1
|
Cheng LF, You CQ, Peng C, Ren JJ, Guo K, Liu TL. Mesenchymal stem cell-derived exosomes as a new drug carrier for the treatment of spinal cord injury: A review. Chin J Traumatol 2024; 27:134-146. [PMID: 38570272 PMCID: PMC11138942 DOI: 10.1016/j.cjtee.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.
Collapse
Affiliation(s)
- Lin-Fei Cheng
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China
| | - Chao-Qun You
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Cheng Peng
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Jia-Ji Ren
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Kai Guo
- Department of Orthopaedics, The Central Hospital of Shanghai Putuo District, Shanghai, 200333, China
| | - Tie-Long Liu
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China.
| |
Collapse
|
2
|
Zhang D, Chen X, Liu B, Yuan Y, Cui W, Zhu D, Zhu J, Duan S, Li C. The Temporal and Spatial Changes of Autophagy and PI3K Isoforms in Different Neural Cells After Hypoxia/Reoxygenation Injury. Mol Neurobiol 2023; 60:5366-5377. [PMID: 37316758 DOI: 10.1007/s12035-023-03421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
There are limited therapeutic options for patient with traumatic spinal cord injury (SCI). Phosphoinositide 3-kinase family (PI3Ks) are the key molecules for regulating cell autophagy, which is a possible way of treating SCI. As we know, PI3K family are composed of eight isoforms, which are distributed into three classes. While the role of PI3Ks in regulating autophagy is controversial and the effects may be in a cell-specific manner. Different isoforms do not distribute in neural cells consistently and it is not clear how the PI3K isoforms regulate and interact with autophagy. Therefore, we explored the distributions and expression of different PI3K isoforms in two key neural cells (PC12 cells and astrocytes). The results showed that the expression of LC3II/I and p62, which are the markers of autophagy, changed in different patterns in PC12 cells and astrocytes after hypoxia/reoxygenation injury (H/R). Furthermore, the mRNA level of eight PI3K isoforms did not change in the same way, and even for the same isoform the mRNA activities are different between PC12 cells and astrocytes. What is more, the results of western blot of PI3K isoforms after H/R were inconsistent with the relevant mRNA. Based on this study, the therapeutic effects of regulating autophagy on SCI are not confirmed definitely, and its molecular mechanisms may be related with different temporal and spatial patterns of activation and distributions of PI3K isoforms.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xuanyu Chen
- Department of Orthopedics, Capital Medical University Electric Power Hospital, Beijing, 100073, China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, 100068, China
| | - Wei Cui
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jichao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shuo Duan
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chenxi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
3
|
Liu FS, Jiang C, Li Z, Wang XB, Li J, Wang B, Lv GH, Liu FB. Ca 2+ Regulates Autophagy Through CaMKKβ/AMPK/mTOR Signaling Pathway in Mechanical Spinal cord Injury: An in vitro Study. Neurochem Res 2023; 48:447-457. [PMID: 36315370 DOI: 10.1007/s11064-022-03768-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Spinal cord injury (SCI), resulting in damage of the normal structure and function of the spinal cord, would do great harm to patients, physically and psychologically. The mechanism of SCI is very complex. At present, lots of studies have reported that autophagy was involved in the secondary injury process of SCI, and several researchers also found that calcium ions (Ca2+) played an important role in SCI by regulating necrosis, autophagy, or apoptosis. However, to our best of knowledge, no studies have linked the spinal cord mechanical injury, intracellular Ca2+, and autophagy in series. In this study, we have established an in vitro model of SCI using neural cells from fetal rats to explore the relationship among them, and found that mechanical injury could promote the intracellular Ca2+ concentration, and the increased Ca2+ level activated autophagy through the CaMKKβ/AMPK/mTOR pathway. Additionally, we found that apoptosis was also involved in this pathway. Thus, our study provides new insights into the specific mechanisms of SCI and may open up new avenues for the treatment of SCI.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Chang Jiang
- Zhongshan Hospital Affiliated to Fudan University, 200032, Shanghai, China
| | - Zheng Li
- The First Affiliated Hospital of University of Science and Technology of China, 230001, Anhui, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China. .,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, 411001, Changsha, Hunan, China.
| |
Collapse
|
4
|
Wei S, Leng B, Yan G. Targeting autophagy process in center nervous trauma. Front Neurosci 2023; 17:1128087. [PMID: 36950126 PMCID: PMC10025323 DOI: 10.3389/fnins.2023.1128087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The central nervous system (CNS) is the primary regulator of physiological activity, and when CNS is compromised, its physical functions are affected. Spinal cord injury (SCI) and traumatic brain injury (TBI) are common trauma in CNS that are difficult to recover from, with a higher global disability and mortality rate. Autophagy is familiar to almost all researchers due to its role in regulating the degradation and recycling of cellular defective or incorrect proteins and toxic components, maintaining body balance and regulating cell health and function. Emerging evidence suggests it has a broad and long-lasting impact on pathophysiological process such as oxidative stress, inflammation, apoptosis, and angiogenesis, involving the alteration of autophagy marker expression and function recovery. Changes in autophagy level are considered a potential therapeutic strategy and have shown promising results in preclinical studies for neuroprotection following traumatic brain injury. However, the relationship between upward or downward autophagy and functional recovery following SCI or TBI is debatable. This article reviews the regulation and role of autophagy in repairing CNS trauma and the intervention effects of autophagy-targeted therapeutic agents to find more and better treatment options for SCI and TBI patients.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Genquan Yan,
| |
Collapse
|
5
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
6
|
Wang D, Si D, Li G, Ding Z, Yang X, Gao C. Dysregulated autophagic activity induced in response to chronic intermittent hypoxia contributes to the pathogenesis of NAFLD. Front Physiol 2022; 13:941706. [PMID: 35982710 PMCID: PMC9379323 DOI: 10.3389/fphys.2022.941706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a pathological characteristic of obstructive sleep apnea (OSA) that has been linked to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). The specific link between CIH, autophagic activity, and NAFLD, however, has not previously been characterized. The goal of this study was to assess the relationship between CIH-induced autophagy and the pathogenesis of OSA-associated NAFLD. Western blotting was used to assess the expression of proteins associated with lipid synthesis, endoplasmic reticulum (ER) stress, and autophagic activity. To establish an in vivo model system, C57BL/6 mice were subjected to CIH conditions for 8 h per day over a 12-week period, and were administered chloroquine (CQ) for 1 week prior to euthanization. Levels of serum and liver triglycerides in these animals were assessed, as were proteins related to hepatic autophagy, ER stress, and lipogenesis. qPCR was additionally used to assess hepatic inflammation-related gene expression, while transmission electron microscopy was used to monitor lipid droplet (LD) accumulation and ER morphology. OSA patients and CIH model mice exhibited increases in the expression of proteins associated with hepatic autophagy, ER stress, and lipogenesis. CIH was also associated with more pronounced LD accumulation, hepatic inflammation, and hepatic steatosis in these mice. While serum and hepatic TG and TC levels and serum ALT/AST were increased in response to CIH treatment, the administration of CQ to these mice led to reductions in ER stress-related proteins (XBP1, IRE1α, EIF2α) and lipogenesis-related proteins (ACC, SCD1, FASn), in addition to significantly reducing hepatic inflammation, steatosis, and LD accumulation in these animals. These results suggest that persistent CIH can drive dysregulated hepatic autophagic activity, hepatic steatosis, and ER stress, highlighting potential targets for therapeutic intervention aimed at preventing or treating OSA-associated NAFLD.
