1
|
Finkel EA, Chang YT, Dasgupta R, Lubin EE, Xu D, Minamisawa G, Chang AJ, Cohen JY, O'Connor DH. Tactile processing in mouse cortex depends on action context. Cell Rep 2024; 43:113991. [PMID: 38573855 PMCID: PMC11097894 DOI: 10.1016/j.celrep.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.
Collapse
Affiliation(s)
- Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yi-Ting Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajan Dasgupta
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily E Lubin
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Duo Xu
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Genki Minamisawa
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anna J Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Zhai P, Romano V, Soggia G, Bauer S, van Wingerden N, Jacobs T, van der Horst A, White JJ, Mazza R, De Zeeuw CI. Whisker kinematics in the cerebellum. J Physiol 2024; 602:153-181. [PMID: 37987552 DOI: 10.1113/jp284064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.
Collapse
Affiliation(s)
- Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Giulia Soggia
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, Netherlands
| |
Collapse
|
3
|
Xiao D, Yan Y, Murphy TH. Mesotrode chronic simultaneous mesoscale cortical imaging and subcortical or peripheral nerve spiking activity recording in mice. eLife 2023; 12:RP87691. [PMID: 37962180 PMCID: PMC10645427 DOI: 10.7554/elife.87691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Brain function originates from hierarchical spatial-temporal neural dynamics distributed across cortical and subcortical networks. However, techniques available to assess large-scale brain network activity with single-neuron resolution in behaving animals remain limited. Here, we present Mesotrode that integrates chronic wide-field mesoscale cortical imaging and compact multi-site cortical/subcortical cellular electrophysiology in head-fixed mice that undergo self-initiated running or orofacial movements. Specifically, we harnessed the flexibility of chronic multi-site tetrode recordings to monitor single-neuron activity in multiple subcortical structures while simultaneously imaging the mesoscale activity of the entire dorsal cortex. A mesoscale spike-triggered averaging procedure allowed the identification of cortical activity motifs preferentially associated with single-neuron spiking. Using this approach, we were able to characterize chronic single-neuron-related functional connectivity maps for up to 60 days post-implantation. Neurons recorded from distinct subcortical structures display diverse but segregated cortical maps, suggesting that neurons of different origins participate in distinct cortico-subcortical pathways. We extended the capability of Mesotrode by implanting the micro-electrode at the facial motor nerve and found that facial nerve spiking is functionally associated with the PTA, RSP, and M2 network, and optogenetic inhibition of the PTA area significantly reduced the facial movement of the mice. These findings demonstrate that Mesotrode can be used to sample different combinations of cortico-subcortical networks over prolonged periods, generating multimodal and multi-scale network activity from a single implant, offering new insights into the neural mechanisms underlying specific behaviors.
Collapse
Affiliation(s)
- Dongsheng Xiao
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Yuhao Yan
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
4
|
Pancholi R, Sun-Yan A, Laughton M, Peron S. Sparse and distributed cortical populations mediate sensorimotor integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558857. [PMID: 37790362 PMCID: PMC10542548 DOI: 10.1101/2023.09.21.558857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Touch information is central to sensorimotor integration, yet little is known about how cortical touch and movement representations interact. Touch- and movement-related activity is present in both somatosensory and motor cortices, making both candidate sites for touch-motor interactions. We studied touch-motor interactions in layer 2/3 of the primary vibrissal somatosensory and motor cortices of behaving mice. Volumetric two-photon calcium imaging revealed robust responses to whisker touch, whisking, and licking in both areas. Touch activity was dominated by a sparse population of broadly tuned neurons responsive to multiple whiskers that exhibited longitudinal stability and disproportionately influenced interareal communication. Movement representations were similarly dominated by sparse, stable, reciprocally projecting populations. In both areas, many broadly tuned touch cells also produced robust licking or whisking responses. These touch-licking and touch-whisking neurons showed distinct dynamics suggestive of specific roles in shaping movement. Cortical touch-motor interactions are thus mediated by specialized populations of highly responsive, broadly tuned neurons.
