquisition of morphine-reinforced behavior. RESULTS Daily treatment with 10 mg/kg-day of agomelatine decreased the number of ratios completed and prolonged latency during morphine-induced reinstatement. There were no significant effects on cue-induced reinstatement, morphine self-administration, or naloxone-precipitated withdrawal. Treatment with 32 mg/kg-day of agomelatine caused postural changes. That dose prolonged withdrawal-induced loss of body weight and caused delayed reductions in food reinforcement. SUMMARY In addition to postural effects, high-dose agomelatine worsened the course of spontaneous withdrawal and produced nonspecific effects on food-reinforced behavior. When administered at a selective dose, agomelatine did not modify morphine self-administration or precipitated withdrawal, but decreased morphine-induced reinstatement. Our findings show potential detrimental effects of high-dose agomelatine, with reductions in opioid-seeking behavior after a lower, more selective dose.
Collapse
Affiliation(s)
- Alok De
- Substance Use Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, United States of America
| | - Ken W Grasing
- Substance Use Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, United States of America; Division of Clinical Pharmacology, Department of Medicine, University of Kansas School of Medicine, Kansas City, KS 66160, United States of America.
| |
Collapse
|
4
|
Jia S, Guo X, Chen Z, Li S, Liu XA. The roles of the circadian hormone melatonin in drug addiction. Pharmacol Res 2022; 183:106371. [PMID: 35907435 DOI: 10.1016/j.phrs.2022.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Given the devastating social and health consequences of drug addiction and the limitations of current treatments, a new strategy is needed. Circadian system disruptions are frequently associated with drug addiction. Correcting abnormal circadian rhythms and improving sleep quality may thus be beneficial in the treatment of patients with drug addiction. Melatonin, an essential circadian hormone that modulates the biological clock, has anti-inflammatory, analgesic, anti-depressive, and neuroprotective effects via gut microbiota regulation and epigenetic modifications. It has attracted scientists' attention as a potential solution to drug abuse. This review summarized scientific evidence on the roles of melatonin in substance use disorders at the cellular, circuitry, and system levels, and discussed its potential applications as an intervention strategy for drug addiction.
Collapse
Affiliation(s)
- Shuhui Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Das A, Prithviraj M, Mohanraj PS. Role of Melatonin in the Management of Substance Addiction: A Systematic Review. Cureus 2022; 14:e26764. [PMID: 35967139 PMCID: PMC9366042 DOI: 10.7759/cureus.26764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/11/2022] Open
Abstract
Recent evidence links melatonin hormone and its receptor to the etiology and behavioral manifestation of addiction. The role of exogenous melatonin in addiction treatment is still inconsistent and unclear. The present study aimed to review the literature on randomized clinical trials that evaluated the role of melatonin supplementation, compared to placebo, in the treatment of various substance addictions. The literature searches of relevant articles published in the English language in MEDLINE and Google Scholar databases were performed from inception up to May 2021. We included only randomized clinical trials investigating the effect of melatonin treatment, compared to placebo, on substance addiction-related parameters. Non-randomized clinical trials, observation studies, and animal studies were excluded. The risk of bias-2 was used to assess the quality of the studies. Of 537 articles, 12 randomized control trials (RCT) met our inclusion criteria. Studies have been conducted on substances of addiction including benzodiazepine (BZD), alcohol, nicotine, and opioids. Our results indicated that melatonin treatment had mixed results in improving sleep quality and was not found beneficial in BDZ cessation/discontinuation rate among patients with BDZ dependence. Sleep quality and mental health had improved by melatonin supplements in opioid addiction. In nicotine addiction, melatonin treatment showed effectiveness only on mood changes but not in performance tests. In patients with alcohol use disorder (AUD), melatonin treatment did not show any improvement in sleep quality. We found that the use of exogenous melatonin in substance addiction has mixed results which do not provide sufficient evidence, relative to randomized clinical trials, to establish its role.
Collapse
|
6
|
Eacret D, Lemchi C, Caulfield JI, Cavigelli SA, Veasey SC, Blendy JA. Chronic Sleep Deprivation Blocks Voluntary Morphine Consumption but Not Conditioned Place Preference in Mice. Front Neurosci 2022; 16:836693. [PMID: 35250468 PMCID: PMC8892254 DOI: 10.3389/fnins.2022.836693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
The opioid epidemic remains a significant healthcare problem and is attributable to over 100,000 deaths per year. Poor sleep increases sensitivity to pain, impulsivity, inattention, and negative affect, all of which might perpetuate drug use. Opioid users have disrupted sleep during drug use and withdrawal and report poor sleep as a reason for relapse. However, preclinical studies investigating the relationship between sleep loss and substance use and the associated underlying neurobiological mechanisms of potential interactions are lacking. One of the most common forms of sleep loss in modern society is chronic short sleep (CSS) (<7 h/nightly for adults). Here, we used an established model of CSS to investigate the influence of disrupted sleep on opioid reward in male mice. The CSS paradigm did not increase corticosterone levels or depressive-like behavior after a single sleep deprivation session but did increase expression of Iba1, which typically reflects microglial activation, in the hypothalamus after 4 weeks of CSS. Rested control mice developed a morphine preference in a 2-bottle choice test, while mice exposed to CSS did not develop a morphine preference. Both groups demonstrated morphine conditioned place preference (mCPP), but there were no differences in conditioned preference between rested and CSS mice. Taken together, our results show that recovery sleep after chronic sleep disruption lessens voluntary opioid intake, without impacting conditioned reward associated with morphine.
