1
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04468-y. [PMID: 39254911 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
3
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
4
|
Moreira Vasconcelos CF, Neugebauer AZ, Basto Souza R. Exploring promising minor natural phenolic compounds in neuroprotection-related preclinical models. Basic Clin Pharmacol Toxicol 2024; 134:770-777. [PMID: 38566316 DOI: 10.1111/bcpt.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are characterised by the progressive loss of specific neuronal cell populations due to multifactorial factors, including neurochemical and immunological disturbances. Consequently, patients can develop cognitive, motor and behavioural dysfunctions, which lead to impairments in their quality of life. Over the years, studies have reported on the neuroprotective properties inherent in phenolic compounds. Therefore, this review highlights the most recent scientific findings regarding phenolic compounds as promising neuroprotective molecules against neurodegenerative diseases.
Collapse
|
5
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Alkhalifa AE, Al-Ghraiybah NF, Kaddoumi A. Extra-Virgin Olive Oil in Alzheimer's Disease: A Comprehensive Review of Cellular, Animal, and Clinical Studies. Int J Mol Sci 2024; 25:1914. [PMID: 38339193 PMCID: PMC10856527 DOI: 10.3390/ijms25031914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, increased oxidative stress, and neuroinflammation. Current treatment options include monoclonal antibody drugs, acetylcholinesterase, and n-methyl-d-aspartate (NMDA) antagonists. Although those treatments provide some improvements in patients' quality of life, they fail to prevent or cure AD. Current research aims to identify novel targets and tools for AD prevention and modification. In this context, several studies showed the beneficial effect of the Mediterranean diet in the prevention and treatment of AD. One integral component of the Mediterranean diet is olive oil and extra-virgin olive oil (EVOO), which is high in phenolic compounds. EVOO and other olive-related phenolic compounds have been shown to reduce the risk of developing mild cognitive impairment (MCI) and AD. In this review, we discuss the mechanisms by which EVOO and phenolic compounds exert neuroprotective effects, including modulation of AD pathologies and promotion of cognitive health. Findings indicate that EVOO and its phenolic constituents influence key pathological processes of AD, such as Aβ aggregation, tau phosphorylation, and neuroinflammation, while also enhancing BBB integrity and reducing oxidative stress. The human studies cited reveal a consistent trend where the consumption of olive oil is associated with cognitive benefits and a decreased risk of AD and related dementias. In conclusion, EVOO and its phenolic compounds hold promising potential for the prevention and treatment of AD, representing a significant shift towards more effective strategies against this complex neurodegenerative disorder.
Collapse
Affiliation(s)
| | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.)
| |
Collapse
|
7
|
Infante R, Infante M, Pastore D, Pacifici F, Chiereghin F, Malatesta G, Donadel G, Tesauro M, Della-Morte D. An Appraisal of the Oleocanthal-Rich Extra Virgin Olive Oil (EVOO) and Its Potential Anticancer and Neuroprotective Properties. Int J Mol Sci 2023; 24:17323. [PMID: 38139152 PMCID: PMC10744258 DOI: 10.3390/ijms242417323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Dietary consumption of olive oil represents a key pillar of the Mediterranean diet, which has been shown to exert beneficial effects on human health, such as the prevention of chronic non-communicable diseases like cancers and neurodegenerative diseases, among others. These health benefits are partly mediated by the high-quality extra virgin olive oil (EVOO), which is produced mostly in Mediterranean countries and is directly made from olives, the fruit of the olive tree (Olea europaea L.). Preclinical evidence supports the existence of antioxidant and anti-inflammatory properties exerted by the polyphenol oleocanthal, which belongs to the EVOO minor polar compound subclass of secoiridoids (like oleuropein). This narrative review aims to describe the antioxidant and anti-inflammatory properties of oleocanthal, as well as the potential anticancer and neuroprotective actions of this polyphenol. Based on recent evidence, we also discuss the reasons underlying the need to include the concentrations of oleocanthal and other polyphenols in the EVOO's nutrition facts label. Finally, we report our personal experience in the production of a certified organic EVOO with a "Protected Designation of Origin" (PDO), which was obtained from olives of three different cultivars (Rotondella, Frantoio, and Leccino) harvested in geographical areas located a short distance from one another (villages' names: Gorga and Camella) within the Southern Italy "Cilento, Vallo di Diano and Alburni National Park" of the Campania Region (Province of Salerno, Italy).
Collapse
Affiliation(s)
- Raffaele Infante
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Donatella Pastore
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - Francesca Chiereghin
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Gina Malatesta
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Yang E, Wang J, Woodie LN, Greene MW, Kaddoumi A. Oleocanthal Ameliorates Metabolic and Behavioral Phenotypes in a Mouse Model of Alzheimer's Disease. Molecules 2023; 28:5592. [PMID: 37513464 PMCID: PMC10385639 DOI: 10.3390/molecules28145592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). AD mouse models are frequently used to assess pathology, behavior, and memory in AD research. While the pathological characteristics of AD are well established, our understanding of the changes in the metabolic phenotypes with age and pathology is limited. In this work, we used the Promethion cage systems® to monitor changes in physiological metabolic and behavioral parameters with age and pathology in wild-type and 5xFAD mouse models. Then, we assessed whether these parameters could be altered by treatment with oleocanthal, a phenolic compound with neuroprotective properties. Findings demonstrated metabolic parameters such as body weight, food and water intake, energy expenditure, dehydration, and respiratory exchange rate, and the behavioral parameters of sleep patterns and anxiety-like behavior are altered by age and pathology. However, the effect of pathology on these parameters was significantly greater than normal aging, which could be linked to amyloid-β deposition and blood-brain barrier (BBB) disruption. In addition, and for the first time, our findings suggest an inverse correlation between sleep hours and BBB breakdown. Treatment with oleocanthal improved the assessed parameters and reduced anxiety-like behavior symptoms and sleep disturbances. In conclusion, aging and AD are associated with metabolism and behavior changes, with the changes being greater with the latter, which were rectified by oleocanthal. In addition, our findings suggest that monitoring changes in metabolic and behavioral phenotypes could provide a valuable tool to assess disease severity and treatment efficacy in AD mouse models.
Collapse
Affiliation(s)
- Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Lauren N Woodie
- Department of Nutrition, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael W Greene
- Department of Nutrition, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
9
|
Zamir-Nasta T, Abbasi A, Kakebaraie S, Ahmadi A, Pazhouhi M, Jalili C. Aflatoxin G1 exposure altered the expression of BDNF and GFAP, histopathological of brain tissue, and oxidative stress factors in male rats. Res Pharm Sci 2022; 17:677-685. [PMID: 36704432 PMCID: PMC9872184 DOI: 10.4103/1735-5362.359434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 10/02/2022] [Indexed: 01/28/2023] Open
Abstract
Background and purpose Aflatoxins are highly toxic compounds that can cause acute and chronic toxicity in humans and animals. This study aimed to evaluate the expression of BDNF and GFAP, histopathological changes, and oxidative stress factors in brain tissue exposed to aflatoxin G1 (AFG1) in male rats. Experimental approach Twenty-eight male Wistar rats were used. Animals were randomly divided into 4 groups of 7 each. The control group received 0.2 mL of corn oil and the treatment groups were exposed to AFG1 (2 mg/kg) intra-peritoneally for 15, 28, and 45 days. The tissue was used for histopathological studies, and the level of TAC, SOD, and MDA, and the expression of BDNF and GFAP genes were evaluated. Findings/Results Real-time PCR results showed that AFG1 increased GFAP expression and decreased BDNF expression in AFG1-treated groups compared to the control group. The tissue level of TAC and SOD over time in the groups receiving AFG1 significantly decreased and the tissue level of MDA increased compared to the control group. Histopathological results showed that AFG1 can cause cell necrosis, a reduction of the normal cells number in the hippocampal region of CA1, cerebral edema, shrinkage of nerve cells, formation of space around neuroglia, and diffusion of gliosis in the cerebral cortex after 45 days. Conclusion and implication AFG1, by causing pathological complications in cortical tissue, was able to affect the exacerbation of nerve tissue damage and thus pave the way for future neurological diseases.