Collapse
Affiliation(s)
- Ravi Pancholi
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
5
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
6
|
Chakrabarti S, Nambiar J, Schwarz C. Adaptive Whisking in Mice. Front Syst Neurosci 2022; 15:813311. [PMID: 35153684 PMCID: PMC8829423 DOI: 10.3389/fnsys.2021.813311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Rodents generate rhythmic whisking movements to explore their environment. Whisking trajectories, for one, appear as a fixed pattern of whisk cycles at 5–10 Hz driven by a brain stem central pattern generator. In contrast, whisking behavior is thought to be versatile and adaptable to behavioral goals. To begin to systematically investigate such behavioral adaptation, we established a whisking task, in which mice altered the trajectories of whisking in a goal-oriented fashion to gain rewards. Mice were trained to set the whisker to a defined starting position and generate a protraction movement across a virtual target (no touch-related tactile feedback). By ramping up target distance based on reward history, we observed that mice are able to generate highly specific whisking patterns suited to keep reward probability constant. On a sensorimotor level, the behavioral adaptation was realized by adjusting whisker kinematics: more distant locations were targeted using higher velocities (i.e., pointing to longer force generation), rather than by generating higher acceleration (i.e., pointing to stronger forces). We tested the suitability of the paradigm of tracking subtle alteration in whisking motor commands using small lesions in the rhythmic whisking subfield (RW) of the whisking-related primary motor cortex. Small contralateral RW lesions generated the deterioration of whisking kinematics with a latency of 12 days post-lesion, a change that was readily discriminated from changes in the behavioral adaptation by the paradigm.
Collapse
|
7
|
Missey F, Botzanowski B, Migliaccio L, Acerbo E, Głowacki ED, Williamson A. Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex. J Neural Eng 2021; 18. [PMID: 34749345 DOI: 10.1088/1741-2552/ac37a6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
Collapse
Affiliation(s)
- Florian Missey
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Jeong J, Jung J, Jung D, Kim J, Ju H, Kim T, Lee J. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Biosens Bioelectron 2021; 180:113139. [PMID: 33714161 DOI: 10.1016/j.bios.2021.113139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
Abstract
Optogenetics is a cutting-edge tool in neuroscience that employs light-sensitive proteins and controlled illumination for neuromodulation. Its main advantage is the ability to demonstrate causal relationships by manipulating the activity of specific neuronal populations and observing behavioral phenotypes. However, the tethering system used to deliver light to optogenetic tools can constrain both natural animal behaviors and experimental design. Here, we present an optically powered and controlled wireless optogenetic system using near-infrared (NIR) light for high transmittance through live tissues. In vivo optogenetic stimulations using this system induced whisker movement in channelrhodopsin-expressing mice, confirming the photovoltaics-generated electrical power was sufficient, and the remote controlling system operated successfully. The proposed optogenetic system provides improved optogenetic applications in freely moving animals.
Collapse
Affiliation(s)
- Jinmo Jeong
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Dongwuk Jung
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Juho Kim
- Department of Applied Nano-Mechanics, Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea
| | - Hunpyo Ju
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Jongho Lee
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Effects of Optogenetic Stimulation of Primary Somatosensory Cortex and Its Projections to Striatum on Vibrotactile Perception in Freely Moving Rats. eNeuro 2021; 8:ENEURO.0453-20.2021. [PMID: 33593733 PMCID: PMC7986534 DOI: 10.1523/eneuro.0453-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Tactile sensation is one of our primary means to collect information about the nearby environment and thus crucial for daily activities and survival. Therefore, it is of high importance to restore sensory feedback after sensory loss. Optogenetic manipulation allows local or pathway-specific write-in of information. However, it remains elusive whether optogenetic stimulation can be interpreted as tactile sensation to guide operant behavior and how it is integrated with tactile stimuli. To address these questions, we employed a vibrotactile detection task combined with optogenetic neuromodulation in freely moving rats. By bidirectionally manipulating the activity of neurons in primary somatosensory cortex (S1), we demonstrated that optical activation as well as inhibition of S1 reduced the detection rate for vibrotactile stimuli. Interestingly, activation of corticostriatal terminals improved the detection of tactile stimuli, while inhibition of corticostriatal terminals did not affect the performance. To manipulate the corticostriatal pathway more specifically, we employed a dual viral system. Activation of corticostriatal cell bodies disturbed the tactile perception while activation of corticostriatal terminals slightly facilitated the detection of vibrotactile stimuli. In the absence of tactile stimuli, both corticostriatal cell bodies as well as terminals caused a reaction. Taken together, our data confirmed the possibility to restore sensation using optogenetics and demonstrated that S1 and its descending projections to striatum play differential roles in the neural processing underlying vibrotactile detection.