Collapse
Affiliation(s)
- Dong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongyu Si
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gang Li
- Department of Otorhinolaryngology Head and Neck Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Zhimin Ding
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaonan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Chaobing Gao,
| |
Collapse
|
7
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
8
|
Sun H, Wang J, Bi W, Zhang F, Chi K, Shi L, Yuan T, Ma K, Gao X. Sulforaphane Ameliorates Limb Ischemia/Reperfusion-Induced Muscular Injury in Mice by Inhibiting Pyroptosis and Autophagy via the Nrf2-ARE Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4653864. [PMID: 35600947 PMCID: PMC9117032 DOI: 10.1155/2022/4653864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Background Limb ischemia/reperfusion (I/R) injury, as a life-threatening syndrome, is commonly caused by skeletal muscle damage resulting from oxidative stress. Additionally, inflammation-induced pyroptosis and dysregulated autophagy are vital factors contributing to the aggravation of I/R injury. Of note, sulforaphane (SFN) is a natural antioxidant, but whether it worked in limb I/R injury and the possible mechanism behind its protection for skeletal muscle has not been clearly established. Methods Effects of SFN on limb I/R-injured skeletal muscle were assessed by HE staining, followed by assessment of wet weight/dry weight (W/D) ratio of muscle tissues. Next, ELISA and biochemical tests were used to measure the inflammatory cytokine production and oxidative stress. Immunofluorescent analysis and Western blot were adopted to examine the level of pyroptosis- and autophagy-related proteins in vivo. Moreover, protein levels of Nrf2-ARE pathway-related factors were also examined using Western blot. Results SFN treatment could protect skeletal muscle against limb I/R injury, as evidenced by diminished inflammation, pyroptosis, autophagy, and oxidative stress in skeletal muscles of mice. Further mechanistic exploration confirmed that antioxidative protection of SFN was associated with the Nrf2-ARE pathway activation. Conclusions SFN activates the Nrf2-ARE pathway, and thereby inhibits pyroptosis and autophagy and provides a novel therapeutic strategy for the limb I/R-induced muscle tissue damage.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Feng Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Long Shi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Tao Yuan
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kai Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| |
Collapse
|
9
|
Visintin R, Ray SK. Specific microRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sci 2022; 12:247. [PMID: 35204010 PMCID: PMC8870708 DOI: 10.3390/brainsci12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of spinal cord injury (SCI) is currently a major challenge, with a severe lack of effective therapies for yielding meaningful improvements in function. Therefore, there is a great opportunity for the development of novel treatment strategies for SCI. The modulation of autophagy, a process by which a cell degrades and recycles unnecessary or harmful components (protein aggregates, organelles, etc.) to maintain cellular homeostasis and respond to a changing microenvironment, is thought to have potential for treating many neurodegenerative conditions, including SCI. The discovery of microRNAs (miRNAs), which are short ribonucleotide transcripts for targeting of specific messenger RNAs (mRNAs) for silencing, shows prevention of the translation of mRNAs to the corresponding proteins affecting various cellular processes, including autophagy. The number of known miRNAs and their targets continues to grow rapidly. This review article aims to explore the relationship between autophagy and SCI, specifically with the intent of identifying specific miRNAs that can be useful to modulate autophagy for neuroprotection and the improvement of functional recovery in SCI.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
10
|
Liu B, Zheng W, Dai L, Fu S, Shi E. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects against spinal cord ischemia reperfusion injury. Tissue Cell 2021; 74:101678. [PMID: 34823099 DOI: 10.1016/j.tice.2021.101678] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
At present, much more studies have focused on the therapeutic effect of exosome-delivered microRNAs on diseases. Previous study has shown that miR-455-5p is downregulated in ischemic stroke, but little is known about the role of exosome-delivered miR-455-5p in spinal cord ischemia reperfusion (SCIR) injury. Herein, we isolated exosomes from bone marrow mesenchymal stem cells (BMSCs) transfected with lentivirus vectors containing miR-455-5p. SCIR rat model was established after the intrathecal injection of exosomes containing miR-455-5p. The expression level of miR-455-5p was downregulated after SCIR, administration of exosomal miR-455-5p enhanced the level of miR-455-5p in the injured spinal cord. Hind-limb motor function scores indicated that exosomal miR-455-5p improved the recovery of hind-limb function of SCIR rats. HE staining and Nissl staining showed that miR-455-5p enriched exosomes reduced histopathological abnormalities after SCIR. Double immunofluorescence staining revealed that exosomes containing miR-455-5p reduced apoptosis of neurons, and activated autophagy in neurons after SCIR. We observed that the expression of Nogo-A, a direct target of miR-455-5p, was decreased in the spinal cord of exosomal miR-455-5p administrated SCIR rats. Targeting relationship between miR-455-5p and Nogo-A was verified by dual-luciferase reporter assay. In summary, exosomes containing miR-455-5p had the neuroprotective effects on SCIR injury by promoting autophagy and inhibiting apoptosis of neurons.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Wenjun Zheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Li Dai
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shengjie Fu
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Enyi Shi
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Firat T, Kukner A, Ayturk N, Gezici AR, Serin E, Ozogul C, Tore F. The Potential Therapeutic Effects of Agmatine, Methylprednisolone, and Rapamycin on Experimental Spinal Cord Injury. CELL JOURNAL 2021; 23:701-707. [PMID: 34939764 PMCID: PMC8665976 DOI: 10.22074/cellj.2021.7198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE In spinal cord injury (SCI), the primary mechanical damage leads to a neuroinflammatory response and the secondary neuronal injury occurs in response to the release of reactive oxygen species (ROS). In addition to the suppression of inflammation, autophagy plays a significant role in the survival of neurons during secondary SCI. The present study aimed to examine the anti-inflammatory and autophagic effects of agmatine and rapamycin in SCI and to compare the results with methylprednisolone (MP) used in the clinic. MATERIALS AND METHODS In this animal-based experimental study, thirty adult male Sprague-Dawley rats were randomly divided into five groups as sham-control, injury, injury+MP, injury+rapamycin, injury+agmatine groups. SCI was induced by compressing the T7-8-9 segments of the spinal cord, using an aneurysm clip for one minute, and then rats were treated daily for 7 days. Seven days post-treatment, damaged spinal cord tissues of sacrificed rats were collected for microscopic and biochemical examinations using histopathologic and transmission electron microscope (TEM) scores. Malondialdehyde (MDA) and glutathione peroxidase (GPx) levels were spectrophotometrically measured. RESULTS The results of this study showed that the damaged area was smaller in the rapamycin group when compared to the MP group. Many autophagic vacuoles and macrophages were observed in the rapamycin group. Degeneration of axon, myelin, and wide edema was observed in SCI by electron microscopic observations. Fragmented myelin lamellae and contracted axons were also noted. While MDA and GPx levels were increased in the injury group, MDA levels were significantly decreased in the agmatine and MP groups, and GPx levels were decreased in the rapamycin group. CONCLUSION The results of our study confirmed that rapamycin and agmatine can be an effective treatment for secondary injury of SCI.
Collapse
Affiliation(s)
- Tulin Firat
- Department of Histology and Embryology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey.
| | - Aysel Kukner
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Nilufer Ayturk
- Department of Histology and Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ali Rıza Gezici
- Department of Neurosurgery, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Erdinc Serin
- Department of Biochemistry, Prof. Dr. Cemil Tascioğlu City Hospital, Istanbul, Turkey
| | - Candan Ozogul
- Department of Histology and Embryology, Faculty of Medicine, University of Kyrenia, Kyrenia, Cyprus
| | - Fatma Tore
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| |
Collapse
|
12
|
Zhang D, Yuan Y, Zhu J, Zhu D, Li C, Cui W, Wang L, Ma S, Duan S, Liu B. Insulin-like growth factor 1 promotes neurological functional recovery after spinal cord injury through inhibition of autophagy via the PI3K/Akt/mTOR signaling pathway. Exp Ther Med 2021; 22:1265. [PMID: 34594402 PMCID: PMC8456500 DOI: 10.3892/etm.2021.10700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a serious trauma; however, the mechanisms underlying the role of insulin-like growth factor 1 (IGF-1) in autophagy following SCI remain to be elucidated. The present study aimed to investigate the therapeutic effect of IGF-1 on SCI and to determine whether IGF-1 regulates autophagy via the PI3K/Akt/mTOR signaling pathway. SH-SY5Y neuroblastoma cells were assigned to the H2O2, IGF-1 and control groups to investigate subsequent neuron injury in vitro. An MTT assay was performed to evaluate cell survival. In addition, Sprague-Dawley rats were randomly assigned to SCI, SCI + IGF-1 and sham groups, and Basso-Beatlie-Bresnahan scores were assessed to determine rat neurological function. Western blotting was used to analyze the autophagy level and the activation of the PI3K/Akt/mTOR signaling pathway. Cell survival was increased significantly in the IGF-1 group compared with the control group in vitro (P<0.05). Furthermore, neurological function was improved in the SCI + IGF-1 group compared with the control group in vivo (P<0.05). The western blotting results further demonstrated that LC3II/LC3I expression was increased in the IGF-1 group compared with the sham group in vivo and compared with the control group in vitro (both P<0.05). In the SCI + IGF-1 group, the expression levels of PI3K, phosphorylated (p)-Akt and p-mTOR were higher compared with those in the sham and SCI groups in vivo (P<0.05). Moreover, in the IGF-1 group, the expression levels of p-Akt and p-mTOR were higher compared with the control and the H2O2 groups in vitro (P<0.05). Collectively, the results of the present study suggested that IGF-1 promoted functional recovery in rats following SCI through neuroprotective effects. Furthermore, the underlying mechanism may involve activation of the PI3K/Akt/mTOR signaling pathway, followed by inhibition of autophagy. However, further investigation into the association between IGF-1-regulated autophagy and the activation of different subtypes of PI3K is required.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing 100068, P.R. China
| | - Jichao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Chenxi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Wei Cui
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Lei Wang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Song Ma
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Shuo Duan
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
13
|
Danková M, Domoráková I, Fagová Z, Stebnický M, Mechírová E. Induction of ischemic tolerance by remote perconditioning or postconditioning as neuroprotective strategy for spinal cord motor neurons. Life Sci 2021; 283:119789. [PMID: 34256043 DOI: 10.1016/j.lfs.2021.119789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
AIMS The study is focused on the investigation of the mechanisms leading to ischemic tolerance acquisition in the spinal cord neurons via application of non-invasive method of remote conditioning. MATERIAL AND METHODS We have verified the possibility of neuroprotection of spinal cord in rabbit by using remote perconditioning (PerC) applied during last 12 min of spinal cord ischemia (SC-ischemia) or postconditioning (PostC) applied after 1st (early) or 3rd (late) h of reperfusion. Spinal cord ischemia was induced by occlusion of the aorta below the left renal artery for 20 min. Reperfusion period was 24 or 72 h. Remote conditioning was induced by compression of left forelimb with a tourniquet in 3 cycles of 2 min of ischemia, each followed by 2 min of reperfusion. Damaged neurons were detected by Fluoro Jade B method and the modified Tarlov score was used for functional assessment. KEY FINDINGS The remote conditioning significantly attenuated degeneration of motor neurons in all remote conditioned groups versus both SC-ischemia groups. We detected significant changes in number of Hsp70 positive motor neurons. At 72time point, in the group with remote late PostC we observed significant increase (p < 0.001) of Hsp70 positive motor neurons versus SC- ischemia group and sham control. There was a trend towards improvement of hindlimbs movement. SIGNIFICANCE This study showed the effectiveness of remote conditioning as a neuroprotective strategy, evidenced by induction of ischemic tolerance leading to decrease of motor neuron degeneration.