Collapse
Affiliation(s)
- Darrell Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Crystal Lemchi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasmine I. Caulfield
- Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sonia A. Cavigelli
- Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sigrid C. Veasey
- Department of Medicine, Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Julie A. Blendy,
| |
Collapse
|
7
|
Zhang R, Manza P, Tomasi D, Kim SW, Shokri-Kojori E, Demiral SB, Kroll DS, Feldman DE, McPherson KL, Biesecker CL, Wang GJ, Volkow ND. Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward. J Clin Invest 2021; 131:e149722. [PMID: 34264865 DOI: 10.1172/jci149722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude) and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking. METHODS We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, age: 42.40±12.22) and its relationship to drug reward. Rest-activity rhythms were assessed by one-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride Positron Emission Tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed. RESULTS We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or 'social jet lag', whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate. CONCLUSION These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders. TRIAL REGISTRATION ClinicalTrials.gov: NCT03190954FUNDING. This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Katherine L McPherson
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Catherine L Biesecker
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse, NIH, Bethesda, United States of America
| |
Collapse
|
8
|
Circadian rhythm influences naloxone induced morphine withdrawal and neuronal activity of lateral paragigantocellularis nucleus. Behav Brain Res 2021; 414:113450. [PMID: 34265318 DOI: 10.1016/j.bbr.2021.113450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Investigations have shown that the circadian rhythm can affect the mechanisms associated with drug dependence. In this regard, we sought to assess the negative consequence of morphine withdrawal syndrome on conditioned place aversion (CPA) and lateral paragigantocellularis (LPGi) neuronal activity in morphine-dependent rats during light (8:00-12:00) and dark (20:00-24:00) cycles. Male Wistar rats (250-300 g) were received 10 mg/kg morphine or its vehicle (Saline, 2 mL/kg/12 h, s.c.) in 13 consecutive days for behavioral assessment tests. Then, naloxone-induced conditioned place aversion and physical signs of withdrawal syndrome were evaluated during light and dark cycles. In contrast to the behavioral part, we performed in vivo extracellular single-unit recording for investigating the neural response of LPGi to naloxone in morphine-dependent rats on day 10 of morphine/saline exposure. Results showed that naloxone induced conditioned place aversion in both light and dark cycles, but the CPA score during the light cycle was larger. Moreover, the intensity of physical signs of morphine withdrawal syndrome was more severe during the light cycle (rest phase) compare to the dark one. In electrophysiological experiments, results indicated that naloxone evoked both excitatory and inhibitory responses in LPGi neurons and the incremental effect of naloxone on LPGi activity was stronger in the light cycle. Also, the neurons with the excitatory response exhibited higher baseline activity in the dark cycle, but the neurons with the inhibitory response showed higher baseline activity in the light cycle. Interestingly, the baseline firing rate of neurons recorded in the light cycle was significantly different in response (excitatory/inhibitory) -dependent manner. We concluded that naloxone-induced changes in LPGi cellular activity and behaviors of morphine-dependent rats can be affected by circadian rhythm and the internal clock.
Collapse
|
9
|
Su LY, Liu Q, Jiao L, Yao YG. Molecular Mechanism of Neuroprotective Effect of Melatonin on Morphine Addiction and Analgesic Tolerance: an Update. Mol Neurobiol 2021; 58:4628-4638. [PMID: 34148215 DOI: 10.1007/s12035-021-02448-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
Drug addiction is a global health problem and continues to place an enormous financial burden on society. This addiction is characterized by drug dependence sensitization and craving. Morphine has been widely used for pain relief, but chronic administration of morphine causes analgesic tolerance, hyperalgesia, and addiction, all of which limit its clinical usage. Alterations of multiple molecular pathways have been reported to be involved in the development of drug addiction, including mitochondrial dysfunction, excessive oxidative stress and nitric oxide stress, and increased levels of apoptosis, autophagy, and neuroinflammation. Preclinical and clinical studies have shown that the co-administration of melatonin with morphine leads to a reversal of these affected pathways. In addition, murine models have shown that melatonin improves morphine-induced analgesic tolerance and addictive behaviors, such as behavioral sensitization, reward effect, and physical dependence. In this review, we attempt to summarize the recent findings about the beneficial effect and molecular mechanism of melatonin on mitochondrial dysfunction, uncontrolled autophagy, and neuroinflammation in morphine addiction and morphine analgesic tolerance. We propose that melatonin might be a useful supplement in the treatment opiate abuse.