Collapse
Affiliation(s)
- Toraj Zamir-Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R. Iran
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Arash Ahmadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, I.R. Iran
| | - Mona Pazhouhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran,Corresponding author: C. Jalili Tel: +98-9188317220, Fax: +98-8334276477
| |
Collapse
|
10
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
11
|
Hidisoglu E, Kantar D, Ozdemir S, Yargicoglu P. Cognitive dysfunctions and spontaneous EEG alterations induced by hippocampal amyloid pathology in rats. Adv Med Sci 2022; 67:328-337. [PMID: 36058175 DOI: 10.1016/j.advms.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE We aimed to determine the effects of different doses of amyloid-beta (Aβ) peptide on learning and memory, and whether the changes in brain oscillations induced by dose-dependent accumulation of Aβ could be used as biomarkers to detect early stages of Alzheimer's disease (AD). MATERIAL AND METHODS Male albino Wistar rats aged 3 months were randomly divided into four groups (n = 12/group) obtained by i. h. Injection (to the dorsal hippocampus) of saline or different doses of 0.01 μg/μl, 0.1 μg/μl, and 1 μg/μl of Aβ. After two weeks of recovery period, open field and novel object recognition tests were performed and spontaneous EEG recordings were obtained. Later, hippocampus tissues were collected for Western blot and ELISA analysis. RESULTS A significant decrement in recognition memory was observed in 0.1 μg/μl, and 1 μg/μl injected groups. In addition, Aβ accumulation induced significant decrement of the expression of NeuN, SNAP-25, SYP, and PSD-95 proteins, and led to the increment of GFAP expression in hippocampus. Moreover, we detected remarkable alterations in spontaneous brain activity. The hippocampal Aβ levels were negatively correlated with hippocampal gamma power and positively correlated with hippocampal theta power. Also, we observed significant changes in coherence values, indicating the functional connectivity between different brain regions, after the accumulation of Aβ. Especially, there was a significant correlation between changes in frontohippocampal theta coherence and in frontotemporal theta coherence. CONCLUSIONS Our findings indicate that Aβ peptide induces AD-like molecular changes at certain doses, and these changes could be detected by evaluating brain oscillations.
Collapse
Affiliation(s)
- Enis Hidisoglu
- Department of Drug Science and Technology, Turin University, Corso Raffaello 30, 10125, Torino, Italy; Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey.
| | - Deniz Kantar
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| | - Semir Ozdemir
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| | - Piraye Yargicoglu
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| |
Collapse
|
12
|
Wood OWG, Yeung JHY, Faull RLM, Kwakowsky A. EAAT2 as a therapeutic research target in Alzheimer's disease: A systematic review. Front Neurosci 2022; 16:952096. [PMID: 36033606 PMCID: PMC9399514 DOI: 10.3389/fnins.2022.952096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the human central nervous system, responsible for a wide variety of normal physiological processes. Glutamatergic metabolism and its sequestration are tightly regulated in the normal human brain, and it has been demonstrated that dysregulation of the glutamatergic system can have wide-ranging effects both in acute brain injury and neurodegenerative diseases. The excitatory amino acid transporter 2 (EAAT2) is the dominant glutamatergic transporter in the human brain, responsible for efficient removal of glutamate from the synaptic cleft for recycling within glial cells. As such, it has a key role in maintaining excitatory-inhibitory homeostasis. Animal studies have demonstrated dysregulation or alterations of EAAT2 expression can have implications in neurodegenerative disorders. Despite extensive research into glutamatergic alterations in AD mouse models, there is a lack of studies examining the expression of EAAT2 within the AD human brain. In this systematic review, 29 articles were identified that either analyzed EAAT2 expression in the AD human brain or used a human-derived cell culture. Studies were inconclusive as to whether EAAT2 was upregulated or downregulated in AD. However, changes in localization and correlation between EAAT2 expression and symptomatology was noted. These findings implicate EAAT2 alterations as a key process in AD progression and highlight the need for further research into the characterization of EAAT2 processes in normal physiology and disease in human tissue and to identify compounds that can act as EAAT2 neuromodulators.
Collapse
Affiliation(s)
- Oliver W. G. Wood
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jason H. Y. Yeung
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, Ollscoil na Gaillimhe – University of Galway, Galway, Ireland
- *Correspondence: Andrea Kwakowsky
| |
Collapse
|
13
|
Mediterranean Diet on Sleep: A Health Alliance. Nutrients 2022; 14:nu14142998. [PMID: 35889954 PMCID: PMC9318336 DOI: 10.3390/nu14142998] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/19/2022] Open
Abstract
The Mediterranean diet is a plant-based, antioxidant-rich, unsaturated fat dietary pattern that has been consistently associated with lower rates of noncommunicable diseases and total mortality, so that it is considered one of the healthiest dietary patterns. Clinical trials and mechanistic studies have demonstrated that the Mediterranean diet and its peculiar foods and nutrients exert beneficial effects against inflammation, oxidative stress, dysmetabolism, vascular dysfunction, adiposity, senescence, cognitive decline, neurodegeneration, and tumorigenesis, thus preventing age-associated chronic diseases and improving wellbeing and health. Nocturnal sleep is an essential physiological function, whose alteration is associated with health outcomes and chronic diseases. Scientific evidence suggests that diet and sleep are related in a bidirectional relationship, and the understanding of this association is important given their role in disease prevention. In this review, we surveyed the literature concerning the current state of evidence from epidemiological studies on the impact of the Mediterranean diet on nighttime sleep quantity and quality. The available studies indicate that greater adherence to the Mediterranean diet is associated with adequate sleep duration and with several indicators of better sleep quality. Potential mechanisms mediating the effect of the Mediterranean diet and its foods and nutrients on sleep are described, and gap-in-knowledge and new research agenda to corroborate findings are discussed.
Collapse
|
14
|
Olive oil and wine as source of multi-target agents in the prevention of Alzheimer disease. Nutr Res Rev 2021; 36:140-154. [PMID: 34895363 DOI: 10.1017/s095442242100041x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olive oil and wine are consumed daily worldwide and they constitute the fundamental pillars of the healthy Mediterranean diet. Polyphenolic compounds, naturally present in both olive oil and wine, are responsible for their beneficial properties. Current studies have shown the neuroprotective effects of polyphenols independently of their well-known antioxidant action. In this work, we have focused on reviewing the protective effect of polyphenols from extra virgin olive oil and wine in Alzheimer´s disease (AD), to emphasize that both food could be a possible therapeutic tool. Beneficial effects have been described in β-aggregation, neurofibrillary tangles, autophagy and mitochondrial function, as well as in cerebral insulin resistance. Furthermore, to date a harmful dose has not been described. Both preclinical and clinical works demonstrate that polyphenols act on neuropathological and cognitive disorders of AD, preventing or stopping the onset of this devastating disease. However, there are certain limitations in these studies, since it is very difficult to research diseases that lead to cognitive impairment. Although all the findings obtained are very encouraging, more studies should be carried out to use the polyphenols from olive oil and wine as therapeutic agents in the progression of AD. Therefore, more longitudinal studies in humans with a homogeneous cohort of patients are necessary to corroborate the efficacy of these nutraceuticals, as well as analyze which is the most appropriate dose for this purpose.