Collapse
Affiliation(s)
- Marianna Danková
- Comenius University in Bratislava, Faculty of Medicine, Institute of Histology and Embryology, Sasinkova 4, 811 04 Bratislava, Slovak Republic
| | - Iveta Domoráková
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Zuzana Fagová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Milan Stebnický
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic; Pavol Jozef Šafárik University, Faculty of Medicine, 2nd Department of Surgery and L. Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovak Republic.
| | - Eva Mechírová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| |
Collapse
|
14
|
Wang D, Wang L, Han J, Zhang Z, Fang B, Chen F. Bioinformatics-Based Analysis of the lncRNA-miRNA-mRNA Network and TF Regulatory Network to Explore the Regulation Mechanism in Spinal Cord Ischemia/Reperfusion Injury. Front Genet 2021; 12:650180. [PMID: 33986769 PMCID: PMC8110913 DOI: 10.3389/fgene.2021.650180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Spinal cord ischemia/reperfusion injury (SCII) is a catastrophic complication involved with cardiovascular, spine, and thoracic surgeries and can lead to paraplegia. Nevertheless, the molecular mechanism of SCII remain ill-defined. Methods Expression profiling (GSE138966) data were obtained from GEO database. Then, differentially expressed (DE) lncRNAs and DEmRNAs were screened out with p < 0.05, and | fold change| > 1.5. Aberrant miRNAs expression in SCII was obtained from PubMed. Functional enrichment analysis of overlapping DEmRNAs between predicted mRNAs in miRDB database and DEmRNAs obtained from GSE138966 was performed using cluster Profiler R package. The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was established in light of ceRNA theory. The key lncRNAs in the ceRNA network were identified by topological analysis. Subsequently, key lncRNAs related ceRNA-pathway network and transcription factors (TFs)-mRNAs network were constructed. Simultaneously, the expression levels of hub genes were measured via qRT-PCR. Results The results in this study indicated that 76 miRNAs, 1373 lncRNAs, and 4813 mRNAs were differentially expressed in SCII. A SCII-related ceRNA network was constructed with 154 ncRNAs, 139 mRNAs, and 51 miRNAs. According topological analysis, six lncRNAs (NONRATT019236.2, NONRATT009530.2, NONRATT026999.2, TCONS_00032391, NONRATT023112.2, and NONRATT021956.2) were selected to establish the ceRNA-pathway network, and then two candidate hub lncRNAs (NONRATT009530.2 and NONRATT026999.2) were identified. Subsequently, two lncRNA-miRNA-mRNA regulatory axes were identified. NONRATT026999.2 and NONRATT009530.2 might involve SCII via miR-20b-5p/Map3k8 axis based on the complex ceRNA network. SP1 and Hnf4a acting as important TFs might regulate Map3k8. Furthermore, qRT-PCR results showed that the NONRATT009530.2, NONRATT026999.2, Map3k8, Hfn4a, and SP1 were significantly upregulated in SCII of rats, while the miR-20b-5p was downregulated. Conclusion Our results offer a new insight to understand the ceRNA regulation mechanism in SCII and identify highlighted lncRNA-miRNA-mRNA axes and two key TFs as potential targets for prevention and treatment of SCII.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Limei Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Han
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Zaili Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Zhu S, Ying Y, Ye J, Chen M, Wu Q, Dou H, Ni W, Xu H, Xu J. AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death Dis 2021; 12:274. [PMID: 33723238 PMCID: PMC7960741 DOI: 10.1038/s41419-021-03546-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso-Beattie-Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China.
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
16
|
Afshari K, Momeni Roudsari N, Lashgari NA, Haddadi NS, Haj-Mirzaian A, Hassan Nejad M, Shafaroodi H, Ghasemi M, Dehpour AR, Abdolghaffari AH. Antibiotics with therapeutic effects on spinal cord injury: a review. Fundam Clin Pharmacol 2020; 35:277-304. [PMID: 33464681 DOI: 10.1111/fcp.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/06/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that a considerable number of antibiotics exert anti-inflammatory and neuroprotective effects in different central and peripheral nervous system diseases including spinal cord injury (SCI). Both clinical and preclinical studies on SCI have found therapeutic effects of antibiotics from different families on SCI. These include macrolides, minocycline, β-lactams, and dapsone, all of which have been found to improve SCI sequels and complications. These antibiotics may target similar signaling pathways such as reducing inflammatory microglial activity, promoting autophagy, inhibiting neuronal apoptosis, and modulating the SCI-related mitochondrial dysfunction. In this review paper, we will discuss the mechanisms underlying therapeutic effects of these antibiotics on SCI, which not only could supply vital information for investigators but also guide clinicians to consider administering these antibiotics as part of a multimodal therapeutic approach for management of SCI and its complications.
Collapse
Affiliation(s)
- Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Nazgol-Sadat Haddadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Malihe Hassan Nejad
- Department of Infectious Diseases, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, 01655, USA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 31375-1369, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| |
Collapse
|
17
|
Zhang X, Qin C, Jing Y, Yang D, Liu C, Gao F, Zhang C, Talifu Z, Yang M, Du L, Li J. Therapeutic effects of rapamycin and surgical decompression in a rabbit spinal cord injury model. Cell Death Dis 2020; 11:567. [PMID: 32703937 PMCID: PMC7378229 DOI: 10.1038/s41419-020-02767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/09/2022]
Abstract
Surgical decompression after spinal cord injury (SCI) is a conventional treatment. Although it has been proven to have clinical effects, there are certain limitations, such as the surgical conditions that must be met and the invasive nature of the treatment. Therefore, there is an urgent need to develop a simple and maneuverable therapy for the emergency treatment of patients with SCI before surgery. Rapamycin (RAPA) has been reported to have potential as a therapeutic agent for SCI. In this study, we observed the therapeutic effects of rapamycin and surgical decompression, in combination or separately, on the histopathology in rabbits with SCI. After combination therapy, intramedullary pressure (IMP) decreased significantly, autophagic flux increased, and apoptosis and demyelination were significantly reduced. Compared with RAPA/surgical decompression alone, the combination therapy had a significantly better effect. In addition, we evaluated the effects of mechanical pressure on autophagy after SCI by assessing changes in autophagic initiation, degradation, and flux. Increased IMP after SCI inhibited autophagic degradation and impaired autophagic flux. Decompression improved autophagic flux after SCI. Our findings provide novel evidence of a promising strategy for the treatment of SCI in the future. The combination therapy may effectively improve emergency treatment after SCI and promote the therapeutic effect of decompression. This study also contributes to a better understanding of the effects of mechanical pressure on autophagy after neurotrauma.