Collapse
Affiliation(s)
- Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| | - Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Lijin Jiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
10
|
Tamura EK, Oliveira-Silva KS, Ferreira-Moraes FA, Marinho EAV, Guerrero-Vargas NN. Circadian rhythms and substance use disorders: A bidirectional relationship. Pharmacol Biochem Behav 2021; 201:173105. [PMID: 33444601 DOI: 10.1016/j.pbb.2021.173105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/23/2023]
Abstract
The circadian system organizes circadian rhythms (biological cycles that occur around 24 h) that couple environmental cues (zeitgebers) with internal functions of the organism. The misalignment between circadian rhythms and external cues is known as chronodisruption and contributes to the development of mental, metabolic and other disorders, including cancer, cardiovascular diseases and addictive disorders. Drug addiction represents a global public health concern and affects the health and well-being of individuals, families and communities. In this manuscript, we reviewed evidence indicating a bidirectional relationship between the circadian system and the development of addictive disorders. We provide information on the interaction between the circadian system and drug addiction for each drug or drug class (alcohol, cannabis, hallucinogens, psychostimulants and opioids). We also describe evidence showing that drug use follows a circadian pattern, which changes with the progression of addiction. Furthermore, clock gene expression is also altered during the development of drug addiction in many brain areas related to drug reward, drug seeking and relapse. The regulation of the glutamatergic and dopaminergic neurocircuitry by clock genes is postulated to be the main circadian mechanism underlying the escalation of drug addiction. The bidirectional interaction between the circadian system and drug addiction seems to be mediated by the effects caused by each drug or class of drugs of abuse. These studies provide new insights on the development of successful strategies aimed at restoring/stabilizing circadian rhythms to reduce the risk for addiction development and relapse.
Collapse
Affiliation(s)
- Eduardo K Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil.
| | - Kallyane S Oliveira-Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Felipe A Ferreira-Moraes
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Natalí N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, Av Universidad 3000, Ciudad Universitaria, México City 04510, Mexico
| |
Collapse
|
11
|
Chen IJ, Yang CP, Lin SH, Lai CM, Wong CS. The Circadian Hormone Melatonin Inhibits Morphine-Induced Tolerance and Inflammation via the Activation of Antioxidative Enzymes. Antioxidants (Basel) 2020; 9:antiox9090780. [PMID: 32842597 PMCID: PMC7555201 DOI: 10.3390/antiox9090780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Opioids are commonly prescribed for clinical pain management; however, dose-escalation, tolerance, dependence, and addiction limit their usability for long-term chronic pain. The associated poor sleep pattern alters the circadian neurobiology, and further compromises the pain management. Here, we aim to determine the correlation between constant light exposure and morphine tolerance and explore the potential of melatonin as an adjuvant of morphine for neuropathic pain treatment. Methods: Wistar rats were preconditioned under constant light (LL) or a regular light/dark (LD) cycle before neuropathic pain induction by chronic constriction injury. An intrathecal (i.t.) osmotic pump was used for continued drug delivery to induce morphine tolerance. Pain assessments, including the plantar test, static weight-bearing symmetry, and tail-flick latency, were used to determine the impact of the light disruption or exogenous melatonin on the morphine tolerance progression. Results: constant light exposure significantly aggravates morphine tolerance in neuropathic rats. Continued infusion of low-dose melatonin (3 μg/h) attenuated morphine tolerance in both neuropathic and naïve rats. This protective effect was independent of melatonin receptors, as shown by the neutral effect of melatonin receptors inhibitors. The transcriptional profiling demonstrated a significant enhancement of proinflammatory and pain-related receptor genes in morphine-tolerant rats. In contrast, this transcriptional pattern was abolished by melatonin coinfusion along with the upregulation of the Kcnip3 gene. Moreover, melatonin increased the antioxidative enzymes SOD2, HO-1, and GPx1 in the spinal cord of morphine-tolerant rats. Conclusion: Dysregulated circadian light exposure significantly compromises the efficacy of morphine’s antinociceptive effect, while the cotreatment with melatonin attenuates morphine tolerance/hyperalgesia development. Our results suggest the potential of melatonin as an adjuvant of morphine in clinical pain management, particularly in patients who need long-term opioid treatment.