Collapse
|
10
|
Halley AC, Baldwin MKL, Cooke DF, Englund M, Krubitzer L. Distributed Motor Control of Limb Movements in Rat Motor and Somatosensory Cortex: The Sensorimotor Amalgam Revisited. Cereb Cortex 2020; 30:6296-6312. [PMID: 32691053 DOI: 10.1093/cercor/bhaa186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/26/2022] Open
Abstract
Which areas of the neocortex are involved in the control of movement, and how is motor cortex organized across species? Recent studies using long-train intracortical microstimulation demonstrate that in addition to M1, movements can be elicited from somatosensory regions in multiple species. In the rat, M1 hindlimb and forelimb movement representations have long been thought to overlap with somatosensory representations of the hindlimb and forelimb in S1, forming a partial sensorimotor amalgam. Here we use long-train intracortical microstimulation to characterize the movements elicited across frontal and parietal cortex. We found that movements of the hindlimb, forelimb, and face can be elicited from both M1 and histologically defined S1 and that representations of limb movement types are different in these two areas. Stimulation of S1 generates retraction of the contralateral forelimb, while stimulation of M1 evokes forelimb elevation movements that are often bilateral, including a rostral region of digit grasping. Hindlimb movement representations include distinct regions of hip flexion and hindlimb retraction evoked from S1 and hip extension evoked from M1. Our data indicate that both S1 and M1 are involved in the generation of movement types exhibited during natural behavior. We draw on these results to reconsider how sensorimotor cortex evolved.
Collapse
Affiliation(s)
- Andrew C Halley
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Mary K L Baldwin
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Dylan F Cooke
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mackenzie Englund
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, CA 95618, USA.,Department of Psychology, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Guo K, Yamawaki N, Barrett JM, Tapies M, Shepherd GMG. Cortico-Thalamo-Cortical Circuits of Mouse Forelimb S1 Are Organized Primarily as Recurrent Loops. J Neurosci 2020; 40:2849-2858. [PMID: 32075900 PMCID: PMC7117898 DOI: 10.1523/jneurosci.2277-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
Cortical projections to the thalamus arise from corticothalamic (CT) neurons in layer 6 and pyramidal tract-type (PT) neurons in layer 5B. We dissected the excitatory synaptic connections in the somatosensory thalamus formed by CT and PT neurons of the primary somatosensory (S1) cortex, focusing on mouse forelimb S1. Mice of both sexes were studied. The CT neurons in S1 synaptically excited S1-projecting thalamocortical (TC) neurons in subregions of both the ventral posterior lateral and posterior (PO) nuclei, forming a pair of recurrent cortico-thalamo-cortical (C-T-C) loops. The PT neurons in S1 also formed a recurrent loop with S1-projecting TC neurons in the same subregion of the PO. The PT neurons in the adjacent primary motor (M1) cortex formed a separate recurrent loop with M1-projecting TC neurons in a nearby subregion of the PO. Collectively, our results reveal that C-T-C circuits of mouse forelimb S1 are primarily organized as multiple cortical cell-type-specific and thalamic subnucleus-specific recurrent loops, with both CT and PT neurons providing the strongest excitatory input to TC neurons that project back to S1. The findings, together with those of related studies of C-T-C circuits, thus suggest that recurrently projecting thalamocortical neurons are the principal targets of cortical excitatory input to the mouse somatosensory and motor thalamus.SIGNIFICANCE STATEMENT Bidirectional cortical communication with the thalamus is considered an important aspect of sensorimotor integration for active touch in the somatosensory system, but the cellular organization of the circuits mediating this process is not well understood. We used an approach combining cell-type-specific anterograde optogenetic excitation with single-cell recordings targeted to retrogradely labeled thalamocortical neurons to dissect these circuits. The findings reveal a consistent pattern: cortical projections to the somatosensory thalamus target thalamocortical neurons that project back to the same cortical area. Commonalities of these findings to previous descriptions of related circuits in other areas suggest that cortico-thalamo-cortical circuits may generally be organized primarily as recurrent loops.