Collapse
Affiliation(s)
- Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, 100068, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Beijing, 100050, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Zuliyaer Talifu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China. .,China Rehabilitation Science Institute, Beijing, 100068, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China. .,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China. .,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
| |
Collapse
|
18
|
Zhang D, Zhu D, Wang F, Zhu JC, Zhai X, Yuan Y, Li CX. Therapeutic effect of regulating autophagy in spinal cord injury: a network meta-analysis of direct and indirect comparisons. Neural Regen Res 2020; 15:1120-1132. [PMID: 31823893 PMCID: PMC7034290 DOI: 10.4103/1673-5374.270419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/11/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE An increasing number of studies indicate that autophagy plays an important role in the pathogenesis of spinal cord injury, and that regulating autophagy can enhance recovery from spinal cord injury. However, the effect of regulating autophagy and whether autophagy is detrimental or beneficial after spinal cord injury remain unclear. Therefore, in this study we evaluated the effects of autophagy regulation on spinal cord injury in rats by direct and indirect comparison, in an effort to provide a basis for further research. DATA SOURCE Relevant literature published from inception to February 1, 2018 were included by searching Wanfang, CNKI, Web of Science, MEDLINE (OvidSP), PubMed and Google Scholar in English and Chinese. The keywords included "autophagy", "spinal cord injury", and "rat". DATA SELECTION The literature included in vivo experimental studies on autophagy regulation in the treatment of spinal cord injury (including intervention pre- and post-spinal cord injury). Meta-analyses were conducted at different time points to compare the therapeutic effects of promoting or inhibiting autophagy, and subgroup analyses were also conducted. OUTCOME MEASURE Basso, Beattie, and Bresnahan scores. RESULTS Of the 622 studies, 33 studies of median quality were included in the analyses. Basso, Beattie, and Bresnahan scores were higher at 1 day (MD = 1.80, 95% CI: 0.81-2.79, P = 0.0004), 3 days (MD = 0.92, 95% CI: 0.72-1.13, P < 0.00001), 1 week (MD = 2.39, 95% CI: 1.85-2.92, P < 0.00001), 2 weeks (MD = 3.26, 95% CI: 2.40-4.13, P < 0.00001), 3 weeks (MD = 3.13, 95% CI: 2.51-3.75, P < 0.00001) and 4 weeks (MD = 3.18, 95% CI: 2.43-3.92, P < 0.00001) after spinal cord injury with upregulation of autophagy compared with the control group (drug solvent control, such as saline group). Basso, Beattie, and Bresnahan scores were higher at 1 day (MD = 6.48, 95% CI: 5.83-7.13, P < 0.00001), 2 weeks (MD = 2.43, 95% CI: 0.79-4.07, P = 0.004), 3 weeks (MD = 2.96, 95% CI: 0.09-5.84, P = 0.04) and 4 weeks (MD = 4.41, 95% CI: 1.08-7.75, P = 0.01) after spinal cord injury with downregulation of autophagy compared with the control group. Indirect comparison of upregulation and downregulation of autophagy showed no differences in Basso, Beattie, and Bresnahan scores at 1 day (MD = -4.68, 95% CI: -5.840 to -3.496, P = 0.94644), 3 days (MD = -0.28, 95% CI: -2.231-1.671, P = 0.99448), 1 week (MD = 1.83, 95% CI: 0.0076-3.584, P = 0.94588), 2 weeks (MD = 0.81, 95% CI: -0.850-2.470, P = 0.93055), 3 weeks (MD = 0.17, 95% CI: -2.771-3.111, P = 0.99546) or 4 weeks (MD = -1.23, 95% CI: -4.647-2.187, P = 0.98264) compared with the control group. CONCLUSION Regulation of autophagy improves neurological function, whether it is upregulated or downregulated. There was no difference between upregulation and downregulation of autophagy in the treatment of spinal cord injury. The variability in results among the studies may be associated with differences in research methods, the lack of clearly defined autophagy characteristics after spinal cord injury, and the limited autophagy monitoring techniques. Thus, methods should be standardized, and the dynamic regulation of autophagy should be examined in future studies.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ji-Chao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xu Zhai
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Chen-Xi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Chen S, Tian R, Luo D, Xiao Z, Li H, Lin D. Time-Course Changes and Role of Autophagy in Primary Spinal Motor Neurons Subjected to Oxygen-Glucose Deprivation: Insights Into Autophagy Changes in a Cellular Model of Spinal Cord Ischemia. Front Cell Neurosci 2020; 14:38. [PMID: 32265654 PMCID: PMC7098962 DOI: 10.3389/fncel.2020.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Spinal cord ischemia is a severe clinical complication induced by thoracoabdominal aortic surgery, severe trauma, or compression to the spinal column. As one of the most important functional cells in the spinal cord, spinal motor neurons (SMNs) suffer most during the process since they are vulnerable to ischemic injury due to high demands of energy. Previous researches have tried various animal models or organotypic tissue experiments to mimic the process and get to know the pathogenesis and mechanism. However, little work has been performed on the cellular model of spinal cord ischemia, which has been hampered by the inability to obtain a sufficient number of pure primary SMNs for in vitro study. By optimizing the isolation and culture of SMNs, our laboratory has developed an improved culture system of primary SMNs, which allows cellular models and thus mechanism studies. In the present study, by establishing an in vitro model of spinal cord ischemia, we intended to observe the dynamic time-course changes of SMNs and investigate the role of autophagy in SMNs during the process. It was found that oxygen-glucose deprivation (OGD) resulted in destruction of neural networks and decreased cell viability of primary SMNs, and the severity increased with the prolonging of the OGD time. The OGD treatment enhanced autophagy, which reached a peak at 5 h. Further investigation demonstrated that inhibition of autophagy exacerbated the injury, evidencing that autophagy plays a protective role during the process.
Collapse
Affiliation(s)
- Shudong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Dan Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Direct Peritoneal Resuscitation with Pyruvate Protects the Spinal Cord and Induces Autophagy via Regulating PHD2 in a Rat Model of Spinal Cord Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4909103. [PMID: 31998438 PMCID: PMC6969651 DOI: 10.1155/2020/4909103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
Direct peritoneal resuscitation with pyruvate (Pyr-PDS) has emerged as an interesting candidate to alleviate injury in diverse organs, while the potential mechanism has yet to be fully elucidated. To explore the effect of autophagy in the spinal cord ischemia-reperfusion (SCIR) injury and the underlying mechanism, we established a model of SCIR in vivo and in vitro. In vivo, male SD rats underwent aortic occlusion for 60 min and then followed by intraperitoneally infused with 20 mL of pyruvate or normal saline for 30 min, and the spinal cords were removed for analysis after 48 h of reperfusion. The functional and morphological results showed that Pyr-PDS alleviated SCIR injury; meanwhile, the expression of autophagy-related genes and transmission electron microscopy displayed autophagy was activated by SCIR injury, and Pyr-PDS treatment could further upregulate the degree of autophagy which plays a protective part in the SCIR injury, while there is no significant difference after treatment with saline. In addition, SCIR injury inhibited expression of PHD2, which results to activate its downstream HIF-1α/BNIP3 pathway to promote autophagy. In the Pyr-PDS, the results revealed PHD2 was further inhibited compared to the SCIR group, which could further activate the HIF-1α/BNIP3 signaling pathway. Additionally, oxygen-glucose deprivation and reoxygenation were applied to SH-SY5Y cells to mimic anoxic conditions in vitro, and the expression of autophagy-related genes, PHD2, and its downstream HIF-1α/BNIP3 pathway showed the same trend as the results in vivo. Besides, IOX2, a specific inhibitor of PHD2 was also treated to SH-SY5Y cells during reoxygenation, in which the result is as same as the pyruvate group. Then, we observed the expression of autophagy-related genes and the HIF-1α signal pathway in the process of reoxygenation; the results showed that as the reoxygenation goes, the expression of the HIF-1α signal pathway and degree of autophagy came to decrease gradually, while treated with pyruvate could maintain autophagy high and stable through keeping PHD2 at a lower level during reoxygenation, and the latter was observed downregulated during reoxygenation process from 0 to 24 hours in a time-effect way. The above results indicated that direct peritoneal resuscitation with pyruvate showed effective protection to ischemia-reperfusion of the spinal cord through activating autophagy via acting on PHD2 and its downstream HIF-1α/BNIP3 pathway.
