1
|
Ma L, Sun D, Wen S, Yuan J, Li J, Tan X, Cao S. PSD-95 Protein: A Promising Therapeutic Target in Chronic Pain. Mol Neurobiol 2025; 62:3361-3375. [PMID: 39285025 DOI: 10.1007/s12035-024-04485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 09/04/2024] [Indexed: 02/04/2025]
Abstract
Chronic pain, as a social public health problem, has a serious impact on the quality of patients' life. Currently, the main drugs used to treat chronic pain are opioids, antipyretic, and nonsteroidal anti-inflammatory drugs (NSAIDs). But the obvious side effects limit their use, so it is urgent to find new therapeutic targets. Postsynaptic density (PSD)-95 protein plays an important role in the occurrence and development of chronic pain. The over-expression of the PSD-95 protein and its interaction with other proteins are closely related to the chronic pain. Besides, the PSD-95-related drugs that inhibit the expression of PSD-95 as well as the interaction with other protein have been proved to treat chronic pain significantly. In conclusion, although more deep studies are needed in the future, these studies indicate that PSD-95 and the related proteins, such as NMDA receptor (NMDAR) subunit 2B (GluN2B), AMPA receptor (AMPAR), calmodulin-dependent protein kinase II (CaMKII), 5-hydroxytryptamine 2A receptor (5-HT2AR), and neuronal nitric oxide synthase (nNOS), are the promising therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dongdong Sun
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Song Wen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jing Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Song Cao
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
2
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of CB 1 cannabinoid receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. Neuropharmacology 2024; 257:110052. [PMID: 38936657 PMCID: PMC11261750 DOI: 10.1016/j.neuropharm.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The direct blockade of CB1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB1. We recently reported that GAT358, a CB1-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB1-allosteric mechanism of action. Whether a CB1-NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted opioid side-effects remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine in male rats. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar spinal cord. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors in male mice. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception and reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 also produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal cord. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB1-NAM.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emily Fender Sizemore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sarah Stockman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
4
|
Ghodrati S, Carey LM, France CP. Antinociceptive effects of fentanyl and nonopioid drugs in methocinnamox-treated rats. Drug Alcohol Depend 2024; 260:111320. [PMID: 38723374 PMCID: PMC11619060 DOI: 10.1016/j.drugalcdep.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND A single administration of the opioid receptor antagonist methocinnamox (MCAM) antagonizes the antinociceptive effects of µ-opioid receptor agonists for 2 weeks or longer. Such a long duration of antagonism could necessitate the use of nonopioid drugs for treating pain in patients receiving MCAM for opioid use disorder (OUD). METHODS The antinociceptive effects of fentanyl and nonopioid drugs were assessed in 24 male Sprague Dawley rats using a complete Freund's adjuvant (CFA) model of inflammatory pain. Twelve rats received 10mg/kg MCAM and 12 received vehicle; half (n=6) of the animals from each treatment group were treated (intraplantar) with CFA or saline. Hypersensitivity to mechanical stimulation was measured using a von Frey anesthesiometer. Fentanyl (0.01-0.1mg/kg), ketamine (17.8-56mg/kg), gabapentin (32-100mg/kg), meloxicam (3.2-10mg/kg), and ∆9-tetrahydrocannabinol (THC, 1-10mg/kg) were administered intraperitoneally and tested every 3 days in a pseudorandom order. Next, the same drugs were studied for effects on motor performance using a rotarod apparatus. RESULTS CFA-induced hypersensitivity was attenuated by fentanyl in vehicle- but not MCAM-treated rats. THC, ketamine, and gabapentin attenuated (up to 82, 66, and 46 %, respectively) CFA-evoked mechanical hypersensitivity in both MCAM- and vehicle-treated rats. Meloxicam failed to alter CFA-evoked mechanical hypersensitivity in either group. Fentanyl, THC, gabapentin, and meloxicam did not affect motor performance in either group whereas ketamine impaired motor performance in both groups (up to 71 % reduction in latency to fall). CONCLUSIONS These data suggest that ketamine, gabapentin, and THC could be effective for treating inflammatory pain under conditions of long term µ-opioid receptor antagonism.
Collapse
Affiliation(s)
- Saba Ghodrati
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA; Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Lawrence M Carey
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA; Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Charles P France
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA; Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
Carey LM, Ghodrati S, France CP. Discriminative stimulus properties of Cannabis sativa terpenes in rats. Behav Pharmacol 2024; 35:161-171. [PMID: 38660819 PMCID: PMC11095836 DOI: 10.1097/fbp.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ 9 -tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.
Collapse
Affiliation(s)
- Lawrence M. Carey
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Saba Ghodrati
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Charles P. France
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
6
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of cannabinoid CB 1 receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574477. [PMID: 38260598 PMCID: PMC10802405 DOI: 10.1101/2024.01.06.574477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The direct blockade of CB 1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB 1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB 1 . We recently reported that GAT358, a CB 1 -NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB 1 -allosteric mechanism of action. Whether a CB 1 -NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted side-effects of opioids remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar dorsal horn. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception. GAT358 also reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal dorsal horn. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing in mice. Our results support the therapeutic potential of CB 1 -NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB 1 -NAMs. Highlights CB 1 negative allosteric modulator (NAM) GAT358 attenuated morphine tolerance GAT358 reduced morphine-induced slowing of colonic motility but not fecal productionGAT358 was antinociceptive for formalin pain alone and when combined with morphineGAT358 reduced formalin-evoked Fos protein expression in the lumbar spinal cordGAT358 mitigated naloxone precipitated withdrawal after chronic morphine dosing.