Collapse
Affiliation(s)
- Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
| | - Chih-Ping Yang
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Anesthesiology, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Sheng-Hsiung Lin
- Planning & Management Office, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chang-Mei Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence: ; Tel.: +886-2-27082121
| |
Collapse
|
12
|
Kennaway DJ. Measuring melatonin by immunoassay. J Pineal Res 2020; 69:e12657. [PMID: 32281677 DOI: 10.1111/jpi.12657] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
The pineal gland hormone melatonin continues to be of considerable interest to biomedical researchers. Of particular interest is the pattern of secretion of melatonin in relation to sleep timing as well as its potential role in certain diseases. Measuring melatonin in biological fluids such as blood and saliva presents particular methodological challenges since the production and secretion of the hormone are known to be extremely low during the light phase in almost all situations. Active secretion only occurs around the time of lights out in a wide range of species. The challenge then is to develop practical high-throughput assays that are sufficiently sensitive and accurate enough to detect levels of melatonin less than 1 pg/mL in biological fluids. Mass spectrometry assays have been developed that achieve the required sensitivity, but are really not practical or even widely available to most researchers. Melatonin radioimmunoassays and ELISA have been developed and are commercially available. But the quality of the results that are being published is very variable, partly not only because of poor experimental designs, but also because of poor assays. In this review, I discuss issues around the design of studies involving melatonin measurement. I then provide a critical assessment of 21 immunoassay kits marketed by 11 different companies with respect to validation, specificity and sensitivity. Technical managers of the companies were contacted in an attempt to obtain information not available online or in kit inserts. A search of the literature was also conducted to uncover papers that have reported the use of these assays, and where possible, both daytime and night-time plasma or saliva melatonin concentrations were extracted and tabulated. The results of the evaluations are disturbing, with many kits lacking any validation studies or using inadequate validation methods. Few assays have been properly assessed for specificity, while others report cross-reaction profiles that can be expected to result in over estimation of the melatonin levels. Some assays are not fit for purpose because they are not sensitive enough to determine plasma or saliva DLMO of 10 and 3 pg/mL, respectively. Finally, some assays produce unrealistically high daytime melatonin levels in humans and laboratory animals in the order of hundreds of pg/mL. In summary, this review provides a comprehensive and unique assessment of the current commercial melatonin immunoassays and their use in publications. It provides researchers new to the field with the information they need to design valid melatonin studies from both the perspective of experimental/clinical trial design and the best assay methodologies. It will also hopefully help journal editors and reviewers who may not be fully aware of the pitfalls of melatonin measurement make better informed decisions on publication acceptability.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Hemati K, Pourhanifeh MH, Dehdashtian E, Fatemi I, Mehrzadi S, Reiter RJ, Hosseinzadeh A. Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol 2020; 35:25-39. [PMID: 32415694 DOI: 10.1111/fcp.12566] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Morphine is a potent analgesic agent used to control acute or chronic pain. Chronic administration of morphine results in analgesic tolerance, hyperalgesia, and other side effects including dependence, addiction, respiratory depression, and constipation, which limit its clinical usage. Therefore, identifying the new analgesics with fewer side effects which could increase the effect of morphine and reduce its side effects is crucial. Melatonin, a multifunctional molecule produced in the body, is known to play an important role in pain regulation. The strong anti-inflammatory effect of melatonin is suggested to be involved in the attenuation of the pain associated with inflammation. Melatonin also increases the anti-nociceptive actions of opioids, such as morphine, and reverses their tolerance through regulating several cellular signaling pathways. In this review, published articles evaluating the effect of the co-consumption of melatonin and morphine in different conditions were investigated. Our results show that melatonin has pain-killing properties when administered alone or in combination with other anti-nociceptive drugs. Melatonin decreases morphine consumption in different pathologies. Furthermore, attenuation of morphine intake can be accompanied by reduction of morphine-associated side-effects, including physical dependence, morphine tolerance, and morphine-related hyperalgesia. Therefore, it is reasonable to believe that the combination of melatonin with morphine could reduce morphine-induced tolerance and hyperalgesia, which may result from anti-inflammatory and antioxidant properties of melatonin. Overall, we underscore that, to further ameliorate patients' life quality and control their pain in various pathological conditions, melatonin deserves to be used with morphine by anesthesiologists in clinical practice.
Collapse
Affiliation(s)
- Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Ghotb-e-Ravandy Boulevard, Kashan, 8715988141, Iran
| | - Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, IRAN, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Iman Fatemi
- Rafsanjan University of Medical Sciences, imam Ali Bolvard, Rafsanjan, 7719617996, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7762, San Antonio, TX, 78229-3900, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| |
Collapse
|
14
|
Bendová Z, Pačesová D, Novotný J. The day-night differences in ERK1/2, GSK3β activity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine. J Comp Neurol 2020; 528:2471-2495. [PMID: 32170720 DOI: 10.1002/cne.24906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/12/2022]
Abstract
As with other drugs or pharmaceuticals, opioids differ in their rewarding or analgesic effects depending on when they are applied. In the previous study, we have demonstrated the day/night difference in the sensitivity of the major circadian clock in the suprachiasmatic nucleus to a low dose of morphine, and showed the bidirectional effect of morphine on pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus depending on the time of administration. The main aim of this study was to identify other brain structures that respond differently to morphine depending on the time of its administration. Using immunohistochemistry, we identified 44 structures that show time-of-day specific changes in c-Fos level and activity of ERK1/2 and GSK3β kinases in response to a single dose of 1 mg/kg morphine. Furthermore, comparison among control groups revealed the differences in the spontaneous levels of all markers with a generally higher level during the night, that is, in the active phase of the day. We thus provide further evidence for diurnal variations in the activity of brain regions outside the suprachiasmatic nucleus indicated by the temporal changes in the molecular substrate. We suggest that these changes are responsible for generating diurnal variation in the reward behavior or analgesic effect of opioid administration.