Collapse
|
21
|
Yin J, Yin Z, Wang B, Zhu C, Sun C, Liu X, Gong G. Angiopoietin-1 Protects Spinal Cord Ischemia and Reperfusion Injury by Inhibiting Autophagy in Rats. Neurochem Res 2019; 44:2746-2754. [PMID: 31630316 DOI: 10.1007/s11064-019-02893-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord ischemia and reperfusion (SCIR) injury can induce autophagy, which is involved in the survival of neurons. However, whether autophagy plays a neuroprotective or a detrimental role in SCIR injury remains controversial. Angiopoietin-1 (Ang-1), an endothelial growth factor, has been shown to have neuroprotective effects. The present study aimed to explore the neuroprotective mechanisms of Ang-1 in neuronal cells in a rat model of SCIR injury in vivo. Ang-1 protein and rapamycin were injected intrathecally. Basso Beattie Bresnahan (BBB) scoring and hematoxylin and eosin staining were used to assess the degree of SCIR injury. Proteins that reflected the level of autophagy expression, such as Beclin-1 and LC3, were evaluated by western blotting. The results indicated that SCIR injury resulted in loss in lower limb motor function. Ang-1 protein inhibited the expression of Beclin-1 and LC3, which improved the BBB score and alleviated spinal cord injury. In contrast, rapamycin, an autophagy activator, caused the opposite effect. This study provides evidence that Ang-1 plays a neuroprotective role by inhibiting of autophagy expression in SCIR injury. Overall, findings could be useful for the treatment of SCIR injury.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, 222000, People's Republic of China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Chao Sun
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China.
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, 211002, Nanjing, People's Republic of China.
| |
Collapse
|
22
|
Wang S, Smith GM, Selzer ME, Li S. Emerging molecular therapeutic targets for spinal cord injury. Expert Opin Ther Targets 2019; 23:787-803. [PMID: 31460807 DOI: 10.1080/14728222.2019.1661381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Spinal cord injury (SCI) is a complicated and devastating neurological disorder. Patients with SCI usually have dramatically reduced quality of life. In recent years, numerous studies have reported advances in understanding the pathophysiology of SCI and developing preclinical therapeutic strategies for SCI, including various molecular therapies, and yet there is still no cure. Areas covered: After SCI, tissue damage, responses and repair involve interactions among many cellular components, including neurons, axons, glia, leukocytes, and other cells. Accordingly, numerous cellular genes and molecules have become therapeutic targets for neural tissue repair, circuit reconstruction, and behavioral restoration. Here, we review the major recent advances in biological and molecular strategies to enhance neuroprotection, axon regeneration, remyelination, neuroplasticity and functional recovery in preclinical studies of SCI. Expert opinion: Researchers have made tremendous progress in identifying individual and combined molecular therapies in animal studies. It is very important to identify additional highly effective treatments for early neuroprotective intervention and for functionally meaningful axon regeneration and neuronal reconnections. Because multiple mechanisms contribute to the functional loss after SCI, combining the most promising approaches that target different pathophysiological and molecular mechanisms should exhibit synergistic actions for maximal functional restoration. [Databases searched: PubMed; inclusive dates: 6/27/2019].
Collapse
Affiliation(s)
- Shuo Wang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia , PA , USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Neuroscience, Temple University School of Medicine , Philadelphia , PA , USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Neurology, Temple University School of Medicine , Philadelphia , PA , USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia , PA , USA
| |
Collapse
|
23
|
MLN4924 Exerts a Neuroprotective Effect against Oxidative Stress via Sirt1 in Spinal Cord Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7283639. [PMID: 31178972 PMCID: PMC6501157 DOI: 10.1155/2019/7283639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress is a leading contributor to spinal cord ischemia-reperfusion (SCIR) injury. Recently, MLN4924, a potent and selective inhibitor of the NEDD8-activating enzyme, was shown to exert a neuroprotective effect against oxidative stress in vitro. However, it is unknown whether MLN4924 plays a protective role against SCIR injury. In the present study, we found that MLN4924 treatment significantly attenuated oxidative stress and neuronal cell death induced by H2O2 in SH-SY-5Y neural cells and during rat SCIR injury. Furthermore, MLN4924 administration restored neurological and motor functions in rats with SCIR injury. Mechanistically, we found that MLN4924 protects against H2O2- and SCIR injury-induced neurodegeneration by regulating sirtuin 1 (Sirt1) expression. Collectively, these findings demonstrate the neuroprotective role of MLN4924 against oxidative stress in SCIR injury via Sirt1.
Collapse
|
24
|
Wang J, Wu D, Wang H. Hydrogen sulfide plays an important protective role by influencing autophagy in diseases. Physiol Res 2019; 68:335-345. [PMID: 30904008 DOI: 10.33549/physiolres.933996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autophagy can regulate cell growth, proliferation, and stability of cell environment. Its dysfunction can be involved in a variety of diseases. Hydrogen sulfide (H(2)S) is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H(2)S plays an important protective role in many diseases through influencing autophagy, but its mechanism is not fully understood. This article reviewed the progress about the effect of H(2)S on autophagy in diseases in recent years in order to provide theoretical basis for the further research on the interaction of H(2)S and autophagy and the mechanisms involved.
Collapse
Affiliation(s)
- J Wang
- School of Basic Medical Science, Henan University, Kaifeng, Henan, China.
| | | | | |
Collapse
|
25
|
Yin J, Zhou Z, Chen J, Wang Q, Tang P, Ding Q, Yin G, Gu J, Fan J. Edaravone inhibits autophagy after neuronal oxygen-glucose deprivation/recovery injury. Int J Neurosci 2019; 129:501-510. [PMID: 30472906 DOI: 10.1080/00207454.2018.1550399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF THE STUDY Edaravone is an oxygen free radical scavenger that is widely used to treat ischemic injury to the nervous system. This study investigated the effect of edaravone pretreatment on neurons subjected to oxygen-glucose deprivation/recovery (OGD/R) injury. MATERIALS AND METHODS Common neurons were subjected to oxygen and glucose deprivation for 1 h, followed by oxygen and glucose recovery for 0.5, 2, 6 and 12 h to establish the OGD/R model. Autophagy was assessed by electron microscope observation of autophagosomes, cell immunofluorescence, mRFP-GFP-LC3 virus cell fluorescence and western blotting analyses of the autophagy-related proteins. The findings showed that at OGD/R 2 h autophagy was high. Next, neurons were pretreated with different concentrations of edaravone (0, 5, 10, 25, 50 and 100 μM) before establishing the OGD/R model. Western blotting was used to analyze the expression of autophagy-related proteins. The CCK-8 assay was used to analyze cell viability after pretreatment with different concentrations of edaravone. Optimal inhibition of autophagy was achieved with the concentration of edaravone 50 μM. Neurons pretreated with 50 μM edaravone and established OGD/R model were analyzed for autophagy levels. RESULTS At every OGD/R time point autophagy was lower in neurons pretreated with edaravone than in those not pretreated with the drug. The difference was statistically significant without OGD/R 12 h. CONCLUSIONS Pretreatment with edaravone may reduce the level of autophagy in neurons subjected to OGD/R injury.
Collapse
Affiliation(s)
- Jian Yin
- a Department of Orthopaedics , The Affiliated Jiangning Hospital with Nanjing Medical University , Nanjing , China
| | - Zheng Zhou
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Jian Chen
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Qian Wang
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Pengyu Tang
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Qirui Ding
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Guoyong Yin
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Jun Gu
- c Department of Orthopaedics , Wuxi Xishan People's Hospital , Wuxi , China
| | - Jin Fan
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| |
Collapse
|
26
|
Chen G, Liang Y, Chen F, Wang H, Zhu G. The effect of lithium chloride on the motor function of spinal cord injury–controlled rat and the relevant mechanism. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219852855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The objective of this study is to discuss the effect and mechanism of lithium chloride on the rehabilitation of locomotion post spinal cord injury (SCI) by observing the effect of lithium chloride on the expression of the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. In total, 36 Sprague-Dawley (SD) rats were randomly divided into the sham operation group (n = 12), model group (n = 12), and lithium chloride group (n = 12). The sham operation group underwent laminectomy, while for the model group and the lithium chloride group with the NYU spinal cord impactor the SCI model was established. Basso, Beattie, and Bresnahan (BBB) score was used to evaluate locomotion after administration for 1, 3, 5, and 7 days, and the tissues were gathered for Nissl staining, transmission electron microscopy, immunofluorescence, and Western blot. With a statistical difference ( P < 0.05) on the 3rd day and significant difference ( P < 0.01) on the 5th day post administration, a higher BBB score was observed in the lithium chloride group indicating that lithium chloride improved the locomotion function after SCI. A better structure and morphology of neuron were observed by Nissl staining in the lithium chloride group. Lithium chloride promoted BDNF secretion from neurons in the spinal cord anterior horn with a significant difference compared to the model group ( P < 0.01). Compared with the model group, lithium chloride significantly promoted the expression of BDNF protein and phosphorylated TrkB protein ( P < 0.05), but no difference in the expression of TrkB was detected. Lithium chloride can alleviate the locomotion function after SCI with a mechanism that it can promote BDNF secretion from neurons in the spinal cord anterior horn and phosphorylation of TrkB to upregulate the BDNF/TrkB pathway supporting survival of neurons and regeneration and remyelination of axons.