Collapse
|
7
|
Huang P, Lin J, Shen H, Zhao X. PSD95 as a New Potential Therapeutic Target of Osteoarthritis: A Study of the Identification of Hub Genes through Self-Contrast Model. Int J Mol Sci 2023; 24:14682. [PMID: 37834131 PMCID: PMC10572132 DOI: 10.3390/ijms241914682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide joint disease. However, the precise mechanism causing OA remains unclear. Our primary aim was to identify vital biomarkers associated with the mechano-inflammatory aspect of OA, providing potential diagnostic and therapeutic targets for OA. Thirty OA patients who underwent total knee arthroplasty were recruited, and cartilage samples were obtained from both the lateral tibial plateau (LTP) and medial tibial plateau (MTP). GO and KEGG enrichment analyses were performed, and the protein-protein interaction (PPI) assessment was conducted for hub genes. The effect of PSD95 inhibition on cartilage degeneration was also conducted and analyzed. A total of 1247 upregulated and 244 downregulated DEGs were identified. Significant differences were observed between MTP and LTP in mechanical stress-related genes and activated sensory neurons based on a self-contrast model of human knee OA. Cluster analysis identified DLG4 as the hub gene. Cyclic loading stress increased PSD95 (encoded by DLG4) expression in LTP cartilage, and PSD95 inhibitors could alleviate OA progression. This study suggests that inhibiting PSD95 could be a potential therapeutic strategy for preventing articular cartilage degradation.
Collapse
Affiliation(s)
- Ping Huang
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| | - Jieming Lin
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Zhao
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| |
Collapse
|
8
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Chen ZJ, Su CW, Xiong S, Li T, Liang HY, Lin YH, Chang L, Wu HY, Li F, Zhu DY, Luo CX. Enhanced AMPAR-dependent synaptic transmission by S-nitrosylation in the vmPFC contributes to chronic inflammatory pain-induced persistent anxiety in mice. Acta Pharmacol Sin 2023; 44:954-968. [PMID: 36460834 PMCID: PMC10104852 DOI: 10.1038/s41401-022-01024-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.
Collapse
Affiliation(s)
- Zhi-Jin Chen
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Wan Su
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Shuai Xiong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Li
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Ying Liang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- The First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Carey LM, Xu Z, Rajic G, Makriyannis A, Romero J, Hillard C, Mackie K, Hohmann AG. Peripheral sensory neuron CB2 cannabinoid receptors are necessary for both CB2-mediated antinociceptive efficacy and sparing of morphine tolerance in a mouse model of anti-retroviral toxic neuropathy. Pharmacol Res 2023; 187:106560. [PMID: 36417942 PMCID: PMC9845180 DOI: 10.1016/j.phrs.2022.106560] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Painful peripheral neuropathy is a common neurological complication associated with human immunodeficiency virus (HIV) infection and anti-retroviral therapy. We characterized the impact of two CB2 cannabinoid agonists (AM1710 and LY2828360 - ligands differing in signaling bias and CNS penetration) on neuropathic nociception induced by the antiretroviral agent Zalcitabine (2',3'-dideoxycytidine; ddC). We also used a conditional knockout approach to identify cell types mediating CB2 agonist-induced antinociceptive efficacy and sparing of morphine tolerance. AM1710 and LY2828360 alleviated ddC-induced neuropathic nociception in mice of both sexes. These benefits were absent in global CB2 knockout mice, which exhibited robust morphine antinociception. Like morphine, AM1710 blunted ddC-induced increases in proinflammatory cytokine (IL-1β, TNF-α) and chemokine (CCL2) mRNA expression levels. We generated advillinCre/+;CB2f/f conditional knockout mice to ascertain the role of CB2 localized to primary sensory neurons in CB2-mediated therapeutic effects. Antinociceptive efficacy of both AM1710 and LY2828360, but not reference analgesics, were absent in advillinCre/+;CB2f/f mice, which exhibited robust ddC-induced neuropathy. In ddC-treated CB2f/f mice, LY2828360 suppressed development of morphine tolerance and reversed established morphine tolerance, albeit with greater efficacy in male compared to female mice. LY2828360 failed to block or reverse morphine tolerance in advillinCre/+;CB2f/f mice. The present studies indicate that CB2 activation may alleviate HIV-associated antiretroviral neuropathy and identify a previously unreported mechanism through which CB2 activation produces antinociceptive efficacy. Our results also provide the first evidence that a CB2 agonist can reverse established morphine tolerance and demonstrate that CB2 localized to peripheral sensory neurons mediates the opioid tolerance sparing efficacy of CB2 agonists.
Collapse
Affiliation(s)
- Lawrence M Carey
- Program in Neuroscience, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Zhili Xu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gabriela Rajic
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Cecilia Hillard
- Department of Pharmacology and Toxicology, Med. Col. of Wisconsin, Milwaukee, WI, USA
| | - Ken Mackie
- Program in Neuroscience, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
11
|
Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, Wang XL. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol 2022; 936:175351. [DOI: 10.1016/j.ejphar.2022.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|
12
|
Oliva I, Saberi SA, Rangel‐Barajas C, Iyer V, Bunner KD, Lai YY, Kulkarni PM, Garai S, Thakur GA, Crystal JD, Rebec GV, Hohmann AG. Inhibition of PSD95-nNOS protein-protein interactions decreases morphine reward and relapse vulnerability in rats. Addict Biol 2022; 27:e13220. [PMID: 36001441 PMCID: PMC9539577 DOI: 10.1111/adb.13220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
Abstract
Glutamate signalling through the N-methyl-d-aspartate receptor (NMDAR) activates the enzyme neuronal nitric oxide synthase (nNOS) to produce the signalling molecule nitric oxide (NO). We hypothesized that disruption of the protein-protein interaction between nNOS and the scaffolding protein postsynaptic density 95 kDa (PSD95) would block NMDAR-dependent NO signalling and represent a viable therapeutic route to decrease opioid reward and relapse-like behaviour without the unwanted side effects of NMDAR antagonists. We used a conditioned place preference (CPP) paradigm to evaluate the impact of two small-molecule PSD95-nNOS inhibitors, IC87201 and ZL006, on the rewarding effects of morphine. Both IC87201 and ZL006 blocked morphine-induced CPP at doses that lacked intrinsic rewarding or aversive properties. Furthermore, in vivo fast-scan cyclic voltammetry (FSCV) was used to ascertain the impact of ZL006 on morphine-induced increases in dopamine (DA) efflux in the nucleus accumbens shell (NAc shell) evoked by electrical stimulation of the medial forebrain bundle (MFB). ZL006 attenuated morphine-induced increases in DA efflux at a dose that did not have intrinsic effects on DA transmission. We also employed multiple intravenous drug self-administration approaches to examine the impact of ZL006 on the reinforcing effects of morphine. Interestingly, ZL006 did not alter acquisition or maintenance of morphine self-administration, but reduced lever pressing in a morphine relapse test after forced abstinence. Our results provide behavioural and neurochemical support for the hypothesis that inhibition of PSD95-nNOS protein-protein interactions decreases morphine reward and relapse-like behaviour, highlighting a previously unreported application for these novel therapeutics in the treatment of opioid addiction.