Collapse
Affiliation(s)
- Zdeňka Bendová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Dominika Pačesová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Novotný
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
16
|
Barbosa-Méndez S, Salazar-Juárez A. Melatonin decreases cocaine-induced locomotor activity in pinealectomized rats. ACTA ACUST UNITED AC 2019; 42:295-308. [PMID: 31859790 PMCID: PMC7236171 DOI: 10.1590/1516-4446-2018-0400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
Objective: Several studies have shown that the time of day regulates the reinforcing effects of cocaine. Additionally, melatonin and its MT1 and MT2 receptors have been found to participate in modulation of the reinforcing effects of such addictive drugs as cocaine. Loss of the diurnal variation in cocaine-induced locomotor sensitization and cocaine-induced place preference has been identified in pinealectomized mice. In addition, several studies in rodents have shown that administration of melatonin decreased the reinforcing effects of cocaine. The objective of this study was to evaluate the effect of melatonin on cocaine-induced locomotor activity in pinealectomized rats at different times of day (zeitgeber time [ZT]4, ZT10, ZT16, and ZT22). Methods: Naïve, pinealectomized Wistar rats received cocaine at different times of day. Melatonin was administered 30 min before cocaine; luzindole was administered 15 min prior to melatonin and 45 min before cocaine. After administration of each treatment, locomotor activity for each animal was recorded for a total of 30 min. Pinealectomy was confirmed at the end of the experiment through melatonin quantitation by ELISA. Results: Cocaine-induced locomotor activity varied according to the time of day. Continuous lighting and pinealectomy increased cocaine-induced locomotor activity. Melatonin administration decreased cocaine-induced locomotor activity in naïve and pinealectomized rats at different times of day. Luzindole blocked the melatonin-induced reduction in cocaine-induced locomotor activity in pinealectomized rats. Conclusion: Given its ability to mitigate various reinforcing effects of cocaine, melatonin could be a useful therapy for cocaine abuse.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, Mexico
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, Mexico
| |
Collapse
|
17
|
Jeon SY, Kim YH, Kim SJ, Suh SK, Cha HJ. Abuse potential of 2-(4-iodo-2, 5-dimethoxyphenyl)N-(2-methoxybenzyl)ethanamine (25INBOMe); in vivo and ex vivo approaches. Neurochem Int 2019; 125:74-81. [PMID: 30769030 DOI: 10.1016/j.neuint.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
25INBOMe ("25-I", "N-Bomb"), one of new psychoactive substances (NPSs), is being abused for recreational purpose. However, the liability for abuse or dependence has not been systematically studied yet. The objective of the present study was to evaluate rewarding and reinforcing effects of 25INBOMe using conditioned place preference (CPP) and self-administration (SA) paradigms. In addition, ultrasonic vocalizations (USVs) were measured to investigate relationships between USVs and emotional state regarding dependence on psychoactive substances. To understand molecular mechanism involved in its action, dopamine (DA) level changes were analyzed using synaptosomes extracted from the striatal region of the brain. Expression level changes of SGK1 (serum/glucocorticoid regulated kinase 1) and PER2 (period circadian protein homolog 2), two putative biomarkers for drug dependence, were also analyzed. Results showed that 25INBOMe increased both CPP (0.3 mg/kg) and SA (0.03 mg/kg/infusion) and produced higher frequencies in USVs analysis. It also increased DA levels in the striatal region and changed expression levels of SGK1 and PER2. Results of the present study suggest that 25INBOMe might produce rewarding and reinforcing effects, indicating its dependence liability. In addition, frequencies of USV might be associated with emotional state of mice induced by psychoactive substances regarding substance dependence. This is the first systemic preclinical report on the dependence liability of 25INBOMe and the first attempt to introduce a possible relationship between USVs and emotional state of mice regarding substance dependency. Further studies are needed to clarify the mechanism involved in 25INBOMe dependency and determine the usefulness of USV measurement as a method for evaluating dependence liability.