Collapse
Affiliation(s)
- Gang Chen
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Yimin Liang
- Department of Orthopedics, Taizhou First People’s Hospital, Taizhou, China
| | - Fanghu Chen
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Haifeng Wang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Guoming Zhu
- The Third Department of Orthopedics, Zhejiang University Mingzhou Hospital, Ningbo, China
| |
Collapse
|
27
|
Li Q, Gao S, Kang Z, Zhang M, Zhao X, Zhai Y, Huang J, Yang GY, Sun W, Wang J. Rapamycin Enhances Mitophagy and Attenuates Apoptosis After Spinal Ischemia-Reperfusion Injury. Front Neurosci 2018; 12:865. [PMID: 30559639 PMCID: PMC6286985 DOI: 10.3389/fnins.2018.00865] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
The spinal cord is extremely vulnerable to ischemia-reperfusion (I/R) injury, and the mitochondrion is the most crucial interventional target. Rapamycin can promote autophagy and exert neuroprotective effects in several diseases of the central nervous system. However, the impact of rapamycin via modulating mitophagy and apoptosis after spinal cord ischemia-reperfusion injury remains unclear. This study was undertaken to investigate the potential role of rapamycin in modulating mitophagy and mitochondria-dependent apoptosis using the spinal cord ischemia-reperfusion injury (SCIRI) mouse model. We found that rapamycin significantly (p < 0.05) enhanced mitophagy by increasing the translocation of p62 and Parkin to the damaged mitochondria in the mouse spinal cord injury model. At the same time, rapamycin significantly (p < 0.05) decreased mitochondrial apoptosis related protein (Apaf-1, Caspase-3, Caspase-9) expression by inhibiting Bax translocation to the mitochondria and the release of the cytochrome c from the mitochondria. After 24 h following SCIRI, rapamycin treatment reduced the TUNEL+ cells in the spinal cord ischemic tissue and improved the locomotor function in these mice. Our results therefore demonstrate that rapamycin can improve the locomotor function by promoting mitophagy and attenuating SCIRI -induced apoptosis, indicating its potential therapeutic application in a spinal cord injury.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shane Gao
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhanrong Kang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Meiyan Zhang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhao
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhai
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanju Sun
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine & Health Science, Shanghai, China
| |
Collapse
|
28
|
Inhibition of MicroRNA-204 Conducts Neuroprotection Against Spinal Cord Ischemia. Ann Thorac Surg 2018; 107:76-83. [PMID: 30278168 DOI: 10.1016/j.athoracsur.2018.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/19/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNA(miR)-204 is an autophagy- and apoptosis-related gene. Neuroprotection by the inhibition of miR-204 against spinal cord ischemia was evaluated, and the roles of neuronal autophagy and apoptosis were investigated. METHODS Spinal cord ischemia was conducted in rats by cross-clamping the descending aorta for 14 minutes. Inhibition of miR-204 was induced by intrathecal injection of lentivirus vectors containing antagomiR-204. Hind-limb motor function was assessed with the motor deficit index. Lumbar spinal cords were harvested for histologic examinations and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. Autophagy was evaluated by the LC3-II/LC3-I ratio and beclin-1 expression. Expressions of LC3-I, LC3-II, beclin-1, B-cell lymphoma-2 (BCL-2), caspase-3, and miR-204 were measured by Western blot and quantitative real-time polymerase chain reaction. Autophagy was blocked by 3-methyladenine. RESULTS Transient ischemia enhanced miR-204 expression and the LC3-II/LC3-I ratio and downregulated BCL-2 expression in spinal cords in a time-dependent manner. AntagomiR-204 significantly reduced expressions of miR-204 and caspase-3, dramatically upregulated expressions of beclin-1 and BCL-2 and the LC3-II/LC3-I ratio in spinal cords after reperfusion. Compared with controls, inhibition of miR-204 markedly decreased the motor deficit index scores at 6, 12, 24, and 48 hours after reperfusion; increased the number of viable motor neurons; and decreased the number of apoptotic neurons. 3-Methyladenine completely abolished enhancements of the LC3-II/LC3-I ratio and beclin-1 expression induced by antagomiR-204 and inhibited the protective effect on hind-limb motor function. CONCLUSIONS Inhibition of miR-204 exerts spinal cord protection against ischemia-reperfusion injury, possibly via promotion of autophagy and antiapoptotic effects.
Collapse
|
29
|
Lyu JJ, Mehta JL, Li Y, Ye L, Sun SN, Sun HS, Li JC, Zhang DM, Wei J. Mitochondrial Autophagy and NLRP3 Inflammasome in Pulmonary Tissues from Severe Combined Immunodeficient Mice after Cardiac Arrest and Cardiopulmonary Resuscitation. Chin Med J (Engl) 2018; 131:1174-1184. [PMID: 29722336 PMCID: PMC5956768 DOI: 10.4103/0366-6999.231519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The incidence of cancer, diabetes, and autoimmune diseases has been increasing. Furthermore, there are more and more patients with solid organ transplants. The survival rate of these immunocompromised individuals is extremely low when they are severely hit-on. In this study, we established cardiac arrest cardiopulmonary resuscitation (CPR) model in severe combined immunodeficient (SCID) mice, analyzed the expression and activation of mitochondrial autophagy and NLRP3 inflammasome/caspase-1, and explored mitochondrial repair and inflammatory injury in immunodeficiency individual during systemic ischemia-reperfusion injury. Methods: A potassium chloride-induced cardiac arrest model was established in C57BL/6 and nonobese diabetic/SCID (NOD/SCID) mice. One hundred male C57BL/6 mice and 100 male NOD/SCID mice were randomly divided into five groups (control, 2 h post-CPR, 12 h post-CPR, 24 h post-CPR, and 48 h post-CPR). A temporal dynamic view of alveolar epithelial cells, macrophages, and neutrophils from bronchoalveolar lavage fluid (BALF) was obtained using Giemsa staining. Spatial characterization of phenotypic analysis of macrophages in the lung interstitial tissue was analyzed by flow cytometry. The morphological changes of mitochondria 48 h after CPR were studied by transmission electron microscopy and quantified according to the Flameng grading system. Western blotting analysis was used to detect the expression and activation of the markers of mitochondrial autophagy, NLRP3 inflammasome, and caspase-1. Results: (1) In NOD/SCID mice, macrophages were disintegrated in BALF, and many alveolar epithelial cells were shed at 48 h after resuscitation. Compared with C57BL/6 mice, the ratio of macrophages/total cells peaked at 12 h and was significantly higher in NOD/SCID mice (31.17 ± 4.13 vs. 49.69 ± 2.43, t = 14.46, P = 0.001). After 24 h, the results showed a downward trend. Furthermore, a large number of macrophages were disintegrated in the BALF. (2) Mitochondrial autophagy was present in both C57BL/6 and NOD/SCID mice after CPR, but it began late in the NOD/SCID mice. Compared with C57BL/6 mice, phos-ULK1 (Ser327) expression was significantly lower at 2 h and 12 h after CPR (2 h after CPR: 1.88 ± 0.36 vs. 1.12 ± 0.11, t = −1.36, P < 0.01 and 12 h after CPR: 1.52 ± 0.16 vs. 1.05 ± 0.12, t = −0.33, P < 0.01), whereas phos-ULK1 (Ser757) expression was significantly higher at 2 h and 12 h after CPR in NOD/SCID mice (2 h after CPR: 1.28 ± 0.12 vs. 1.69 ± 0.14, t = 1.7, P < 0.01 and 12 h after CPR: 1.33 ± 0.10 vs. 1.94 ± 0.13, t = 2.75, P < 0.01). (3) Furthermore, NLRP3 inflammasome/caspase-1 activation in the pulmonary tissues occurred early and for only a short time in C57BL/6 mice, but this phenomenon was sustained in NOD/SCID mice. The expression of the NLRP3 inflammasome increased modestly in the C57 mice, but the increase was higher in the NOD/SCID mice than in the C57BL/6 mice, especially at 12, 24, 48 h after CPR (48 h after CPR: 1.46 ± 0.13 vs. 2.97 ± 0.19, t = 5.34, P = 0.001). The expression of caspase-1-20 generally followed the same pattern as the NLRP3 inflammasome. Conclusions: There is a regulatory relationship between the NLRP3 inflammasome and mitochondrial autophagy after CPR in the healthy mice. This regulatory relationship was disturbed in the NOD/SCID mice because the signals for mitochondrial autophagy occurred late, and NLRP3 inflammasome- and caspase-1-dependent cell injury was sustained.