Collapse
|
15
|
Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids. Sci Rep 2021; 11:22340. [PMID: 34785711 PMCID: PMC8595653 DOI: 10.1038/s41598-021-01752-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Extra-virgin olive oil (EVOO) is a critical component of the Mediterranean diet, which has been found beneficial to human health. Bitterness is often positively associated with the presence of phenolic compounds in EVOO. There are twenty-five bitter taste receptors (TAS2Rs) in humans, each of which responds to specific bitter tastants. The identity of phenolic compounds and the bitter taste receptors they stimulate remain unknown. In this study, we isolated 12 phenolic and secoiridoid compounds from the olive fruit and the oil extracted from it, and tested their ability to stimulate bitter taste receptor activity, using a calcium mobilization functional assay. Our results showed that seven out of twelve studied compounds activated TAS2R8, and five of them activated TAS2R1, TAS2R8, and TAS2R14. The phenolic compounds oleuropein aglycon and ligstroside aglycon were the most potent bitter tastants in olive oil. TAS2R1 and TAS2R8 were the major bitter taste receptors activated most potently by these phenolic compounds. The results obtained here could be utilized to predict and control the bitterness of olive oil based on the concentration of specific bitter phenolics produced during the milling process of olives.
Collapse
|
16
|
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 2021; 84:557-578. [PMID: 34602474 DOI: 10.3233/jad-210595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain, and its excitatory neurotoxicity is closely related to the occurrence and development of Alzheimer's disease. However, increasing evidence shows that in the process of Alzheimer's disease, glutamate is not only limited to its excitotoxicity as a neurotransmitter but also related to the disorder of its metabolic balance. The balance of glutamate metabolism in the brain is an important determinant of central nervous system health, and the maintenance of this balance is closely related to glutamate uptake, glutamate circulation, intracellular mitochondrial transport, and mitochondrial metabolism. In this paper, we intend to elaborate the key role of mitochondrial glutamate metabolism in the pathogenesis of Alzheimer's disease and review glutamate metabolism in mitochondria as a potential target in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiayi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China.,Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Chunyan Wang
- Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
17
|
Wojtunik-Kulesza K, Rudkowska M, Kasprzak-Drozd K, Oniszczuk A, Borowicz-Reutt K. Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies-A Non-Systematic Review. Int J Mol Sci 2021; 22:7366. [PMID: 34298986 PMCID: PMC8306454 DOI: 10.3390/ijms22147366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Kinga Borowicz-Reutt
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| |
Collapse
|
18
|
Tajmim A, Cuevas-Ocampo AK, Siddique AB, Qusa MH, King JA, Abdelwahed KS, Sonju JJ, El Sayed KA. (-)-Oleocanthal Nutraceuticals for Alzheimer's Disease Amyloid Pathology: Novel Oral Formulations, Therapeutic, and Molecular Insights in 5xFAD Transgenic Mice Model. Nutrients 2021; 13:nu13051702. [PMID: 34069842 PMCID: PMC8157389 DOI: 10.3390/nu13051702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aβ-amyloid (Aβ) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(–)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of β-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aβ plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.
Collapse
Affiliation(s)
- Afsana Tajmim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Areli K. Cuevas-Ocampo
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Judy Ann King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
- Correspondence: ; Tel.: +1-318-342-1725
| |
Collapse
|
19
|
Darakjian LI, Rigakou A, Brannen A, Qusa MH, Tasiakou N, Diamantakos P, Reed MN, Panizzi P, Boersma MD, Melliou E, El Sayed KA, Magiatis P, Kaddoumi A. Spontaneous In Vitro and In Vivo Interaction of (-)-Oleocanthal with Glycine in Biological Fluids: Novel Pharmacokinetic Markers. ACS Pharmacol Transl Sci 2021; 4:179-192. [PMID: 33615171 PMCID: PMC7887843 DOI: 10.1021/acsptsci.0c00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Since the first discovery of its ibuprofen-like anti-inflammatory activity in 2005, the olive phenolic (-)-oleocanthal gained great scientific interest and popularity due to its reported health benefits. (-)-Oleocanthal is a monophenolic secoiridoid exclusively occurring in extra-virgin olive oil (EVOO). While several groups have investigated oleocanthal pharmacokinetics (PK) and disposition, none was able to detect oleocanthal in biological fluids or identify its PK profile that is essential for translational research studies. Besides, oleocanthal could not be detected following its addition to any fluid containing amino acids or proteins such as plasma or culture media, which could be attributed to its unique structure with two highly reactive aldehyde groups. Here, we demonstrate that oleocanthal spontaneously reacts with amino acids, with high preferential reactivity to glycine compared to other amino acids or proteins, affording two products: an unusual glycine derivative with a tetrahydropyridinium skeleton that is named oleoglycine, and our collective data supported the plausible formation of tyrosol acetate as the second product. Extensive studies were performed to validate and confirm oleocanthal reactivity, which were followed by PK disposition studies in mice, as well as cell culture transport studies to determine the ability of the formed derivatives to cross physiological barriers such as the blood-brain barrier. To the best of our knowledge, we are showing for the first time that (-)-oleocanthal is biochemically transformed to novel products in amino acids/glycine-containing fluids, which were successfully monitored in vitro and in vivo, creating a completely new perspective to understand the well-documented bioactivities of oleocanthal in humans.
Collapse
Affiliation(s)
- Lucy I. Darakjian
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Aimilia Rigakou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Andrew Brannen
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Mohammed H. Qusa
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Niki Tasiakou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Panagiotis Diamantakos
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Miranda N. Reed
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
- Center
for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| | - Peter Panizzi
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Melissa D. Boersma
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eleni Melliou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Khalid A. El Sayed
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Prokopios Magiatis
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Amal Kaddoumi
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
- Center
for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
20
|
Thelen M, Brown-Borg HM. Does Diet Have a Role in the Treatment of Alzheimer's Disease? Front Aging Neurosci 2020; 12:617071. [PMID: 33424583 PMCID: PMC7785773 DOI: 10.3389/fnagi.2020.617071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process causes many changes to the brain and is a major risk factor for the development of neurodegenerative diseases such as Alzheimer's Disease (AD). Despite an already vast amount of research on AD, a greater understanding of the disease's pathology and therapeutic options are desperately needed. One important distinction that is also in need of further study is the ability to distinguish changes to the brain observed in early stages of AD vs. changes that occur with normal aging. Current FDA-approved therapeutic options for AD patients have proven to be ineffective and indicate the need for alternative therapies. Aging interventions including alterations in diet (such as caloric restriction, fasting, or methionine restriction) have been shown to be effective in mediating increased health and lifespan in mice and other model organisms. Because aging is the greatest risk factor for the development of neurodegenerative diseases, certain dietary interventions should be explored as they have the potential to act as a future treatment option for AD patients.