Collapse
Affiliation(s)
- KuangHua Guo
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John M Barrett
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Martinna Tapies
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
12
|
Karadimas SK, Satkunendrarajah K, Laliberte AM, Ringuette D, Weisspapir I, Li L, Gosgnach S, Fehlings MG. Sensory cortical control of movement. Nat Neurosci 2019; 23:75-84. [DOI: 10.1038/s41593-019-0536-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
|
13
|
Mayrhofer JM, El-Boustani S, Foustoukos G, Auffret M, Tamura K, Petersen CCH. Distinct Contributions of Whisker Sensory Cortex and Tongue-Jaw Motor Cortex in a Goal-Directed Sensorimotor Transformation. Neuron 2019; 103:1034-1043.e5. [PMID: 31402199 PMCID: PMC6859494 DOI: 10.1016/j.neuron.2019.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023]
Abstract
The neural circuits underlying goal-directed sensorimotor transformations in the mammalian brain are incompletely understood. Here, we compared the role of primary tongue-jaw motor cortex (tjM1) and primary whisker sensory cortex (wS1) in head-restrained mice trained to lick a reward spout in response to whisker deflection. Two-photon microscopy combined with microprisms allowed imaging of neuronal network activity across cortical layers in transgenic mice expressing a genetically encoded calcium indicator. Early-phase activity in wS1 encoded the whisker sensory stimulus and was necessary for detection of whisker stimuli. Activity in tjM1 encoded licking direction during task execution and was necessary for contralateral licking. Pre-stimulus activity in tjM1, but not wS1, was predictive of lick direction and contributed causally to small preparatory jaw movements. Our data reveal a shift in coding scheme from wS1 to tjM1, consistent with the hypothesis that these areas represent cortical start and end points for this goal-directed sensorimotor transformation.
Collapse
Affiliation(s)
- Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sami El-Boustani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
14
|
Abstract
Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined.
Collapse
|
15
|
Abstract
Breathing is a vital rhythmic behavior that originates from neural networks within the brainstem. It is hypothesized that the breathing rhythm is generated by spatially distinct networks localized to discrete kernels or compartments. Here, we provide evidence that the functional boundaries of these compartments expand and contract dynamically based on behavioral or physiological demands. The ability of these rhythmic networks to change in size may allow the breathing rhythm to be very reliable, yet flexible enough to accommodate the large repertoire of mammalian behaviors that must be integrated with breathing. The ability of neuronal networks to reconfigure is a key property underlying behavioral flexibility. Networks with recurrent topology are particularly prone to reconfiguration through changes in synaptic and intrinsic properties. Here, we explore spatial reconfiguration in the reticular networks of the medulla that generate breathing. Combined results from in vitro and in vivo approaches demonstrate that the network architecture underlying generation of the inspiratory phase of breathing is not static but can be spatially redistributed by shifts in the balance of excitatory and inhibitory network influences. These shifts in excitation/inhibition allow the size of the active network to expand and contract along a rostrocaudal medullary column during behavioral or metabolic challenges to breathing, such as changes in sensory feedback, sighing, and gasping. We postulate that the ability of this rhythm-generating network to spatially reconfigure contributes to the remarkable robustness and flexibility of breathing.