Collapse
Affiliation(s)
- Idaira Oliva
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | - Shahin A. Saberi
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | | | - Vishakh Iyer
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - Kendra D. Bunner
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - Yvonne Y. Lai
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | | | - Sumanta Garai
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMAUSA
| | - Ganesh A. Thakur
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMAUSA
| | - Jonathon D. Crystal
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - George V. Rebec
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - Andrea G. Hohmann
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA,Gill Center for Biomolecular ScienceIndiana UniversityBloomingtonINUSA
| |
Collapse
|
13
|
Postsynaptic signaling at glutamatergic synapses as therapeutic targets. Curr Opin Neurobiol 2022; 75:102585. [PMID: 35738196 DOI: 10.1016/j.conb.2022.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation of glutamatergic synapses plays an important role in the pathogenesis of neurological diseases. In addition to mediating excitatory synaptic transmission, postsynaptic glutamate receptors interact with various membrane and intracellular proteins. They form structural and/or signaling synaptic protein complexes and thereby play diverse postsynaptic functions. Recently, several postsynaptic protein complexes have been associated with various neurological diseases and hence, have been characterized as important therapeutic targets. Moreover, novel small molecules and therapeutic peptides targeting and modulating the activities of these protein complexes have been discovered, some of which have advanced through preclinical translational research and/or clinical studies. This article describes the recent investigation of eight key protein complexes associated with the postsynaptic ionotropic and metabotropic glutamate receptors as therapeutic targets for central nervous system diseases.
Collapse
|
14
|
Targeting PSD95/nNOS by ZL006 alleviates social isolation-induced heightened attack behavior in mice. Psychopharmacology (Berl) 2022; 239:267-276. [PMID: 34661719 PMCID: PMC8521491 DOI: 10.1007/s00213-021-06000-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE Deregulated attack behaviors have devastating social consequences; however, satisfactory clinical management for the behavior is still an unmet need so far. Social isolation (SI) has been common during the COVID-19 pandemic and may have detrimental effects on mental health, including eliciting heightened attack behavior. OBJECTIVES This study aims to explore whether injection of ZL006 can alleviate SI-induced escalation of attack behavior in mice. METHODS Pharmacological tools, biochemical methods, and behavioral tests were used to explore the potential therapeutic effects of ZL006 targeting postsynaptic density 95 (PSD95)/neuronal nitric oxide synthase (nNOS) pathway on escalation of attack behavior induced by SI in mice. RESULTS ZL006 mitigated SI-induced escalated attack behaviors and elevated nitric oxide (NO) level in the cortex of the SI mice. The beneficial effects of ZL006 lasted for at least 72 h after a single injection of ZL006. Potentiation of NO levels by L-arginine blocked the effects of ZL006. Moreover, a sub-effective dose of 7-NI in combination with a sub-effective dose of ZL006 decreased both SI-induced escalated attack behaviors and NO levels in mice subjected to SI. CONCLUSIONS Our study highlights the importance of the PSD95/nNOS pathway in mediating SI-induced escalation of attack behavior. ZL006 may be a promising therapeutic strategy for treating aggressive behaviors.
Collapse
|
15
|
Li YL, Chang XR, Ma JT, Zhao X, Yin LT, Yan LJ, Guo JH, Zhang C, Yang XR. Activation of peripheral group III metabotropic glutamate receptors suppressed formalin-induced nociception. Clin Exp Pharmacol Physiol 2021; 49:319-326. [PMID: 34657305 DOI: 10.1111/1440-1681.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
Intraplantar injection of formalin produces persistent spontaneous nociception and hyperalgesia. The underlying mechanism, however, remains unclear. The present study was, therefore, designed to determine the roles of peripheral group III metabotropic glutamate receptors (mGluRs) in formalin-evoked spontaneous nociception. Pre-treatment with intraplantar injections of L-serine-O-phosphate (L-SOP), a group III mGluRs agonist, significantly inhibited formalin-induced nociceptive behaviours and decreased Fos production in the spinal dorsal horn. The inhibitory effects of L-SOP were abolished completely by pre-treatment with the group III mGluR antagonist (RS)-a-methylserine-O-phosphate (M-SOP). These data suggest that the activation of group III mGluRs in the periphery may play a differential role in formalin-induced nociception. In addition, L-SOP decreased the formalin-induced upregulation of tumour necrosis factor-α (TNF-α) as well as interleukine-1β (IL-1β) expression in the spinal cord, suggesting that activation of peripheral group III mGluRs reduces formalin-induced nociception through inhibition of the pro-inflammatory cytokines in the spinal cord. Therefore, the agonists acting peripheral group III mGluRs possess therapeutic effectiveness in chronic pain.