Collapse
Affiliation(s)
- Seo Young Jeon
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Young-Hoon Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Sung Jin Kim
- Cosmetics Policy Division, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Soo Kyung Suh
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Hye Jin Cha
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| |
Collapse
|
18
|
Cheng YC, Tsai RY, Sung YT, Chen IJ, Tu TY, Mao YY, Wong CS. Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression. Int J Mol Med 2018; 43:791-806. [PMID: 30569162 PMCID: PMC6317689 DOI: 10.3892/ijmm.2018.4030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Tolerance and associated hyperalgesia induced by long‑term morphine administration substantially restrict the clinical use of morphine in pain treatment. Melatonin, a neurohormone released by the pineal gland, has been demonstrated to attenuate anti‑nociceptive morphine tolerance. The present study investigates differentially expressed genes in the process of morphine tolerance and altered gene expression subsequent to melatonin treatment in chronic morphine‑infused ratspinal cords. Morphine tolerance was induced in male Wistar rats by intrathecal morphine infusion (the MO group). Melatonin (the MOMa group) was administered to overcome the effects derived by morphine. The mRNA collected from L5‑S3 of the spinal cord was extracted and analysed by rat expression microarray. Principal component analysis and clustering analysis revealed that the overall gene profiles were different in morphine and melatonin treatments. Subsequent to Gene Ontology analysis, the biological processes of differentially expressed genes of MO and MOMa compared with the control group were constructed. Furthermore, a panel of genes exclusively expressed following melatonin treatment and another panel of genes with inverse expression between the MO and MOMa group were also established. Subsequent to PANTHER pathway analysis, a group of genes with inverse expression following melatonin administrated compared with morphine alone were identified. The expression levels of genes of interest were also confirmed using a reverse transcription‑quantitative polymerase chain reaction. The gene panel that was constructed suggests a potential signaling pathway in morphine tolerance development and is valuable for investigating the mechanism of morphine tolerance and the regulatory gene profiles of melatonin treatment. These results may contribute to the discovery of potential drug targets in morphine tolerance treatments in the future.
Collapse
Affiliation(s)
- Yu-Che Cheng
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ru-Yin Tsai
- College of Nursing and Health Sciences, Da‑Yeh University, Changhua 51591, Taiwan, R.O.C
| | - Yen-Tseng Sung
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Tzu-Yi Tu
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ya-Yuan Mao
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Chih-Shung Wong
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| |
Collapse
|
19
|
Coffey AA, Fang J, Grigson PS. Heroin self-administration as a function of time of day in rats. Psychopharmacology (Berl) 2018; 235:3005-3015. [PMID: 30178302 PMCID: PMC6162178 DOI: 10.1007/s00213-018-4990-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/30/2018] [Indexed: 01/13/2023]
Abstract
RATIONALE Drug addiction is a complex disease that is impacted by numerous factors. One such factor, time of day, influences drug intake, but there have been no investigations of how time of day affects the amount of drug taken and the development of addiction-like behavior. Previous data from our group show circadian disruption in rats given access to heroin during the light phase, which is important because circadian disruption, itself, can increase drug intake. Thus, the goal of this experiment was to determine how time of day of access affects heroin self-administration and the development of addiction-like behaviors including escalation of heroin intake, willingness to work for heroin on a progressive ratio schedule of reinforcement, seeking during extinction, incubation of seeking, and reinstatement of heroin-seeking behavior. MATERIALS AND METHODS Male Sprague Dawley rats were given the opportunity to self-administer heroin for 6 h per trial during the second half of either the light or dark phase for 18 trials, including one progressive ratio challenge. Rats then underwent 14 days of abstinence, with a 5-h extinction test occurring on both the first and the 14th days of abstinence. The second extinction test was followed by a heroin prime and 1 h of reinstatement testing. On the following day, a subset of rats were tested in an additional extinction test where rats were tested either at the same time of the day as their previous self-administration sessions or during the opposite light/dark phase. RESULTS Relative to Light Access rats, Dark Access rats took more heroin, exhibited more goal-directed behavior, exhibited more seeking during the dark phase, failed to extinguish seeking during the 5-h extinction test in the dark phase, and exhibited greater incubation of heroin seeking following abstinence. However, Dark Access rats did not escalate drug taking over trials, work harder for drug, or seek more during drug-induced reinstatement than Light Access rats. CONCLUSIONS These results show that time of access to heroin affects overall heroin intake and seeking in extinction, but does not affect other addiction-like behaviors in rats.
Collapse
Affiliation(s)
- A A Coffey
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Dr., H181, Hershey, PA, 17033, USA
| | - J Fang
- Department of Psychiatry, Penn State College of Medicine, Hershey, PA, USA
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Dr., H181, Hershey, PA, 17033, USA.