Collapse
Affiliation(s)
- Jing-Jun Lyu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jawahar L Mehta
- Department of Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yi Li
- Department of Emergency, Peking Union Medical College Hospital, Beijing 100032, China
| | - Lu Ye
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sheng-Nan Sun
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hong-Shuang Sun
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jia-Chang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dong-Mei Zhang
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jie Wei
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
30
|
Chimeh U, Zimmerman MA, Gilyazova N, Li PA. B355252, A Novel Small Molecule, Confers Neuroprotection Against Cobalt Chloride Toxicity In Mouse Hippocampal Cells Through Altering Mitochondrial Dynamics And Limiting Autophagy Induction. Int J Med Sci 2018; 15:1384-1396. [PMID: 30275767 PMCID: PMC6158673 DOI: 10.7150/ijms.24702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022] Open
Abstract
Cerebral hypoxia as often occurs in cases of stroke, hemorrhage, or other traumatic brain injuries, is one of the leading causes of death worldwide and a main driver of disabilities in the elderly. Using a chemical mimetic of hypoxia, cobalt chloride (CoCl2), we tested the ability of a novel small molecule, 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide (B355252), to alleviate CoCl2-induced damage in mouse hippocampal HT22 cells. A dose-dependent decrease in cell viability was observed during CoCl2 treatment along with increases in mitochondrial membrane potential and generation of reactive oxygen species (ROS). B355252 conferred protection against these changes. We further found that mitochondrial dynamics, the balance between mitochondrial fusion and fission, were perturbed by CoCl2 treatment. Mitochondrial fusion, which was assessed by measuring the expression of proteins optic atrophy protein 1 (OPA1) and mitofusin 2 (Mfn2), declined due to CoCl2 exposure, but B355252 addition was able to elevate Mfn2 expression while OPA1 expression was unchanged. Mitochondrial fission, measured by phosphorylated dynamin-related protein 1 (p-DRP1) and fission protein 1 (FIS1) expression, also decreased following CoCl2 exposure, and was stabilized by B355252 addition. Finally, autophagy was assessed by measuring the conversion of cytosolic microtubule-associated protein 1A/1B-light chain three-I (LC3-I) to autophagosome-bound microtubule-associated protein 1A/1B-light chain three-II (LC3-II) and was found to be increased by CoCl2. B355252 addition significantly reduced autophagy induction. Taken together, our results indicate B355252 has therapeutic potential to reduce the damaging effects caused by CoCl2 and should be further evaluated for applications in cerebral ischemia therapy.
Collapse
Affiliation(s)
| | | | | | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC USA
| |
Collapse
|
31
|
Wang P, Xie ZD, Xie CN, Lin CW, Wang JL, Xuan LN, Zhang CW, Wang Y, Huang ZH, Teng HL. AMP-activated protein kinase-dependent induction of autophagy by erythropoietin protects against spinal cord injury in rats. CNS Neurosci Ther 2018; 24:1185-1195. [PMID: 29656591 DOI: 10.1111/cns.12856] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Autophagy has been regarded as a promising therapeutic target for spinal cord injury (SCI). Erythropoietin (EPO) has been demonstrated to exhibit neuroprotective effects in the central nervous system (CNS); however, the molecular mechanisms of its protection against SCI remain unknown. This study aims to investigate whether the neuroprotective effects of EPO on SCI are mediated by autophagy via AMP-activated protein kinase (AMPK) signaling pathways. METHODS Functional assessment and Nissl staining were used to investigate the effects of EPO on SCI. Expressions of proteins were detected by Western blot and immunohistochemistry. RESULTS Treatment with EPO significantly reduced the loss of motor neurons and improved the functional recovery following SCI. Erythropoietin significantly enhanced the SCI-induced autophagy through activating AMPK and inactivating mTOR signaling. The inhibitor of AMPK, compound C, could block the EPO-induced autophagy and beneficial action on SCI, whereas the activator of AMPK, metformin, could mimic the effects of EPO. In the in vitro studies, EPO enhanced the hypoxia-induced autophagy in an AMPK-dependent manner. CONCLUSIONS The AMPK-dependent induction of autophagy contributes to the neuroprotection of EPO on SCI.
Collapse
Affiliation(s)
- Peng Wang
- Department of Spine Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China.,Department of Emergency Medicine, Wenzhou Medical University Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, China
| | - Zhong-Dong Xie
- Department of Gastrointestinal Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Chang-Nan Xie
- Department of Spine Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China.,Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao-Wei Lin
- Department of Spine Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Ji-Li Wang
- Department of Pathology, Zhejiang University First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Li-Na Xuan
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chun-Wu Zhang
- Department of Spine Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Yu Wang
- Department of Spine Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Zhi-Hui Huang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Lin Teng
- Department of Spine Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
32
|
Cai W, Shen WD. Anti-Apoptotic Mechanisms of Acupuncture in Neurological Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:515-535. [PMID: 29595076 DOI: 10.1142/s0192415x1850026x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis, known as programmed cell death, plays a significant role in the pathogenesis of neurological diseases. Most of these diseases can be obviously alleviated by means of acupuncture treatment. Current research studies have shown that the efficacy of acupuncture to these medical conditions is closely associated with the anti-apoptotic potentials. Mainly based on the acupuncture's anti-apoptotic efficacy in prevalent neurological disorders, including cerebral ischemia-reperfusion injury, Alzheimer's disease, depression or stress related-modes, spinal cord injuries, etc., this review comes to a conclusion that the anti-apoptotic effect of acupuncture treatment for neurological diseases, evidently reflected through Bcl-2, Bax or caspase expression change, results from regulating mitochondrial or autophagic dysfunction as well as reducing oxidative stress and inflammation. The possible mechanisms of acupuncture's anti-apoptotic effect are associated with a series of downstream signaling pathways and the up-regulated expression of neurotrophic factors. It is of great importance to illuminate the exact mechanisms of acupuncture treatment for neurological dysfunctions.