Collapse
Affiliation(s)
- Yan-Li Li
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Xin-Rui Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Jin-Teng Ma
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Li-Tian Yin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jun-Hong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Ce Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| | - Xiao-Rong Yang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, The Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P.R.China
| |
Collapse
|
16
|
Sun Z, Meng P, Su C, Ji S, Gao Y, Wang H, Tian J, Li C. PCC-0105002, a novel small molecule inhibitor of PSD95-nNOS protein-protein interactions, attenuates neuropathic pain and corrects motor disorder associated with neuropathic pain model. Toxicol Appl Pharmacol 2021; 429:115698. [PMID: 34428447 DOI: 10.1016/j.taap.2021.115698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023]
Abstract
In view of postsynaptic density 95kDA (PSD95) tethers neuronal NO synthase (nNOS) to N-methyl-d-aspartate receptor (NMDAR), the PSD95-nNOS complex represents a therapeutic target of neuropathic pain. This study therefore sought to explore the ability of PCC-0105002, a novel PSD95-nNOS small molecule inhibitor, to alter pain sensitivity in rodent neuropathic pain models. Firstly, the IC50 of PCC-0105002 for PSD95 and NOS1 binding activity was determined using an Alpha Screen assay kit. Then, we examined the effects of PCC-0105002 in the mouse formalin test and in the rat spinal nerve ligation (SNL) model, and explored the ability of PCC-0105002 to mediate analgesia and to effect motor coordination in a rota-rod test. Moreover, the mechanisms whereby PCC-0105002 mediates analgesia was explored via western blotting, Golgi staining, and co-immunoprecipitation experiments in dorsal horn. The outcomes indicated that PCC-0105002 exhibited dose-dependent attenuation of phase II pain-associated behaviors in the formalin test. The result indicated that PCC-0105002 disrupted the PSD95-nNOS interaction with IC50 of 1.408 μM. In the SNL model, PCC-0105002 suppressed mechanical allodynia, thermal hyperalgesia, and abnormal dorsal horn wide dynamic range neuron discharge. PCC-0105002 mediated an analgesic effect comparable to that of MK-801, while it was better able to enhance motor coordination as compared with MK-801. Moreover, PCC-0105002 altered signaling downstream of NMDAR and thus functionally and structurally attenuating synaptic plasticity through respective regulation of the NR2B/GluR1/CaMKIIα and Rac1/RhoA pathways. These findings suggest that the novel PSD95-nNOS inhibitor PCC-0105002 is an effective agent for alleviating neuropathic pain, and that it produces fewer motor coordination-associated side effects than do NMDAR antagonists.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Ping Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Shengmin Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
17
|
Wei W, Liu W, Du S, Govindarajalu G, Irungu A, Bekker A, Tao YX. A Compound Mitigates Cancer Pain and Chemotherapy-Induced Neuropathic Pain by Dually Targeting nNOS-PSD-95 Interaction and GABA A Receptor. Neurotherapeutics 2021; 18:2436-2448. [PMID: 34796458 PMCID: PMC8804143 DOI: 10.1007/s13311-021-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
Metastatic bone pain and chemotherapy-induced peripheral neuropathic pain are the most common clinical symptoms in cancer patients. The current clinical management of these two disorders is ineffective and/or produces severe side effects. The present study employed a dual-target compound named as ZL006-05 and examined the effect of systemic administration of ZL006-05 on RM-1-induced bone cancer pain and paclitaxel-induced neuropathic pain. Intravenous injection of ZL006-05 dose-dependently alleviated RM-1-induced mechanical allodynia, heat hyperalgesia, cold hyperalgesia, and spontaneously ongoing nociceptive responses during both induction and maintenance periods, without analgesic tolerance, affecting basal/acute pain and locomotor function. Similar behavioral results were observed in paclitaxel-induced neuropathic pain. This injection also decreased neuronal and astrocyte hyperactivities in the lumbar dorsal horn after RM-1 tibial inoculation or paclitaxel intraperitoneal injection. Mechanistically, intravenous injection of ZL006-05 potentiated the GABAA receptor agonist-evoked currents in the neurons of the dorsal horn and anterior cingulate cortex and also blocked the paclitaxel-induced increase in postsynaptic density-95-neuronal nitric oxide synthase interaction in dorsal horn. Our findings strongly suggest that ZL006-05 may be a new candidate for the management of cancer pain and chemotherapy-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Weili Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Shibin Du
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Gokulapriya Govindarajalu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Antony Irungu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA.
- Department of Physiology, Rutgers New Jersey Medical School, The State University of New Jersey, Pharmacology & Neuroscience, Newark, NJ, 07103, USA.
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
18
|
Li AL, Crystal JD, Lai YY, Sajdyk TJ, Renbarger JL, Hohmann AG. An adolescent rat model of vincristine-induced peripheral neuropathy. NEUROBIOLOGY OF PAIN 2021; 10:100077. [PMID: 34841128 PMCID: PMC8605395 DOI: 10.1016/j.ynpai.2021.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Vincristine treatment in adolescent rat induces significant mechanical and cold allodynia and muscle weakness. Voluntary exercise prevents vincristine-induced peripheral neuropathy. Vincristine treatment during early adolescence produces more severe peripheral neuropathy than treatment during late adolescence. Peripheral neuropathy induced by vincristine during adolescence persists into early adulthood.
Childhood acute lymphoblastic leukemia (ALL) is a significant clinical problem that can be effectively treated with vincristine, a vinca alkaloid-based chemotherapeutic agent. However, nearly all children receiving vincristine treatment develop vincristine-induced peripheral neuropathy (VIPN). The impact of adolescent vincristine treatment across the lifespan remains poorly understood. We, consequently, developed an adolescent rodent model of VIPN which can be utilized to study possible long term consequences of vincristine treatment in the developing rat. We also evaluated the therapeutic efficacy of voluntary exercise and potential impact of obesity as a genetic risk factor in this model on the development and maintenance of VIPN. Out of all the dosing regimens we evaluated, the most potent VIPN was produced by fifteen consecutive daily intraperitoneal (i.p.) vincristine injections at 100 µg/kg/day, throughout the critical period of adolescence from postnatal day 35 to 49. With this treatment, vincristine-treated animals developed hypersensitivity to mechanical and cold stimulation of the plantar hind paw surface, which outlasted the period of vincristine treatment and resolved within two weeks following the cessation of vincristine injection. By contrast, impairment in grip strength gain was delayed by vincristine treatment, emerging shortly following the termination of vincristine dosing, and persisted into early adulthood without diminishing. Interestingly, voluntary wheel running exercise prevented the development of vincristine-induced hypersensitivities to mechanical and cold stimulation. However, Zucker fa/fa obese animals did not exhibit higher risk of developing VIPN compared to lean rats. Our studies identify sensory and motor impairments produced by vincristine in adolescent animals and support the therapeutic efficacy of voluntary exercise for suppressing VIPN in developing rats.