Collapse
Affiliation(s)
- Mitchell Thelen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
21
|
Wang Y, Wang Y, Bharti V, Zhou H, Hoi V, Tan H, Wu Z, Nagakannan P, Eftekharpour E, Wang JF. Upregulation of Thioredoxin-Interacting Protein in Brain of Amyloid-β Protein Precursor/Presenilin 1 Transgenic Mice and Amyloid-β Treated Neuronal Cells. J Alzheimers Dis 2020; 72:139-150. [PMID: 31561358 DOI: 10.3233/jad-190223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to play a role in the pathophysiology of Alzheimer's disease (AD). Previously, we found that total nitrosylated protein levels were increased in the brain of amyloid-β protein precursor (AβPP) and presenilin 1 (PS1) double transgenic mice, an animal model for AD, suggesting that cysteine oxidative protein modification may contribute to this disease. Thioredoxin (Trx) is a major oxidoreductase that can reverse cysteine oxidative modifications such as sulfenylation and nitrosylation, and inhibit oxidative stress. Thioredoxin-interacting protein (Txnip) is an endogenous Trx inhibitor. To understand the involvement of Trx and Txnip in AD development, we investigated Trx and Txnip in the brain of AβPP/PS1 mice. Using immunoblotting analysis, we found that although Trx protein levels were not changed, Txnip protein levels were significantly increased in hippocampus and frontal cortex of 9- and 12-month-old AβPP/PS1 mice when compared to wild-type mice. Txnip protein levels were also increased by amyloid-β treatment in primary cultured mouse cerebral cortical neurons and HT22 mouse hippocampal cells. Using biotin switch and dimedone conjugation methods, we found that amyloid-β treatment increased protein nitrosylation and sulfenylation in HT22 cells. We also found that downregulation of Txnip, using CRISPR/Cas9 method in HT22 cells, attenuated amyloid-β-induced protein nitrosylation and sulfenylation. Our findings suggest that amyloid-β may increase Txnip levels, subsequently inhibiting Trx reducing capability and enhancing protein cysteine oxidative modification. Our findings also indicate that Txnip may be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Veni Bharti
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hong Zhou
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Vanessa Hoi
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hua Tan
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Zijian Wu
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Jun-Feng Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Psychiatry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
22
|
Arora N, Mehta TR. Role of the ketogenic diet in acute neurological diseases. Clin Neurol Neurosurg 2020; 192:105727. [DOI: 10.1016/j.clineuro.2020.105727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
|
23
|
Lipids Nutrients in Parkinson and Alzheimer's Diseases: Cell Death and Cytoprotection. Int J Mol Sci 2020; 21:ijms21072501. [PMID: 32260305 PMCID: PMC7178281 DOI: 10.3390/ijms21072501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.
Collapse
|
24
|
Visioli F, Davalos A, López de las Hazas M, Crespo MC, Tomé‐Carneiro J. An overview of the pharmacology of olive oil and its active ingredients. Br J Pharmacol 2020; 177:1316-1330. [PMID: 31270815 PMCID: PMC7056466 DOI: 10.1111/bph.14782] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to providing sensory stimuli, usually taste, smell and sight, olive oil contains a range of minor components, mostly phenolic in nature. These components are endowed with pharmacological or pharma‐nutritional properties that are the subject of active research worldwide. Based on our more than 25 years of experience in this field, we critically focus on what we believe are the most pharmacologically prominent actions of the constituents of olive oil. Most of the effects are due to the phenolic compounds in extra virgin olive oil, such as hydroxytyrosol and oleocanthal (which are often mis‐categorized as in vivo antioxidants) and concern the cardiovascular system. Other potentially beneficial activities are still to be investigated in depth. We conclude that—in the context of a proper diet that includes high‐quality products—the use of high‐quality olive oil contributes to achieving and sustaining overall health.Linked ArticlesThis article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Alberto Davalos
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María‐Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María Carmen Crespo
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - Joao Tomé‐Carneiro
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| |
Collapse
|
25
|
Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer's disease and brain ageing. Exp Neurol 2020; 328:113248. [PMID: 32084452 DOI: 10.1016/j.expneurol.2020.113248] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
As components of the Mediterranean diet (MedDiet) olive polyphenols may play a crucial role for the prevention of Alzheimer's disease (AD). Since mitochondrial dysfunction is involved in both, brain ageing and early AD, effects of 10 different purified phenolic secoiridoids (hydroxytyrosol, tyrosol, oleacein, oleuroside, oleuroside aglycon, oleuropein, oleocanthal, ligstroside, ligstroside aglycone and ligustaloside B) and two metabolites (the plant metabolite elenolic acid and the mammalian metabolite homovanillic acid) were tested in very low doses on mitochondrial function in SH-SY5Y-APP695 cells - a cellular model of early AD. All tested secoiridoids significantly increased basal adenosine triphosphate (ATP) levels in SY5Y-APP695 cells. Oleacein, oleuroside, oleocanthal and ligstroside showed the highest effect on ATP levels and were additionally tested on mitochondrial respiration. Only oleocanthal and ligstroside were able to enhance the capacity of respiratory chain complexes. To investigate their underlying molecular mechanisms, the expression of genes associated with mitochondrial biogenesis, respiration and antioxidative capacity (PGC-1α, SIRT1, CREB1, NRF1, TFAM, complex I, IV and V, GPx1, SOD2, CAT) were determined using qRT-PCR. Exclusively ligstroside increased mRNA expression of SIRT1, CREB1, complex I, and GPx1. Furthermore, oleocanthal but not ligstroside decreased Aβ 1-40 levels in SH-SY5Y-APP695 cells. To investigate the in vivo effects of purified secoiridoids, the two most promising compounds (oleocanthal and ligstroside) were tested in a mouse model of ageing. Female NMRI mice, aged 12 months, received a diet supplemented with 50 mg/kg oleocanthal or ligstroside for 6 months (equivalent to 6.25 mg/kg b.w.). Young (3 months) and aged (18 months) mice served as controls. Ligstroside fed mice showed improved spatial working memory. Furthermore, ligstroside restored brain ATP levels in aged mice and led to a significant life extension compared to aged control animals. Our findings indicate that purified ligstroside has outstanding performance on mitochondrial bioenergetics in models of early AD and brain ageing by mechanisms that may not interfere with Aβ production. Additionally, ligstroside expanded the lifespan in aged mice and enhanced cognitive function.
Collapse
|
26
|
Safety Evaluations of Single Dose of the Olive Secoiridoid S-(-)-Oleocanthal in Swiss Albino Mice. Nutrients 2020; 12:nu12020314. [PMID: 31991771 PMCID: PMC7071127 DOI: 10.3390/nu12020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Epidemiological and clinical studies compellingly showed the ability of Mediterranean diet rich in extra-virgin olive oil (EVOO) to reduce multiple diseases such as cancer, cardiovascular diseases, and aging cognitive functions decline. The S-(-)-Oleocanthal (OC) is a minor phenolic secoiridoid exclusively found in extra-virgin olive oil (EVOO). OC recently gained notable research attention due to its excellent in vitro and in vivo biological effects against multiple cancers, inflammations, and Alzheimer's disease. However, OC safety has not been comprehensively studied yet. This study reports for the first time the detailed safety of oral single OC dose in Swiss albino mice, applying the OECD 420 procedure. Male and female Swiss albino mice (n = 10) were orally treated with a single OC dose of either 10, 250, or 500 mg/kg bodyweight or equivalent volumes of distilled water. Mice fed a regular diet, and carefully observed for 14 days. Further, mice were then sacrificed, blood samples, and organs were collected and subjected to hematological, biochemical, and histological examinations. OC 10 mg/kg oral dose appears to be without adverse effects. Further, 250 mg/kg OC, p.o., is suggested as a possible upper dose for preclinical studies in the future.