| |
Collapse
|
20
|
Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2. Biomol Ther (Seoul) 2018; 26:358-367. [PMID: 29223143 PMCID: PMC6029676 DOI: 10.4062/biomolther.2017.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - June Bryan de la Peña
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
21
|
Onaolapo OJ, Onaolapo AY. Melatonin in drug addiction and addiction management: Exploring an evolving multidimensional relationship. World J Psychiatry 2018; 8:64-74. [PMID: 29988891 PMCID: PMC6033744 DOI: 10.5498/wjp.v8.i2.64] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023] Open
Abstract
Melatonin is a pleiotropic signalling molecule that regulates several physiological functions, and synchronises biological rhythms. Recent evidences are beginning to reveal that a dysregulation of endogenous melatonin rhythm or action may play a larger role in the aetiology and behavioural expression of drug addiction, than was previously considered. Also, the findings from a number of animal studies suggest that exogenous melatonin supplementation and therapeutic manipulation of melatonin/melatonin receptor interactions may be beneficial in the management of behavioural manifestations of drug addiction. However, repeated exogenous melatonin administration may cause a disruption of its endogenous rhythm and be associated with potential drawbacks that might limit its usefulness. In this review, we examine the roles of melatonin and its receptors in addictive behaviours; discussing how our understanding of melatonin’s modulatory effects on the brain rewards system and crucial neurotransmitters such as dopamine has evolved over the years. Possible indications(s) for melatonergic agents in addiction management, and how manipulations of the endogenous melatonin system may be of benefit are also discussed. Finally, the potential impediments to application of melatonin in the management of addictive behaviours are considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Ladoke Akintola University of Technology, Osogbo 230263, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho 210211, Oyo State, Nigeria
| |
Collapse
|
22
|
Dimatelis JJ, Mtintsilana A, Naidoo V, Stein DJ, Russell VA. Chronic light exposure alters serotonergic and orexinergic systems in the rat brain and reverses maternal separation-induced increase in orexin receptors in the prefrontal cortex. Metab Brain Dis 2018; 33:433-441. [PMID: 29039077 DOI: 10.1007/s11011-017-0123-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
Abstract
Maternal separation (MS) is a well-established rodent model of depression. Chronic constant light (CCL) treatment during adolescence has been shown to reverse the depression-like behaviour induced by MS. We aimed to further delineate the antidepressant effect of light by investigating the involvement of the dopaminergic, serotonergic and orexinergic systems. MS was used to induce changes in adult male Sprague-Dawley rats, some of whom were also treated with CCL for 3 weeks during adolescence. At P80, rats were decapitated and brain tissue collected for analysis of glutamate- and potassium-stimulated dopamine release in the nucleus accumbens (NAc) using an in vitro superfusion technique. Enzyme-linked immunosorbent assays were employed to measure 5-hydroxytryptamine (5-HT) levels in the hypothalamus and prefrontal cortex (PFC). Western blotting was used to measure orexin receptor 1 (OXR-1) and 2 (OXR-2) in the PFC. MS did not affect 5-HT levels in these rats. However, CCL increased hypothalamic 5-HT and reduced 5-HT levels in the PFC. CCL had opposite effects on OXR levels in the PFC of maternally separated and non-separated rats. MS increased OXR-1 and OXR-2 levels in the PFC, an effect that was normalized by CCL treatment. MS reduced glutamate-stimulated dopamine release in the NAc, an effect that was not reversed by CCL. The present results suggest that CCL treatment affects 5-HT and orexinergic systems in the MS model while not affecting the MS-induced decrease in dopamine release in the NAc. The reversal of changes in the orexinergic system may be of particular relevance to the antidepressant effect of CCL in depression.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - A Mtintsilana
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - V Naidoo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - D J Stein
- Department of Psychiatry and Mental Health and MRC Unit on Anxiety & Stress Disorders, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
23
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
24
|
Neural Mechanisms of Circadian Regulation of Natural and Drug Reward. Neural Plast 2017; 2017:5720842. [PMID: 29359051 PMCID: PMC5735684 DOI: 10.1155/2017/5720842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023] Open
Abstract
Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food) and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.
Collapse
|
25
|
mPer1 promotes morphine-induced locomotor sensitization and conditioned place preference via histone deacetylase activity. Psychopharmacology (Berl) 2017; 234:1713-1724. [PMID: 28243713 DOI: 10.1007/s00213-017-4574-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
RATIONALE Previous studies have shown that repeated exposure to drugs of abuse is associated with changes in clock genes expression and that mice strains with various mutations in clock genes show alterations in drug-induced behaviors. OBJECTIVE The objective of this study is to characterize the role of the clock gene mPer1 in the development of morphine-induced behaviors and a possible link to histone deacetylase (HDAC) activity. METHODS In Per1 Brdm1 null mutant mice and wild-type (WT) littermates, we examined whether there were any differences in the development of morphine antinociception, tolerance to antinociception, withdrawal, sensitization to locomotion, and conditioned place preference (CPP). RESULTS Per1 Brdm1 mutant mice did not show any difference in morphine antinociception, tolerance development, nor in physical withdrawal signs precipitated by naloxone administration compared to WT. However, morphine-induced locomotor sensitization and CPP were significantly impaired in Per1 Brdm1 mutant mice. Because a very similar dissociation between tolerance and dependence vs. sensitization and CPP was recently observed after the co-administration of morphine and the HDAC inhibitor sodium butyrate (NaBut), we studied a possible link between mPer1 and HDAC activity. As opposed to WT controls, Per1 Brdm1 mutant mice showed significantly enhanced striatal global HDAC activity within the striatum when exposed to a locomotor-sensitizing morphine administration regimen. Furthermore, the administration of the HDAC inhibitor NaBut restored the ability of morphine to promote locomotor sensitization and reward in Per1 Brdm1 mutant mice. CONCLUSIONS Our results reveal that although the mPer1 gene does not alter morphine-induced antinociception nor withdrawal, it plays a prominent role in the development of morphine-induced behavioral sensitization and reward via inhibitory modulation of striatal HDAC activity. These data suggest that PER1 inhibits deacetylation to promote drug-induced neuroplastic changes.