Collapse
|
16
|
Liu Y, Ohshiro T, Sakuragi S, Koizumi K, Mushiake H, Ishizuka T, Yawo H. Optogenetic study of the response interaction among multi-afferent inputs in the barrel cortex of rats. Sci Rep 2019; 9:3917. [PMID: 30850696 PMCID: PMC6408464 DOI: 10.1038/s41598-019-40688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/21/2019] [Indexed: 01/23/2023] Open
Abstract
We investigated the relationship between whisker mechanoreceptive inputs and the neural responses to optical stimulation in layer 2/upper 3 (L2/U3) of the barrel cortex using optogenetics since, ideally, we should investigate interactions among inputs with spatiotemporal acuity. Sixteen whisker points of a transgenic rat (W-TChR2V4), that expresses channelrhodopsin 2 (ChR2)-Venus conjugate (ChR2V) in the peripheral nerve endings surrounding the whisker follicles, were respectively connected one-by-one with 16 LED-coupled optical fibres, which illuminated the targets according to a certain pattern in order to evaluate interactions among the inputs in L2/U3. We found that the individual L2/U3 neurons frequently received excitatory inputs from multiple whiskers that were arrayed in a row. Although the interactions among major afferent inputs (MAIs) were negligible, negative interactions with the surrounding inputs suggest that the afferent inputs were integrated in the cortical networks to enhance the contrast of an array to its surroundings. With its simplicity, reproducibility and spatiotemporal acuity, the optogenetic approach would provide an alternative way to understand the principles of afferent integration in the cortex and should complement knowledge obtained by experiments using more natural stimulations.
Collapse
Affiliation(s)
- Yueren Liu
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Tomokazu Ohshiro
- Department of Physiology, Tohoku University Graduate school of Medicine, Sendai, 980-8575, Japan
| | - Shigeo Sakuragi
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan.,Department of Pharmacology, Yamagata University School of Medicine, Yamagata, 990-9585, Japan
| | - Kyo Koizumi
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate school of Medicine, Sendai, 980-8575, Japan
| | - Toru Ishizuka
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Hiromu Yawo
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan.
| |
Collapse
|
17
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
18
|
Ebbesen CL, Insanally MN, Kopec CD, Murakami M, Saiki A, Erlich JC. More than Just a "Motor": Recent Surprises from the Frontal Cortex. J Neurosci 2018; 38:9402-9413. [PMID: 30381432 PMCID: PMC6209835 DOI: 10.1523/jneurosci.1671-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Motor and premotor cortices are crucial for the control of movements. However, we still know little about how these areas contribute to higher-order motor control, such as deciding which movements to make and when to make them. Here we focus on rodent studies and review recent findings, which suggest that-in addition to motor control-neurons in motor cortices play a role in sensory integration, behavioral strategizing, working memory, and decision-making. We suggest that these seemingly disparate functions may subserve an evolutionarily conserved role in sensorimotor cognition and that further study of rodent motor cortices could make a major contribution to our understanding of the evolution and function of the mammalian frontal cortex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016,
- Center for Neural Science, New York University, New York, New York 10003
| | - Michele N Insanally
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- Center for Neural Science, New York University, New York, New York 10003
| | - Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Masayoshi Murakami
- Department of Neurophysiology, Division of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Akiko Saiki
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Jeffrey C Erlich
- New York University Shanghai, Shanghai, China 200122
- NYU-ECNU Institute for Brain and Cognitive Science at NYU Shanghai, Shanghai, China 200062, and
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China 200062
| |
Collapse
|
19
|
Abbasi A, Goueytes D, Shulz DE, Ego-Stengel V, Estebanez L. A fast intracortical brain–machine interface with patterned optogenetic feedback. J Neural Eng 2018; 15:046011. [DOI: 10.1088/1741-2552/aabb80] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Affiliation(s)
- Christiaan P J de Kock
- VU Amsterdam, Integrative Neurophysiology, De Boelelaan 1085, Amsterdam, The Netherlands.
| | - Heiko J Luhmann
- Univ Med Center, Institute of Physiology, Duesbergweg 6, Mainz, Germany.
| | - Miguel Maravall
- University of Sussex, School of Life Sciences, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
21
|
McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F, Deschênes M, Kleinfeld D. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. Neuroscience 2018; 368:152-170. [PMID: 28843993 PMCID: PMC5849401 DOI: 10.1016/j.neuroscience.2017.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas.
Collapse
Affiliation(s)
- Lauren E McElvain
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Beth Friedman
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Harvey J Karten
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2G3, Canada
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|