Collapse
|
27
|
Panagiotidou E, Chondrogianni N. We Are What We Eat: Ubiquitin–Proteasome System (UPS) Modulation Through Dietary Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:329-348. [DOI: 10.1007/978-3-030-38266-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Mitochondrial Bioenergetics in Brain Following Ozone Exposure in Rats Maintained on Coconut, Fish and Olive Oil-Rich Diets. Int J Mol Sci 2019; 20:ijms20246303. [PMID: 31847143 PMCID: PMC6941048 DOI: 10.3390/ijms20246303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.
Collapse
|
29
|
Román G, Jackson R, Reis J, Román A, Toledo J, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris) 2019; 175:705-723. [DOI: 10.1016/j.neurol.2019.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
|
30
|
Qusa MH, Siddique AB, Nazzal S, El Sayed KA. Novel olive oil phenolic (-)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int J Pharm 2019; 569:118596. [PMID: 31394181 PMCID: PMC6765396 DOI: 10.1016/j.ijpharm.2019.118596] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Epidemiological studies have compellingly documented the ability of the Mediterranean diet rich in extra-virgin olive oil to reduce the incidence of certain malignancies, and cardiovascular diseases, and slow the Alzheimer's disease progression. S-(-)-Oleocanthal (OC) was identified as the most bioactive olive oil phenolic with documented anti-inflammatory, anticancer, and anti-Alzheimer's activities. OC consumption causes irritating sensation at the oropharynx via activation of TRPA1. Accordingly, a taste-masked formulation of OC is needed for its future use as a nutraceutical while maintaining its bioactivity and unique chemistry. Therefore, the goal of this study was to prepare a taste-masked OC solid formulation with improved dissolution and pharmacodynamic profiles, by using (+)-xylitol as an inert carrier. Xylitol was hypothesized to serve as an ideal vehicle for the preparation of OC solid dispersions due to its low melting point and sweetness. The optimized OC-(+)-xylitol solid dispersion was physically and chemically characterized and showed effective taste masking and enhanced dissolution properties. Furthermore, OC-(+)-xylitol solid dispersion maintained potent in vivo anti-breast cancer activity. It effectively suppressed the human triple negative breast cancer development, growth, and recurrence after primary tumor surgical excision in nude mice orthotopic xenograft models. Collectively, these results suggest the OC-(+)-xylitol solid dispersion formulation as a potential nutraceutical for effective control and prevention of human triple negative breast cancer.
Collapse
Affiliation(s)
- Mohammed H Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 5920 Forest Park Road, Dallas, TX 75235, United States
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States.
| |
Collapse
|
31
|
Optimization of Taste-Masked (-)-Oleocanthal Effervescent Formulation with Potent Breast Cancer Progression and Recurrence Suppressive Activities. Pharmaceutics 2019; 11:pharmaceutics11100515. [PMID: 31590382 PMCID: PMC6835910 DOI: 10.3390/pharmaceutics11100515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
S-(–)-Oleocanthal (OC), a naturally occurring phenolic secoiridoid exclusively found in extra-virgin olive oil (EVOO), is a potential nutraceutical therapeutic for inflammation, neurodegenerative diseases, and many malignancies, especially breast cancer (BC). The oral delivery of OC is challenging because of its irritative, bitter, and pungent taste and exceptional chemistry, including two reactive aldehydes, phenolic, and ester groups. OC irritation did not correlate with CO2-induced irritation, and hence, OC was not exerting generalized acid-sensing irritation. The objective of this study was to develop an effervescent formulation of OC with an effective CO2-induced masked taste maintaining the efficacy against the estrogen receptor (ER) and HER2 positive BC. Several ratios of acid and carbonate sources were screened, and five effervescent formulations EF1-EF5 were selected and prepared based on their pH and effervescence time. OC formulations were characterized using differential scanning calorimetry, FT-IR spectroscopy, and scanning electron microscopy analyses. OC formulations exhibited acceptable flowability and effervescence time. Based on physical characteristics and improved OC release, formulation EF-2 was selected for subsequent studies. EF-2 showed effective OC taste masking, as suggested by electronic artificial tongue and mouse preference tests. EF-2 suppressed more than 70% of the hormone and HER2-positive BT-474 BC cell growth in a nude mouse xenograft model. Furthermore, EF-2 demonstrated significant inhibition of BT-474 tumor cell locoregional recurrence after primary tumor surgical excision. EF-2-treated mouse sera had significantly reduced CA 15-3 levels, the human BC recurrence marker, compared to the placebo control group at the end of the study. These results highlight the potential of the OC formulation EF-2 as a prospective nutraceutical for the control and prevention of ER+/HER+ BC progression and locoregional recurrence.
Collapse
|
32
|
Lozano-Castellón J, López-Yerena A, Rinaldi de Alvarenga JF, Romero Del Castillo-Alba J, Vallverdú-Queralt A, Escribano-Ferrer E, Lamuela-Raventós RM. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit Rev Food Sci Nutr 2019; 60:2532-2548. [PMID: 31423808 DOI: 10.1080/10408398.2019.1650715] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extra virgin olive oil (EVOO) polyphenols, including the secoiridoids oleocanthal (OLC) and oleacein (OLE), are attracting attention because of their beneficial effects on health. Data on OLC and OLE bioavailability are scarce, as most research on EVOO polyphenols has concentrated on hydroxytyrosol, tyrosol, and oleuropein. Consequently, relevant goals for future research are the elucidation of OLC and OLE bioavailability and finding evidence for their beneficial effects through pre-clinical and clinical studies. The aim of this review is to shed light on OLC and OLE, focusing on their precursors in the olive fruit and the impact of agronomic and processing factors on their presence in EVOO. Also discussed are their bioavailability and absorption, and finally, their bioactivity and health-promoting properties.
Collapse
Affiliation(s)
- Julián Lozano-Castellón
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anallely López-Yerena
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - José Fernando Rinaldi de Alvarenga
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jaume Romero Del Castillo-Alba
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Biopharmaceutics and Pharmacokinetics Unit, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW We reviewed the most recent literature examining the associations between the Mediterranean-style diet (MD), neurodegenerative diseases, and markers and mechanisms of neurodegeneration. RECENT FINDINGS Most, but not all, epidemiologic studies report a protective association between MD adherence, cognitive impairment, and brain health. Data from clinical trials supporting these observational findings are also emerging. Limited evidence suggests that MD adherence may be protective for Parkinson's disease risk. Mechanistically, plant polyphenols may activate similar molecular pathways as caloric restriction diets, which helps explain the neuroprotective properties of the MD. Evidence for cognitive disorders is abundant, but there is a dearth of literature for other neurodegenerative disorders and for markers of neurodegeneration. Further research is needed to elucidate the protective role of MD on neurodegeneration, the most salient components of the MD, and the most sensitive time periods over the lifecourse at which the MD may exert its effects.