Collapse
Affiliation(s)
- Ai-Ling Li
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonathon D. Crystal
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Yvonne Y. Lai
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Tammy J. Sajdyk
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jamie L. Renbarger
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Andrea G. Hohmann
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Corresponding author at: Department of Psychological and Brain Sciences, Indiana University, 1101 E 10 Street, Bloomington, IN 47405-7007, USA.
| |
Collapse
|
19
|
Li J, Zhang L, Xu C, Shen YY, Lin YH, Zhang Y, Wu HY, Chang L, Zhang YD, Chen R, Zhang ZP, Luo CX, Li F, Zhu DY. A pain killer without analgesic tolerance designed by co-targeting PSD-95-nNOS interaction and α2-containning GABA ARs. Am J Cancer Res 2021; 11:5970-5985. [PMID: 33897893 PMCID: PMC8058733 DOI: 10.7150/thno.58364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/07/2021] [Indexed: 01/22/2023] Open
Abstract
Overactivation of N-methyl-D-aspartate receptor (NMDAR) in the spinal cord dorsal horn (SDH) in the setting of injury represents a key mechanism of neuropathic pain. However, directly blocking NMDAR or its downstream signaling, interaction between postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS), causes analgesic tolerance, mainly due to GABAergic disinhibition. The aim of this study is to explore the possibility of preventing analgesic tolerance through co-targeting NMDAR downstream signaling and γ-aminobutyric acid type A receptors (GABAARs). Methods: Mechanical/thermal hyperalgesia were quantified to assess analgesic effects. Miniature postsynaptic currents were tested by patch-clamp recording to evaluate synaptic transmission in the SDH. GABA-evoked currents were tested on HEK293 cells expressing different subtypes of recombinant GABAARs to assess the selectivity of (+)-borneol and ZL006-05. The expression of α2 and α3 subunits of GABAARs and BDNF, and nNOS-PSD-95 complex levels were analyzed by western blotting and coimmunoprecipitation respectively. Open field test, rotarod test and Morris water maze task were conducted to evaluate the side-effect of ZL006-05. Results: (+)-Borneol selectively potentiated α2- and α3-containing GABAARs and prevented the disinhibition of laminae I excitatory neurons in the SDH and analgesic tolerance caused by chronic use of ZL006, a nNOS-PSD-95 blocker. A dual-target compound ZL006-05 produced by linking ZL006 and (+)-borneol through an ester bond blocked nNOS-PSD-95 interaction and potentiated α2-containing GABAAR selectively. Chronic use of ZL006-05 did not produce analgesic tolerance and unwanted side effects. Conclusion: By targeting nNOS-PSD-95 interaction and α2-containing GABAAR simultaneously, chronic use of ZL006-05 can avoid analgesic tolerance and unwanted side effects. Therefore, we offer a novel candidate drug without analgesic tolerance for treating neuropathic pain.
Collapse
|
20
|
Alkislar I, Miller AR, Hohmann AG, Sadaka AH, Cai X, Kulkarni P, Ferris CF. Inhaled Cannabis Suppresses Chemotherapy-Induced Neuropathic Nociception by Decoupling the Raphe Nucleus: A Functional Imaging Study in Rats. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:479-489. [PMID: 33622657 DOI: 10.1016/j.bpsc.2020.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Efficacy of inhaled cannabis for treating pain is controversial. Effective treatment for chemotherapy-induced neuropathy represents an unmet medical need. We hypothesized that cannabis reduces neuropathic pain by reducing functional coupling in the raphe nuclei. METHODS We assessed the impact of inhalation of vaporized cannabis plant (containing 10.3% Δ9-tetrahydrocannabinol/0.05% cannabidiol) or placebo cannabis on brain resting-state blood oxygen level-dependent functional connectivity and pain behavior induced by paclitaxel in rats. Rats received paclitaxel to produce chemotherapy-induced peripheral neuropathy or its vehicle. Behavioral and imaging experiments were performed after neuropathy was established and stable. Images were registered to, and analyzed using, a 3D magnetic resonance imaging rat atlas providing site-specific data on more than 168 different brain areas. RESULTS Prior to vaporization, paclitaxel produced cold allodynia. Inhaled vaporized cannabis increased cold withdrawal latencies relative to prevaporization or placebo cannabis, consistent with Δ9-tetrahydrocannabinol-induced antinociception. In paclitaxel-treated rats, the midbrain serotonergic system, comprising the dorsal and median raphe, showed hyperconnectivity to cortical, brainstem, and hippocampal areas, consistent with nociceptive processing. Inhalation of vaporized cannabis uncoupled paclitaxel-induced hyperconnectivity patterns. No such changes in connectivity or cold responsiveness were observed following placebo cannabis vaporization. CONCLUSIONS Inhaled vaporized cannabis plant uncoupled brain resting-state connectivity in the raphe nuclei, normalizing paclitaxel-induced hyperconnectivity to levels observed in vehicle-treated rats. Inhaled vaporized cannabis produced antinociception in both paclitaxel- and vehicle-treated rats. Our study elucidates neural circuitry implicated in the therapeutic effects of Δ9-tetrahydrocannabinol and supports a role for functional imaging studies in animals in guiding indications for future clinical trials.
Collapse
Affiliation(s)
- Ilayda Alkislar
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Alison R Miller
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana
| | - Aymen H Sadaka
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Xuezhu Cai
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts; Department of Psychology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
21
|
Gu Y, Zhu D. nNOS-mediated protein-protein interactions: promising targets for treating neurological and neuropsychiatric disorders. J Biomed Res 2020; 35:1-10. [PMID: 33402546 PMCID: PMC7874267 DOI: 10.7555/jbr.34.20200108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurological and neuropsychiatric disorders are one of the leading causes of disability worldwide and affect the health of billions of people. Nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS) in the brain. Inhibiting nNOS benefits a variety of neurological and neuropsychiatric disorders, including stroke, depression and anxiety disorders, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, chronic pain, and drug addiction. Due to critical roles of nNOS in learning and memory and synaptic plasticity, direct inhibition of nNOS may cause severe side effects. Importantly, interactions of several proteins, including post-synaptic density 95 (PSD-95), carboxy-terminal PDZ ligand of nNOS (CAPON) and serotonin transporter (SERT), with the PSD/Disc-large/ZO-1 homologous (PDZ) domain of nNOS have been demonstrated to influence the subcellular distribution and activity of the enzyme in the brain. Therefore, it will be a preferable means to interfere with nNOS-mediated protein-protein interactions (PPIs), which do not lead to undesirable effects. Herein, we summarize the current literatures on nNOS-mediated PPIs involved in neurological and neuropsychiatric disorders, and the discovery of drugs targeting the PPIs, which is expected to provide potential targets for developing novel drugs and new strategy for the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Institution of Stem Cell and Neuroregeneration, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
22
|
Li C, Su C, Wang Z, Han R, Wang Y, Wang H, Tian J, Gao Y. WITHDRAWN: PCC-0105002, a novel small molecule inhibitor of PSD95-nNOS protein-protein interactions, attenuates neuropathic pain and corrects motor coordination-associated side effects in neuropathic pain model. Toxicol Appl Pharmacol 2020:115208. [PMID: 32828906 DOI: 10.1016/j.taap.2020.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhezhe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Rui Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai 264005, China.