Collapse
Affiliation(s)
- Wa Cai
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wei-Dong Shen
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
33
|
Zhang D, Wang F, Zhai X, Li XH, He XJ. Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy. Neural Regen Res 2018; 13:2191-2199. [PMID: 30323152 PMCID: PMC6199946 DOI: 10.4103/1673-5374.241473] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lithium promotes autophagy and has a neuroprotective effect on spinal cord injury (SCI); however, the underlying mechanisms remain unclear. Therefore, in this study, we investigated the effects of lithium and the autophagy inhibitor 3-methyladenine (3-MA) in a rat model of SCI. The rats were randomly assigned to the SCI, lithium, 3-MA and sham groups. In the 3-MA group, rats were intraperitoneally injected with 3-MA (3 mg/kg) 2 hours before SCI. In the lithium and 3-MA groups, rats were intraperitoneally injected with lithium (LiCl; 30 mg/kg) 6 hours after SCI and thereafter once daily until sacrifice. At 2, 3 and 4 weeks after SCI, neurological function and diffusion tensor imaging indicators were remarkably improved in the lithium group compared with the SCI and 3-MA groups. The Basso, Beattie and Bresnahan locomotor rating scale score and fractional anisotropy values were increased, and the apparent diffusion coefficient value was decreased. Immunohistochemical staining showed that immunoreactivities for Beclin-1 and light-chain 3B peaked 1 day after SCI in the lithium and SCI groups. Immunoreactivities for Beclin-1 and light-chain 3B were weaker in the 3-MA group than in the SCI group, indicating that 3-MA inhibits lithium-induced autophagy. Furthermore, NeuN+ neurons were more numerous in the lithium group than in the SCI and 3-MA groups, with the fewest in the latter. Our findings show that lithium reduces neuronal damage after acute SCI and promotes neurological recovery by inducing autophagy. The neuroprotective mechanism of action may not be entirely dependent on the enhancement of autophagy, and furthermore, 3-MA might not completely inhibit all autophagy pathways.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xu Zhai
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Hui Li
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xi-Jing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
34
|
Balsam LB. Spinal cord ischemia–reperfusion injury: MicroRNAs and mitophagy at a crossroads. J Thorac Cardiovasc Surg 2017; 154:1509-1510. [DOI: 10.1016/j.jtcvs.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022]
|
35
|
Li XQ, Chen FS, Tan WF, Fang B, Zhang ZL, Ma H. Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway. J Neuroinflammation 2017; 14:205. [PMID: 29061187 PMCID: PMC5654055 DOI: 10.1186/s12974-017-0977-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Background Ischemia-reperfusion (IR) affects microRNA (miR) expression and causes substantial inflammation. Multiple roles of the tumor suppressor miR-129-5p in cerebral IR have recently been reported, but its functions in the spinal cord are unclear. Here, we investigated the role of miR-129-5p after spinal cord IR, particularly in regulating high-mobility group box-1 (HMGB1) and the Toll-like receptor (TLR)-3 pathway. Methods Ischemia was induced via 5-min occlusion of the aortic arch. The relationship between miR-129-5p and HMGB1 was elucidated via RT-PCR, western blotting, and luciferase assays. The cellular distribution of HMGB1 was determined via double immunofluorescence. The effect of miR-129-5p on the expression of HMGB1, TLR3, and downstream cytokines was evaluated using synthetic miRs, rHMGB1, and the TLR3 agonist Poly(I:C). Blood-spinal cord barrier (BSCB) permeability was examined by measuring Evans blue (EB) dye extravasation and the water content. Results The temporal miR-129-5p and HMGB1 expression profiles and luciferase assay results indicated that miR-129-5p targeted HMGB1. Compared with the Sham group, the IR group had higher HMGB1 immunoreactivity, which was primarily distributed in neurons and microglia. Intrathecal injection of the miR-129-5p mimic significantly decreased the HMGB1, TLR3, interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels and the double-labeled cell count 48 h post-surgery, whereas rHMGB1 and Poly(I:C) reversed these effects. Injection of miR-129-5p mimic preserved motor function and prevented BSCB leakage based on increased Basso Mouse Scale scores and decreased EB extravasation and water content, whereas injection rHMGB1 and Poly(I:C) aggravated these injuries. Conclusions Increasing miR-129-5p levels protect against IR by ameliorating inflammation-induced neuronal and BCSB damage by inhibiting HMGB1 and TLR3-associated cytokines.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Wen-Fei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
36
|
Chen J, Wang Z, Mao Y, Zheng Z, Chen Y, Khor S, Shi K, He Z, Li J, Gong F, Liu Y, Hu A, Xiao J, Wang X. Liraglutide activates autophagy via GLP-1R to improve functional recovery after spinal cord injury. Oncotarget 2017; 8:85949-85968. [PMID: 29156769 PMCID: PMC5689659 DOI: 10.18632/oncotarget.20791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
Therapeutics used to treat central nervous system (CNS) injury are designed to promote axonal regeneration and inhibit cell death. Previous studies have shown that liraglutide exerts potent neuroprotective effects after brain injury. However, little is known if liraglutide treatment has neuroprotective effects after spinal cord injury (SCI). This study explores the neuroprotective effects of liraglutide and associated underlying mechanisms. Our results showed that liraglutide could improve recovery after injury by decreasing apoptosis as well as increasing microtubulin acetylation, and autophagy. Autophagy inhibition with 3-methyladenine (3-MA) partially reversed the preservation of spinal cord tissue and decreased microtubule acetylation and polymerization. Additionally, siRNA knockdown of GLP-1R suppressed autophagy and reversed mTOR inhibition induced by liraglutide in vitro, indicating that GLP-1R regulates autophagic flux. GLP-1R knockdown ameliorated the mTOR inhibition and autophagy induction seen with liraglutide treatment in PC12 cells under H2O2 stimulation. Taken together, our study demonstrated that liraglutide could reduce apoptosis, improve functional recovery, and increase microtubule acetylation via autophagy stimulation after SCI. GLP-1R was associated with both the induction of autophagy and suppression of apoptosis in neuronal cultures.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqin Mao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengming Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Kesi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zili He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aiping Hu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Hydrogen Sulfide Inhibits Autophagic Neuronal Cell Death by Reducing Oxidative Stress in Spinal Cord Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8640284. [PMID: 28685010 PMCID: PMC5480044 DOI: 10.1155/2017/8640284] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 11/25/2022]
Abstract
Autophagy is upregulated in spinal cord ischemia reperfusion (SCIR) injury; however, its expression mechanism is largely unknown; moreover, whether autophagy plays a neuroprotective or neurodegenerative role in SCIR injury remains controversial. To explore these issues, we created an SCIR injury rat model via aortic arch occlusion. Compared with normal controls, autophagic cell death was upregulated in neurons after SCIR injury. We found that autophagy promoted neuronal cell death during SCIR, shown by a significant number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling- (TUNEL-) positive cells colabeled with the autophagy marker microtubule-associated protein 1 light chain 3, while the autophagy inhibitor 3-methyladenine reduced the number of TUNEL-positive cells and restored neurological and motor function. Additionally, we showed that oxidative stress was the main trigger of autophagic neuronal cell death after SCIR injury and N-acetylcysteine inhibited autophagic cell death and restored neurological and motor function in SCIR injury. Finally, we found that hydrogen sulfide (H2S) inhibited autophagic cell death significantly by reducing oxidative stress in SCIR injury via the AKT-the mammalian target of rapamycin (mTOR) pathway. These findings reveal that oxidative stress induces autophagic cell death and that H2S plays a neuroprotective role by reducing oxidative stress in SCIR.
Collapse
|
38
|
Sun JF, Yang HL, Huang YH, Chen Q, Cao XB, Li DP, Shu HM, Jiang RY. CaSR and calpain contribute to the ischemia reperfusion injury of spinal cord. Neurosci Lett 2017; 646:49-55. [PMID: 28284837 DOI: 10.1016/j.neulet.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
Spinal cord ischemia reperfusion injury (SCIRI) can cause spinal cord dysfunction and even devastating paraplegia. Calcium-sensing receptor (CaSR) and calpain are two calcium related molecules which have been reported to be involved in the ischemia reperfusion injury of cardiomyocytes and the subsequent apoptosis. Here, we studied the expression of CaSR and calpain in spinal cord neurons and tissues, followed by the further investigation of the role of CaSR/calpain axis in the cellular apoptosis process during SCIRI. The results of in vitro and in vivo studies showed that the expression of CaSR and calpain in spinal cord neurons increased during SCIRI. Moreover, the CaSR agonist GdCl3 and antagonist NPS-2390 enhanced or decreased the expression of CaSR and calpain respectively. The expressions of CaSR and calpain were also consistent with the cellular apoptosis in spinal cord. Taken together, CaSR-calpain contributes to the SCIRI apoptosis, and CaSR antagonist might be a helpful drug for alleviating SCIRI.
Collapse
Affiliation(s)
- Ji-Fu Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Hui-Lin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu, China.
| | - Yong-Hui Huang
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Qian Chen
- Department of Histology and Embryology, Medical School of Jiangsu University, Jiangsu, China
| | - Xing-Bing Cao
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Da-Peng Li
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Hao-Ming Shu
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Run-Yu Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| |
Collapse
|
39
|
The Temporal Pattern, Flux, and Function of Autophagy in Spinal Cord Injury. Int J Mol Sci 2017; 18:ijms18020466. [PMID: 28230791 PMCID: PMC5343998 DOI: 10.3390/ijms18020466] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have indicated that autophagy plays a critical role in spinal cord injury (SCI), including traumatic spinal cord injury (TSCI) and ischemia-reperfusion spinal cord injury (IRSCI). However, while the understanding of mechanisms underlying autophagy in SCI has progressed, there remain several controversial points: (1) temporal pattern results of autophagic activation after SCI are not consistent across studies; (2) effect of accumulation of autophagosomes due to the blockade or enhancement of autophagic flux is uncertain; (3) overall effect of enhanced autophagy remains undefined, with both beneficial and detrimental outcomes reported in SCI literature. In this review, the temporal pattern of autophagic activation, autophagic flux, autophagic cell death, relationship between autophagy and apoptosis, and pharmacological intervention of autophagy in TSCI (contusion injury, compression injury and hemisection injury) and IRSCI are discussed. Types of SCI and severity appear to contribute to differences in outcomes regarding temporal pattern, flux, and function of autophagy. With future development of specific strategies on autophagy intervention, autophagy may play an important role in improving functional recovery in patients with SCI.
Collapse
|
40
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|