Collapse
Affiliation(s)
- Hannah Gardener
- Department of Neurology, Miller School of Medicine, and Evelyn F. McKnight Brain Institute, University of Miami, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.
| | - Michelle R Caunca
- Department of Neurology, Miller School of Medicine, and Evelyn F. McKnight Brain Institute, University of Miami, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.,Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 NW 14th Street, 1007B, Miami, FL, 33136, USA
| |
Collapse
|
34
|
Karković Marković A, Torić J, Barbarić M, Jakobušić Brala C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019; 24:molecules24102001. [PMID: 31137753 PMCID: PMC6571782 DOI: 10.3390/molecules24102001] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet and olive oil as its quintessential part are almost synonymous with a healthy way of eating and living nowadays. This kind of diet has been highly appreciated and is widely recognized for being associated with many favorable effects, such as reduced incidence of different chronic diseases and prolonged longevity. Although olive oil polyphenols present a minor fraction in the composition of olive oil, they seem to be of great importance when it comes to the health benefits, and interest in their biological and potential therapeutic effects is huge. There is a growing body of in vitro and in vivo studies, as well as intervention-based clinical trials, revealing new aspects of already known and many new, previously unknown activities and health effects of these compounds. This review summarizes recent findings regarding biological activities, metabolism and bioavailability of the major olive oil phenolic compounds—hydroxytyrosol, tyrosol, oleuropein, oleocanthal and oleacein—the most important being their antiatherogenic, cardioprotective, anticancer, neuroprotective and endocrine effects. The evidence presented in the review concludes that these phenolic compounds have great pharmacological potential, however, further studies are still required.
Collapse
Affiliation(s)
- Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
35
|
Siddique AB, Ayoub NM, Tajmim A, Meyer SA, Hill RA, El Sayed KA. (-)-Oleocanthal Prevents Breast Cancer Locoregional Recurrence After Primary Tumor Surgical Excision and Neoadjuvant Targeted Therapy in Orthotopic Nude Mouse Models. Cancers (Basel) 2019; 11:cancers11050637. [PMID: 31072015 PMCID: PMC6562541 DOI: 10.3390/cancers11050637] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) recurrence represents a challenge for survivors who have had their primary tumors surgically excised, and/or have completed radiation, neoadjuvant, or adjuvant therapeutic regimens. Current BC treatments mostly lack the ability to reduce the risk of disease recurrence. About 70% of BC patients will subsequently suffer disease relapse, manifesting as local, regional, or distant tumor recurrence, which clearly underscores the urgent need to discover novel recurrence inhibitors. (−)-Oleocanthal (OC) is a natural phenolic, found so far exclusively in extra-virgin olive oil (EVOO). OC exerts documented bioactivities against diverse cancer types, inflammation, and neurodegenerative diseases. Herein we report the novel activity of daily oral treatment with OC (10 mg/kg) in preventing BC locoregional recurrence in a nude mouse xenograft model generated by orthotopic inoculation with BT-474 cells as a luminal type B model. We further report inhibition of tumor recurrence by OC after completion of a lapatinib neoadjuvant regimen. However, in a recurrence model of triple-negative breast cancer (TNBC), OC treatment (10 mg/kg) did not effectively prevent tumor recurrence, but rather, was seen to significantly reduce the growth of recurrent tumors as compared to vehicle control-treated animals. Inhibition of tumor recurrence was associated with significant serum level reductions of the human BC recurrence marker CA 15-3 at the study end in animals treated with OC. OC treatment upregulated the expression of the epithelial marker E-cadherin and downregulated the levels of the mesenchymal marker vimentin in recurrent tumors vs. untreated control animals. OC treatment also reduced the activation of MET and HER2 receptors, as indicated by reduced phosphorylation levels of these proteins in recurrent tumors vs. controls. Collectively, the results of our studies provide the first evidence for suppression of BC tumor recurrence by oral OC treatment in an animal model for such recurrence, and furthermore, highlight favorable prospects for this natural product to emerge as a first-in-class BC recurrence inhibitor.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Afsana Tajmim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Sharon A Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
36
|
Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review. Eur J Med Chem 2019; 169:185-199. [DOI: 10.1016/j.ejmech.2019.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/25/2023]
|
37
|
Francisco V, Ruiz-Fernández C, Lahera V, Lago F, Pino J, Skaltsounis L, González-Gay MA, Mobasheri A, Gómez R, Scotece M, Gualillo O. Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3845-3853. [PMID: 30875206 DOI: 10.1021/acs.jafc.8b06723] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extra virgin olive oil (EVOO) is the main source of fat in the Mediterranean diet. Phenolic compounds of EVOO, in particular, secoiridoids, are minor components that have generated special interest due to their positive effects on human health, supported by several clinical trials. This review summarizes the most recent findings on the pharmacological properties and action's mechanisms of secoiridoid oleocanthal, focusing attention on inflammation, oxidative stress, cancer, neurodegenerative processes, and rheumatic diseases. Being of relevance to the clinical effects of EVOO intake, the bioavailability and biotransformation of EVOO polyphenols are addressed. Moreover, this review summarizes the factors that may influence the oleocanthal concentration in EVOO. With the growing incidence of age- and lifestyle-related diseases, the current data indicated that the administration of EVOO rich in secoiridoids may be helpful in the prevention or treatment of different pathologies with an inflammatory component. Although promising, the future raises several questions and challenges, which are discussed here. The real beneficial effects of olive oil phenols on human health need to be clarified in new, well-designed clinical studies.
Collapse
Affiliation(s)
- Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Vicente Lahera
- Complutense University , School of Medicine, Department of Physiology , Madrid , Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Laboratory of Cellular and Molecular Cardiology , CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares) , Laboratory 7, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Jesús Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Leandros Skaltsounis
- National and Kapodistrian University of Athens , Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry , Athens , 15771 , Greece
| | - Miguel Angel González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL , Santander , 39011 , Spain
| | - Ali Mobasheri
- Department of Regenerative Medicine , State Research Institute Centre for Innovative Medicine , Santariskiu 5 , 08661 Vilnius , Lithuania
| | - Rodolfo Gómez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The Musculoskeletal Pathology Group , Santiago University Clinical Hospital , Laboratory 18, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Morena Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| |
Collapse
|
38
|
Al-Atrache Z, Lopez DB, Hingley ST, Appelt DM. Astrocytes infected with Chlamydia pneumoniae demonstrate altered expression and activity of secretases involved in the generation of β-amyloid found in Alzheimer disease. BMC Neurosci 2019; 20:6. [PMID: 30786875 PMCID: PMC6383264 DOI: 10.1186/s12868-019-0489-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Epidemiologic studies strongly suggest that the pathophysiology of late-onset Alzheimer disease (AD) versus early-onset AD has environmental rather than genetic causes, thus revealing potentially novel therapeutic targets to limit disease progression. Several studies supporting the “pathogen hypothesis” of AD demonstrate a strong association between pathogens and the production of β-amyloid, the pathologic hallmark of AD. Although the mechanism of pathogen-induced neurodegeneration of AD remains unclear, astrocytes, a key player of the CNS innate immune response and producer/metabolizer of β-amyloid, have been implicated. We hypothesized that Chlamydia pneumoniae infection of human astrocytes alters the expression of the amyloid precursor protein (APP)-processing secretases, ADAM10, BACE1, and PSEN1, to promote β-amyloid formation. Utilizing immunofluorescent microscopy, molecular, and biochemical approaches, these studies explore the role of an intracellular respiratory pathogen, Chlamydia pneumoniae, as an environmental trigger for AD pathology. Human astrocytoma cells in vitro were infected with Chlamydia pneumoniae over the course of 6–72 h. The gene and protein expression, as well as the enzymatic activity of non-amyloidogenic (ADAM10), and pro-amyloidogenic (BACE1 and PSEN1) secretases were qualitatively and quantitatively