| |
Collapse
|
23
|
Li J, Zhang L, Xu C, Lin YH, Zhang Y, Wu HY, Chang L, Zhang YD, Luo CX, Li F, Zhu DY. Prolonged Use of NMDAR Antagonist Develops Analgesic Tolerance in Neuropathic Pain via Nitric Oxide Reduction-Induced GABAergic Disinhibition. Neurotherapeutics 2020; 17:1016-1030. [PMID: 32632774 PMCID: PMC7609518 DOI: 10.1007/s13311-020-00883-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Neuropathic pain is usually persistent due to maladaptive neuroplasticity-induced central sensitization and, therefore, necessitates long-term treatment. N-methyl-D-aspartate receptor (NMDAR)-mediated hypersensitivity in the spinal dorsal horn represents key mechanisms of central sensitization. Short-term use of NMDAR antagonists produces antinociceptive efficacy in animal pain models and in clinical practice by reducing central sensitization. However, how prolonged use of NMDAR antagonists affects central sensitization remains unknown. Surprisingly, we find that prolonged blockage of NMDARs does not prevent but aggravate nerve injury-induced central sensitization and produce analgesic tolerance, mainly due to reduced synaptic inhibition. The disinhibition that results from the continuous decrease in the production of nitric oxide from neuronal nitric oxide synthase, downstream signal of NMDARs, leads to the reduction of GABAergic inhibitory synaptic transmission by upregulating brain-derived neurotrophic factor expression and inhibiting the expression and function of potassium-chloride cotransporter. Together, our findings suggest that chronic blockage of NMDARs develops analgesic tolerance through the neuronal nitric oxide synthase-brain-derived neurotrophic factor-potassium-chloride cotransporter pathway. Thus, preventing the GABAergic disinhibition induced by nitric oxide reduction may be necessary for the long-term maintenance of the analgesic effect of NMDAR antagonists.
Collapse
Affiliation(s)
- Jun Li
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lin Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chu Xu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510000, China.
| |
Collapse
|
24
|
Shank3 contributes to neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95. Neurosci Res 2020; 166:34-41. [PMID: 32454040 DOI: 10.1016/j.neures.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023]
Abstract
Neuropathic pain is a very complex chronic pain state, the detailed molecular mechanisms of which remain unclear. In the present study, Shank3 was found to play an important role in neuropathic pain in rats following spared nerve injury (SNI). Shank3 was upregulated in the spinal dorsal horn of rats subjected to SNI, and mechanical hypersensitivity to noxious stimuli in these rats could be alleviated by knock down of Shank3. Shank3 also interacted with hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and promoted the expression of HCN2 in central neurons of the spinal dorsal. Together with the SNI-dependent increase of HCN2, we also found that the postsynaptic protein of excitatory synapse (PSD95) was increased in rats following SNI. Taken together, our results showed that Shank3 modulated neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95 in spinal dorsal horn neurons. Our findings revealed new synaptic remodeling mechanisms linking Shank3 with neuropathic pain.
Collapse
|
25
|
Janezic EM, Harris DA, Dinh D, Lee KS, Stewart A, Hinds TR, Hsu PL, Zheng N, Hague C. Scribble co-operatively binds multiple α 1D-adrenergic receptor C-terminal PDZ ligands. Sci Rep 2019; 9:14073. [PMID: 31575922 PMCID: PMC6773690 DOI: 10.1038/s41598-019-50671-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023] Open
Abstract
Many G protein-coupled receptors (GPCRs) are organized as dynamic macromolecular complexes in human cells. Unraveling the structural determinants of unique GPCR complexes may identify unique protein:protein interfaces to be exploited for drug development. We previously reported α1D-adrenergic receptors (α1D-ARs) – key regulators of cardiovascular and central nervous system function – form homodimeric, modular PDZ protein complexes with cell-type specificity. Towards mapping α1D-AR complex architecture, biolayer interferometry (BLI) revealed the α1D-AR C-terminal PDZ ligand selectively binds the PDZ protein scribble (SCRIB) with >8x higher affinity than known interactors syntrophin, CASK and DLG1. Complementary in situ and in vitro assays revealed SCRIB PDZ domains 1 and 4 to be high affinity α1D-AR PDZ ligand interaction sites. SNAP-GST pull-down assays demonstrate SCRIB binds multiple α1D-AR PDZ ligands via a co-operative mechanism. Structure-function analyses pinpoint R1110PDZ4 as a unique, critical residue dictating SCRIB:α1D-AR binding specificity. The crystal structure of SCRIB PDZ4 R1110G predicts spatial shifts in the SCRIB PDZ4 carboxylate binding loop dictate α1D-AR binding specificity. Thus, the findings herein identify SCRIB PDZ domains 1 and 4 as high affinity α1D-AR interaction sites, and potential drug targets to treat diseases associated with aberrant α1D-AR signaling.