Collapse
|
26
|
Melatonin reduces motivation for cocaine self-administration and prevents relapse-like behavior in rats. Psychopharmacology (Berl) 2017; 234:1741-1748. [PMID: 28246896 DOI: 10.1007/s00213-017-4576-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/17/2017] [Indexed: 01/09/2023]
Abstract
RATIONALE Melatonin is a hormone involved in the entrainment of circadian rhythms, which appears dysregulated in drug users. Further, it has been demonstrated that melatonin can modulate the reinforcing effects of several drugs of abuse and may therefore play a role in drug addiction. OBJECTIVE Here, we investigated whether administration of melatonin reduces relapse-like behavior and the motivation to seek cocaine in rats. METHODS Male Sprague-Dawley rats were submitted to long-term cocaine self-administration training. Thereafter, melatonin effects were assessed on: (1) the motivation to work for cocaine in the break point test, (2) the relapse-like behavior in the cue-induced reinstatement test, (3) the distance traveled in the open field test, and (4) sucrose preference in a two-bottle choice paradigm. Melatonin, 25 or 50 mg/kg, was injected 3-4 h after the dark phase onset, 30 min prior to each test. RESULTS Both doses of melatonin decreased the number of active pokes in both break point and cue-induced reinstatement tests, demonstrating that melatonin can reduce the cocaine-seeking behavior and the motivation to work for cocaine. Administration of the higher dose of this hormone, however, significantly reduced the number of inactive pokes during the cue-induced reinstatement test and tended to reduce animals' locomotor activity in the open field test. Sucrose preference was unchanged in both vehicle- and melatonin-treated animal groups. CONCLUSIONS Our data suggest that melatonin administration may lower the risk of relapse triggered by cues in cocaine-experienced animals.
Collapse
|
27
|
Matsui K, Takaesu Y, Inoue T, Inada K, Nishimura K. Effect of aripiprazole on non-24-hour sleep-wake rhythm disorder comorbid with major depressive disorder: a case report. Neuropsychiatr Dis Treat 2017; 13:1367-1371. [PMID: 28579782 PMCID: PMC5449127 DOI: 10.2147/ndt.s136628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with non-24-hour sleep-wake rhythm disorder (N24SWD) exhibit a sleep pattern that is asynchronous with the external light-dark cycle, typically involving a cycling, relapsing-remitting pattern of sleep disturbances, including nighttime insomnia and daytime sleepiness. Here, we report the case of a patient with N24SWD comorbid with major depressive disorder, who was successfully treated with a low dose of aripiprazole. CASE PRESENTATION A 47-year-old female presented with an 8-year complaint of difficulty falling asleep and waking up in the morning. The patient was diagnosed with major depressive disorder at the age of 35 years and was treated with various antidepressants since that time. At the age of 40 years, the patient's sleep-wake cycle began to extend without exacerbation of depressive symptoms. The patient was diagnosed with N24SWD at the age of 43 years. Ramelteon 8 mg/d and then melatonin 1 mg/d were administered, but these did not provide effective treatment. In January 2016, after treatment with aripiprazole 3 mg/d in the morning for 4 weeks, the patient's sleep-wake cycle became markedly synchronized to the environmental light-dark cycle. Her sleep-wake cycle remained synchronized when the same dose of aripiprazole was administered for at least 6 months. CONCLUSION Treatment-refractory asynchrony of the sleep-wake cycle in an N24SWD patient with depression was successfully treated with aripiprazole. Although the detailed mechanism of action is unclear, aripiprazole may be an appropriate treatment for patients with circadian rhythm sleep-wake disorders.
Collapse
Affiliation(s)
- Kentaro Matsui
- Department of Psychiatry, Tokyo Women’s Medical University
- Japan Somnology Center, Neuropsychiatric Research Institute
| | - Yoshikazu Takaesu
- Japan Somnology Center, Neuropsychiatric Research Institute
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Ken Inada
- Department of Psychiatry, Tokyo Women’s Medical University
| | | |
Collapse
|
28
|
Abstract
Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.
Collapse
|