assessed. In addition, the formation of toxic amyloid products as an outcome of pro-amyloidogenic APP processing was evaluated through various modalities. Results Chlamydia pneumoniae infection of human astrocytoma cells promoted the transcriptional upregulation of numerous genes implicated in host neuroinflammation, lipid homeostasis, microtubule function, and APP processing. Relative to that of uninfected astrocytes, BACE1 and PSEN1 protein levels were enhanced by nearly twofold at 48–72 h post-Chlamydia pneumoniae infection. The processing of APP in Chlamydia pneumoniae-infected astrocytes favors the pro-amyloidogenic pathway, as demonstrated by an increase in enzymatic activity of BACE1, while that of ADAM10 was decreased. Fluorescence intensity of β-amyloid and ELISA-quantified levels of soluble-APP by products revealed temporally similar increases, confirming a BACE1/PSEN1-mediated processing of APP. Conclusions Our findings suggest that Chlamydia pneumoniae infection of human astrocytes promotes the pro-amyloidogenic pathway of APP processing through the upregulation of expression and activity of β-secretase, upregulated expression of γ-secretase, and decreased activity of α-secretase. These effects of astrocyte infection provide evidence for a direct link between Chlamydia pneumoniae and AD pathology. Electronic supplementary material The online version of this article (10.1186/s12868-019-0489-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zein Al-Atrache
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Danielle B Lopez
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Denah M Appelt
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
39
|
Guzel O, Uysal U, Arslan N. Efficacy and tolerability of olive oil-based ketogenic diet in children with drug-resistant epilepsy: A single center experience from Turkey. Eur J Paediatr Neurol 2019; 23:143-151. [PMID: 30497921 DOI: 10.1016/j.ejpn.2018.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/20/2018] [Accepted: 11/13/2018] [Indexed: 11/15/2022]
Abstract
PURPOSE Ketogenic diet (KD) is an effective non-pharmacological treatment for drug-resistant epilepsy. The aim of this study was to investigate the efficacy, tolerability and complications of olive oil-based KD in epileptic children. METHOD In this single-center, prospective study, patients were followed up at 1, 3, 6 and 12 months after KD initiation. Initially, blood ketone levels were measured daily, and as needed thereafter to maintain the levels between 4 and 5 mmol/L. Patient demographics, seizure frequency, serum biochemistry, abdominal ultrasonography and adverse effects were recorded. Efficacy of KD was defined as ≥50% seizure reduction. RESULTS A total of 389 patients with drug-resistant epilepsy receiving KD from 2012 to 2016 were included. One hundred patients (25.7%) stopped the diet for different reasons in the first year, and 369, 314, 225 and 160 patients have been receiving KD treatment for 1, 3, 6 and 12 months, respectively. At 1, 3, 6 and 12th months, 65.8% (243/369), 74.7% (235/314), 70.6% (159/225) and 83.1% (133/160) of the patients were responders, respectively. None of the children had an increased seizure-frequency. Hyperlipidemia (50.8%), selenium deficiency (26.9%), constipation (26.2%), sleep disturbances (20.0%), nephrolithiasis (3.0%), hyperuricemia (3.0) and hepatic side effects (2.6%) were the most common complications of KD. Previous adrenocorticotropic hormone (ACTH) use due to epileptic encephalopathy and presence of constipation at baseline or during KD treatment were found the predictors of treatment efficacy. CONCLUSION KD is an effective and well-tolerated treatment option for patients with drug-resistant epilepsy. Previous history of ACTH use and constipation during KD treatment are important factors that affect the efficacy of KD treatment.
Collapse
Affiliation(s)
- Orkide Guzel
- Behçet Uz Children Hospital, Division of Pediatric Neurology, Izmir, Turkey; Mediterranean Ketogenic Diet Center, Izmir, Turkey
| | - Utku Uysal
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nur Arslan
- Dokuz Eylul University, Division of Pediatric Metabolism and Nutrition, Izmir, Turkey.
| |
Collapse
|
40
|
Segura Palacios JM, Blázquez Sánchez N, Rivas Ruiz F, Aguilar Bernier M, Ramírez López B, Sánchez MEF, de Troya Martín M. Topical treatment with oleocanthal extract in reducing inflammatory reactions after photodynamic therapy: a prospective quasi-experimental pilot study. Complement Ther Med 2018; 42:298-301. [PMID: 30670258 DOI: 10.1016/j.ctim.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/03/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Photodynamic therapy (PDT) is an effective treatment against skin field cancerization. Its main side effect is local inflammation in the treated area. The phenolic compound oleocanthal (decarboxy methyl ligstroside aglycone), which is present in extra virgin olive oil (EVOO), has anti-inflammatory properties. The purpose of this study was to evaluate the topical efficacy of an oily fluid enriched with oleocanthal (OC) extract, in comparison with a conventional oily fluid, in reducing the degree of inflammatory reaction after conventional PDT. METHODS Quasi-experimental pilot study, before-after with a control group, performed with a cohort of consecutive patients diagnosed with actinic keratosis/field cancerization (AK/FC) in the forehead and/or scalp, treated by PDT. The study was carried out from April 2016 to November 2017 at a speciality hospital in southern Spain. A group of 24 consecutive patients received the topical application, three times daily for one week, of an emollient oily fluid in the area treated with PDT. Subsequently, another group, of 23 consecutive patients, received the same treatment pattern with an oily fluid enriched with OC extract. The post-PDT inflammatory reaction was measured by an independent member of the hospital's dermatology department, using the following visual scale of erythema (from 0 to 4).The assessment was conducted at 30 min and at 48 h post-PDT. RESULTS In the assessment at 48 h after treatment, the inflammation had improved more among the patients treated with OC (median: 25%, 95%CI: -5.3 to 28.5) than in the non-OC group (median: 0%; 95%CI: -45.2 to -6.2). The difference was statistically significant (p<0.01), and the Cohen's d value was 0.89 (large effect). At three months after PDT, a complete response had been obtained by 60.9% of the patients treated with OC compared to 29.2% of the non-OC group, and the difference was close to statistical significance (p=0.059). CONCLUSIONS The topical application of an oily fluid enriched with OC extract achieved a greater reduction in post-PDT cutaneous inflammation and a better treatment response, in comparison with the application of a conventional oily fluid.
Collapse
Affiliation(s)
| | | | - Francisco Rivas Ruiz
- Research Unit, Hospital Costa del Sol, Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Marbella. Spain
| | | | | | | | | |
Collapse
|
41
|
Giusti L, Angeloni C, Barbalace MC, Lacerenza S, Ciregia F, Ronci M, Urbani A, Manera C, Digiacomo M, Macchia M, Mazzoni MR, Lucacchini A, Hrelia S. A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal against Oxidative Stress. Int J Mol Sci 2018; 19:E2329. [PMID: 30096819 PMCID: PMC6121693 DOI: 10.3390/ijms19082329] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/25/2022] Open
Abstract
Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress. Despite recent advances in the research of biomarkers, early diagnosis, and pharmacotherapy, there are no treatments that can halt the progression of these age-associated neurodegenerative diseases. Numerous epidemiological studies indicate that long-term intake of a Mediterranean diet, characterized by a high consumption of extra virgin olive oil, correlates with better cognition in aged populations. Olive oil phenolic compounds have been demonstrated to have different biological activities like antioxidant, antithrombotic, and anti-inflammatory activities. Oleocanthal, a phenolic component of extra virgin olive oil, is getting more and more scientific attention due to its interesting biological activities. The aim of this research was to characterize the neuroprotective effects of oleocanthal against H₂O₂-induced oxidative stress in neuron-like SH-SY5Y cells. Moreover, protein expression profiling, combined with pathways analyses, was used to investigate the molecular events related to the protective effects. Oleocanthal was demonstrated to counteract oxidative stress, increasing cell viability, reducing reactive oxygen species (ROS) production, and increasing reduced glutathione (GSH) intracellular level. Proteomic analysis revealed that oleocanthal significantly modulates 19 proteins in the presence of H₂O₂. In particular, oleocanthal up-regulated proteins related to the proteasome, the chaperone heat shock protein 90, the glycolytic enzyme pyruvate kinase, and the antioxidant enzyme peroxiredoxin 1. Moreover, oleocanthal protection seems to be mediated by Akt activation. These data offer new insights into the molecular mechanisms behind oleocanthal protection against oxidative stress.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | | | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy.
| | | | - Federica Ciregia
- Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, 4000 Liège, Belgium.