Collapse
Affiliation(s)
- Eric M Janezic
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dorathy-Ann Harris
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Diana Dinh
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Aaron Stewart
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Peter L Hsu
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chris Hague
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
26
|
Colciaghi F, Nobili P, Cipelletti B, Cagnoli C, Zambon S, Locatelli D, de Curtis M, Battaglia GS. Targeting PSD95-nNOS interaction by Tat-N-dimer peptide during status epilepticus is neuroprotective in MAM-pilocarpine rat model. Neuropharmacology 2019; 153:82-97. [DOI: 10.1016/j.neuropharm.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
27
|
Abstract
Elevated N-methyl-D-aspartate receptor (NMDAR) activity is linked to central sensitization and chronic pain. However, NMDAR antagonists display limited therapeutic potential because of their adverse side effects. Novel approaches targeting the NR2B-PSD95-nNOS complex to disrupt signaling pathways downstream of NMDARs show efficacy in preclinical pain models. Here, we evaluated the involvement of interactions between neuronal nitric oxide synthase (nNOS) and the nitric oxide synthase 1 adaptor protein (NOS1AP) in pronociceptive signaling and neuropathic pain. TAT-GESV, a peptide inhibitor of the nNOS-NOS1AP complex, disrupted the in vitro binding between nNOS and its downstream protein partner NOS1AP but not its upstream protein partner postsynaptic density 95 kDa (PSD95). Putative inactive peptides (TAT-cp4GESV and TAT-GESVΔ1) failed to do so. Only the active peptide protected primary cortical neurons from glutamate/glycine-induced excitotoxicity. TAT-GESV, administered intrathecally (i.t.), suppressed mechanical and cold allodynia induced by either the chemotherapeutic agent paclitaxel or a traumatic nerve injury induced by partial sciatic nerve ligation. TAT-GESV also blocked the paclitaxel-induced phosphorylation at Ser15 of p53, a substrate of p38 MAPK. Finally, TAT-GESV (i.t.) did not induce NMDAR-mediated motor ataxia in the rotarod test and did not alter basal nociceptive thresholds in the radiant heat tail-flick test. These observations support the hypothesis that antiallodynic efficacy of an nNOS-NOS1AP disruptor may result, at least in part, from blockade of p38 MAPK-mediated downstream effects. Our studies demonstrate, for the first time, that disrupting nNOS-NOS1AP protein-protein interactions attenuates mechanistically distinct forms of neuropathic pain without unwanted motor ataxic effects of NMDAR antagonists.
Collapse
|
28
|
Alterations in brain neurocircuitry following treatment with the chemotherapeutic agent paclitaxel in rats. NEUROBIOLOGY OF PAIN 2019; 6:100034. [PMID: 31223138 PMCID: PMC6565758 DOI: 10.1016/j.ynpai.2019.100034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022]
Abstract
Imaging the reorganization of pain neural circuitry within 8 days of chemotherapy. Using rat model of neuropathy with multimodal MRI. Showing loss of anticorrelation between prefrontal cortex and PAG. Identifying the interaction between periaqueductal gray and brainstem raphe.
Human and animal studies suggest that both traumatic nerve injury and toxic challenge with chemotherapeutic agents involves the reorganization of neural circuits in the brain. However, there have been no prospective studies, human or animal, using magnetic resonance imaging (MRI) to identify changes in brain neural circuitry that accompany the development of chemotherapy-induced neuropathic pain (i.e. within days following cessation of chemotherapy treatment and without the confound cancer). To this end, different MRI protocols were used to ascertain whether a reorganization of brain neural circuits is observed in otherwise normal rats exposed to the taxane chemotherapeutic agent paclitaxel. We conducted an imaging study to evaluate the impact of a well-established paclitaxel dosing regimen, validated to induce allodynia in control rats within eight days of treatment, on brain neural circuitry. Rats received either paclitaxel (2 mg/kg/day i.p; cumulative dose of 8 mg/kg) or its vehicle four times on alternate days (i.e. day 0, 2, 4, 6). Following the cessation of treatments (i.e. on day 8), all rats were tested for responsiveness to cold followed by diffusion weighted magnetic resonance imaging and assessment of resting state functional connectivity. Imaging data were analyzed using a 3D MRI rat with 173 segmented and annotated brain areas. Paclitaxel-treated rats were more sensitive to a cold stimulus compared to controls. Diffusion weighted imaging identified brain areas involved in the emotional and motivational response to chronic pain that were impacted by paclitaxel treatment. Affected brain regions included the prefrontal cortex, amygdala, hippocampus, hypothalamus and the striatum/nucleus accumbens. This putative reorganization of gray matter microarchitecture formed a continuum of brain areas stretching from the basal medial/lateral forebrain to the midbrain. Resting state functional connectivity showed reorganization between the periaqueductal gray, a key node in nociceptive neural circuitry, and connections to the brainstem. Our results, employing different imaging modalities to assess the central nervous system effects of chemotherapy, fit the theory that chronic pain is regulated by emotion and motivation and influences activity in the periaqueductal gray and brainstem to modulate pain perception.