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 65127 Pescara, Italy.
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, 00198 Rome, Italy.
| | | | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy.
| |
Collapse
|
42
|
Tsolakou A, Diamantakos P, Kalaboki I, Mena-Bravo A, Priego-Capote F, Abdallah IM, Kaddoumi A, Melliou E, Magiatis P. Oleocanthalic Acid, a Chemical Marker of Olive Oil Aging and Exposure to a High Storage Temperature with Potential Neuroprotective Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7337-7346. [PMID: 29902916 DOI: 10.1021/acs.jafc.8b00561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The investigation of olive oils stored for a period of 24 months under appropriate conditions (25 °C, dark place, and airtight container) led to the identification of a new major phenolic ingredient, which was named oleocanthalic acid. The structure of the new compound was elucidated using one- and two-dimensional nuclear magnetic resonance in combination with tandem mass spectrometry. The new compound is an oxidation product of oleocanthal and is found in fresh oils in very low concentrations. The concentration of oleocanthalic acid increased with storage time, while the oleocanthal concentration decreased. A similar increase of the oleocanthalic acid/oleocanthal ratio was achieved after exposure of olive oil to 60 °C for 14 days. Although the presence of an oxidized derivative of decarboxymethylated ligstroside aglycon had been reported, it is the first time that its structure is characterized. The isolated compound could induce the expression of amyloid-β major transport proteins as well as tight junctions expressed at the blood-brain barrier, suggesting that oleocanthalic acid could be beneficial against Alzheimer's disease.
Collapse
Affiliation(s)
- Annia Tsolakou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Panagiotis Diamantakos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Iliana Kalaboki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Antonio Mena-Bravo
- Department of Analytical Chemistry , University of Córdoba , 14071 Córdoba , Spain
| | | | - Ihab M Abdallah
- Department of Drug Discovery and Development, Harrison School of Pharmacy , Auburn University , 720 South Donahue Drive , Auburn , Alabama 36849 , United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy , Auburn University , 720 South Donahue Drive , Auburn , Alabama 36849 , United States
| | - Eleni Melliou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Prokopios Magiatis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| |
Collapse
|
43
|
Crespo MC, Tomé-Carneiro J, Dávalos A, Visioli F. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods 2018; 7:E90. [PMID: 29891766 PMCID: PMC6025313 DOI: 10.3390/foods7060090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean diet has been long associated with improved cardiovascular prognosis, chemoprevention, and lower incidence of neurodegeneration. Of the multiple components of this diet, olive oil stands out because its use has historically been limited to the Mediterranean basin. The health benefits of olive oil and some of its components are being rapidly decoded. In this paper we review the most recent pharma-nutritional investigations on olive oil biophenols and their health effects, chiefly focusing on recent findings that elucidate their molecular mechanisms of action.
Collapse
Affiliation(s)
- M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
44
|
Pang KL, Chin KY. The Biological Activities of Oleocanthal from a Molecular Perspective. Nutrients 2018; 10:E570. [PMID: 29734791 PMCID: PMC5986450 DOI: 10.3390/nu10050570] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia.
| |
Collapse
|
45
|
Yang BY, Han W, Han H, Liu Y, Guan W, Li XM, Kuang HX. Effects of Lignans from Schisandra chinensis Rattan Stems against Aβ 1-42-Induced Memory Impairment in Rats and Neurotoxicity in Primary Neuronal Cells. Molecules 2018; 23:molecules23040870. [PMID: 29642617 PMCID: PMC6017482 DOI: 10.3390/molecules23040870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress, which is caused by Amyloid-β deposition in brain, plays an important role in Alzheimer’s disease. In this study, we found that lignans from Schisandra chinensis rattan stems (rsSCH-L) could reduce the escape latency and the distance travelled by the Aβ1–42 injected rats while the crossing platform time was enhanced in the Morris water maze test. Further research demonstrated that lignans from rsSCH-L attenuated Aβ1-42-induced neuronal cell injury by increasing the content of SOD and GSH-Px and decreasing the levels of LDH, ROS, and MDA. Moreover, rsSCH-L also inhibited the apoptosis of primary neuronal cells. The mechanisms of the apoptosis were related with the downregulation of caspase-3, caspase-8, Bax, and upregulation of Bcl-2. Taken together, the results show that rsSCH-L can improve cognitive ability in vivo. Meanwhile rsSCH-L exhibit a neuroprotective environment against oxidative stress and apoptosis in vitro. Therefore, rsSCH-L may be a potential therapeutic agent for this neurodegenerative disease.
Collapse
Affiliation(s)
- Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Wei Han
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hua Han
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xiao-Mao Li
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
46
|
Batarseh YS, Kaddoumi A. Oleocanthal-rich extra-virgin olive oil enhances donepezil effect by reducing amyloid-β load and related toxicity in a mouse model of Alzheimer's disease. J Nutr Biochem 2017; 55:113-123. [PMID: 29413486 DOI: 10.1016/j.jnutbio.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/30/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
Previous evidence suggested that extra-virgin olive oil (EVOO) is linked to attenuating amyloid-β (Aβ) pathology and improving cognitive function in Alzheimer's disease (AD) mouse models. In addition, we recently reported the beneficial effect of oleocanthal, a phenolic compound in EVOO, against AD pathology. Currently, medications available to target AD pathology are limited. Donepezil is an acetylcholine esterase inhibitor approved for use for all AD stages. Donepezil has been reported to have limited Aβ-targeting mechanisms beside its acetylcholine esterase inhibition. The aim of this study was to investigate the consumption of EVOO rich with oleocanthal (hereafter EVOO) as a medical food on enhancing the effect of donepezil on attenuating Aβ load and related toxicity in 5xFAD mouse model of AD. Our results showed that EVOO consumption in combination with donepezil significantly reduced Aβ load and related pathological changes. Reduced Aβ load could be explained, at least in part, by enhancing Aβ clearance pathways including blood-brain barrier (BBB) clearance and enzymatic degradation, and shifting amyloid precursor protein processing toward the nonamyloidogenic pathway. Furthermore, EVOO combination with donepezil up-regulated synaptic proteins, enhanced BBB tightness and reduced neuroinflammation associated with Aβ pathology. In conclusion, EVOO consumption as a medical food combined with donepezil offers an effective therapeutic approach by enhancing the noncholinergic mechanisms of donepezil and by providing additional mechanisms to attenuate Aβ-related pathology in AD patients.
Collapse
Affiliation(s)
- Yazan S Batarseh
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
47
|
Angeloni C, Malaguti M, Barbalace MC, Hrelia S. Bioactivity of Olive Oil Phenols in Neuroprotection. Int J Mol Sci 2017; 18:ijms18112230. [PMID: 29068387 PMCID: PMC5713200 DOI: 10.3390/ijms18112230] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|