Collapse
|
29
|
Choi SR, Han HJ, Beitz AJ, Lee JH. nNOS-PSD95 interactions activate the PKC-ε isoform leading to increased GluN1 phosphorylation and the development of neuropathic mechanical allodynia in mice. Neurosci Lett 2019; 703:156-161. [PMID: 30926374 DOI: 10.1016/j.neulet.2019.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
Abstract
It has been suggested that interactions of neuronal nitric oxide synthase (nNOS) with postsynaptic density 95 (PSD95) play important roles in the development of chronic neuropathic pain. Here we examine the possible role of nNOS-PSD95 interactions in central sensitization as represented by phosphorylation of the NMDA receptor GluN1 subunit (pGluN1) in mice with chronic constriction injury (CCI) of the sciatic nerve. Intrathecal administration of the nNOS-PSD95 interactions inhibitor, IC87201 on post-operative days 0-3 significantly reduced the CCI-induced increase in total NO levels in the lumbar spinal cord dorsal horn. IC87201 administration on post-operative days 0-3 also attenuated the CCI-induced development of mechanical allodynia (MA) and PKC-dependent (Ser896) pGluN1. Sciatic nerve injury elicited a significant translocation of the PKC-ε isoform from the cytosol to the membrane fraction in the lumbar spinal cord dorsal horn on day 3 post-CCI surgery. Administration of IC87201 significantly inhibited this translocation of PKC-ε, while the expression of PKC-α and -ξ in the cytosol and membrane fractions was unaffected by sciatic nerve injury or injection of IC87201. Furthermore, administration of the PKC-ε inhibitor, εV1-2 on post-operative days 0-3 attenuated the CCI-induced development of MA and pGluN1. Collectively these results demonstrate that spinal nNOS-PSD95 interactions play an important role in PKC-dependent GluN1 phosphorylation via activation of the PKC-ε isoform, and ultimately contributes to the development of MA in peripheral neuropathy.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, 55108, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
30
|
Cai W, Wu S, Pan Z, Xiao J, Li F, Cao J, Zang W, Tao YX. Disrupting interaction of PSD-95 with nNOS attenuates hemorrhage-induced thalamic pain. Neuropharmacology 2018; 141:238-248. [PMID: 30193808 DOI: 10.1016/j.neuropharm.2018.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
Hemorrhages occurring within the thalamus lead to a pain syndrome. Clinical treatment of thalamic pain is ineffective, at least in part, due to the elusive mechanisms that underlie the induction and maintenance of thalamic pain. The present study investigated the possible contribution of a protein-protein interaction between postsynaptic density protein 95 (PSD-95) and neuronal nitric oxide synthase (nNOS) to thalamic pain in mice. Thalamic hemorrhage was induced by microinjection of type IV collagenase into unilateral ventral posterior medial/lateral nuclei of the thalamus. Pain hypersensitivities, including mechanical allodynia, heat hyperalgesia, and cold allodynia, appeared at day 1 post-microinjection, reached a peak 5-7 days post-microinjection, and persisted for at least 28 days post-microinjection on the contralateral side. Systemic pre-treatment (but not post-treatment) of ZL006, a small molecule that disrupts PSD-95-nNOS interaction, alleviated these pain hypersensitivities. This effect is dose-dependent. Mechanistically, ZL006 blocked the hemorrhage-induced increase of binding of PSD-95 with nNOS and membrane translocation of nNOS in thalamic neurons. Our findings suggest that the protein-protein interaction between PSD-95 and nNOS in the thalamus plays a significant role in the induction of thalamic pain. This interaction may be a promising therapeutic target in the clinical management of hemorrhage-induced thalamic pain.
Collapse
Affiliation(s)
- Weihua Cai
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 45001, Henan, China; Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA
| | - Zhiqiang Pan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA
| | - Jifang Xiao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 45001, Henan, China; Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 45001, Henan, China; Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA.
| |
Collapse
|
31
|
Lee WH, Carey LM, Li LL, Xu Z, Lai YY, Courtney MJ, Hohmann AG. ZLc002, a putative small-molecule inhibitor of nNOS interaction with NOS1AP, suppresses inflammatory nociception and chemotherapy-induced neuropathic pain and synergizes with paclitaxel to reduce tumor cell viability. Mol Pain 2018; 14:1744806918801224. [PMID: 30157705 PMCID: PMC6144507 DOI: 10.1177/1744806918801224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/16/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023] Open
Abstract
Elevated N-methyl-D-aspartate receptor activity contributes to central sensitization. Our laboratories and others recently reported that disrupting protein-protein interactions downstream of N-methyl-D-aspartate receptors suppresses pain. Specifically, disrupting binding between the enzyme neuronal nitric oxide synthase and either its upstream (postsynaptic density 95 kDa, PSD95) or downstream (e.g. nitric oxide synthase 1 adaptor protein, NOS1AP) protein partners suppressed inflammatory and/or neuropathic pain. However, the lack of a small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor has hindered efforts to validate the therapeutic utility of disrupting the neuronal nitric oxide synthase-NOS1AP interface as an analgesic strategy. We, therefore, evaluated the ability of a putative small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor ZLc002 to disrupt binding between neuronal nitric oxide synthase and NOS1AP using ex vivo, in vitro, and purified recombinant systems and asked whether ZLc002 would suppress inflammatory and neuropathic pain in vivo. In vitro, ZLc002 reduced co-immunoprecipitation of full-length NOS1AP and neuronal nitric oxide synthase in cultured neurons and in HEK293T cells co-expressing full-length neuronal nitric oxide synthase and NOS1AP. However, using a cell-free biochemical binding assay, ZLc002 failed to disrupt the in vitro binding between His-neuronal nitric oxide synthase1-299 and glutathione S-transferase-NOS1AP400-506, protein sequences containing the required binding domains for this protein-protein interaction, suggesting an indirect mode of action in intact cells. ZLc002 (4-10 mg/kg i.p.) suppressed formalin-evoked inflammatory pain in rats and reduced Fos protein-like immunoreactivity in the lumbar spinal dorsal horn. ZLc002 also suppressed mechanical and cold allodynia in a mouse model of paclitaxel-induced neuropathic pain. Anti-allodynic efficacy was sustained for at least four days of once daily repeated dosing. ZLc002 also synergized with paclitaxel when administered in combination to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability but did not alter tumor cell viability without paclitaxel. Our results verify that ZLc002 disrupts neuronal nitric oxide synthase-NOS1AP interaction in intact cells and demonstrate, for the first time, that systemic administration of a putative small-molecule inhibitor of neuronal nitric oxide synthase-NOS1AP suppresses inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Wan-Hung Lee
- Biochemistry Interdisciplinary Graduate Program, Molecular and
Cellular Biochemistry Department,
Indiana
University, Bloomington, IN, USA
| | - Lawrence M Carey
- Program in Neuroscience,
Indiana
University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
| | - Li-Li Li
- Neuronal Signalling Lab, Turku Centre for Biotechnology,
University of Turku; Åbo Academy University, Turku, Finland
- Turku Centre for Biotechnology and Institute of Biomedicine,
Screening Unit, University of Turku, Turku, Finland
| | - Zhili Xu
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
| | - Yvonne Y Lai
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
- Anagin, Inc., Indianapolis, IN, USA
| | - Michael J Courtney
- Neuronal Signalling Lab, Turku Centre for Biotechnology,
University of Turku; Åbo Academy University, Turku, Finland
- Turku Centre for Biotechnology and Institute of Biomedicine,
Screening Unit, University of Turku, Turku, Finland
- Turku Brain and Mind Center, Turku, Finland
| | - Andrea G Hohmann
- Biochemistry Interdisciplinary Graduate Program, Molecular and
Cellular Biochemistry Department,
Indiana
University, Bloomington, IN, USA
- Program in Neuroscience,
Indiana
University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Bloomington, IN, USA
| |
Collapse
|