1
|
Wu YF, Sun J, Chen M, Lin Q, Jin KY, Su SH, Hai J. Combined VEGF and bFGF loaded nanofiber membrane protects against neuronal injury and hypomyelination in a rat model of chronic cerebral hypoperfusion. Int Immunopharmacol 2023; 125:111108. [PMID: 37890380 DOI: 10.1016/j.intimp.2023.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Currently, there are no effective therapeutic targets for the treatment of chronic cerebral hypoperfusion(CCH)-induced cerebral ischemic injury. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are discovered as the inducers of neurogenesis and angiogenesis. We previously made a nanofiber membrane (NFM), maintaining a long-term release of VEGF and bFGF up to 35 days, which might make VEGF and bFGF NFM as the potential protective agents against cerebral ischemic insult. In this study, the effects of VEGF and bFGF delivered by NFM into brain were investigated as well as their underlying mechanismsin a rat model of CCH. VEGF + bFGF NFM application increased the expressions of tight junction proteins, maintained BBB integrity, and alleviated vasogenic cerebral edema. Furthermore, VEGF + bFGF NFM sticking enhanced angiogenesis and elevated CBF. Besides, VEGF + bFGF NFM treatment inhibited neuronal apoptosis and decreased neuronal loss. Moreover, roofing of VEGF + bFGF NFM attenuated microglial activation and blocked the launch of NLRP3/caspase-1/IL-1β pathway. In addition, VEGF + bFGF NFM administration prevented disruption to the pre/postsynaptic membranes and loss of myelin sheath, relieving synaptic injury and demyelination. Oligodendrogenesis, neurogenesis and PI3K/AKT/mTOR pathway were involved in the treatment of VEGF + bFGF NFM against CCH-induced neuronal injury and hypomyelination. These findings supported that VEGF + bFGF NFM application constitutes a neuroprotective strategy for the treatment of CCH, which may be worth further clinical translational research as a novel neuroprotective approach, benifiting indirect surgical revascularization.
Collapse
Affiliation(s)
- Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ming Chen
- Department of Neurosurgery, Xinhua hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
2
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
3
|
Li H, Xiao G, Tan X, Liu G, Xu Y, Gu S. Human umbilical cord blood mononuclear cells ameliorate ischemic brain injury via promoting microglia/macrophages M2 polarization in MCAO Rats. Exp Brain Res 2023; 241:1585-1598. [PMID: 37142782 DOI: 10.1007/s00221-023-06600-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Cerebral infarction is one of the most prevalent cerebrovascular disorders. Microglia and infiltrating macrophages play a key role in regulating the inflammatory response after ischemic stroke. Regulation of microglia/macrophages polarization contributes to the recovery of neurological function in cerebral infarction. In recent decades, human umbilical cord blood mononuclear cells (hUCBMNCs) have been considered a potential therapeutic alternative. However, the mechanism of action is yet unclear. Our study aimed to explore whether hUCBMNCs treatment for cerebral infarction is via regulation of microglia/macrophages polarization. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and were treated by intravenous routine with or without hUCBMNCs at 24 h following MCAO. We evaluated the therapeutic effects of hUCBMNCs on cerebral infarction by measuring animal behavior and infarct volume, and further explored the possible mechanisms of hUCBMNCs for cerebral infarction by measuring inflammatory factors and microglia/macrophages markers using Elisa and immunofluorescence staining, respectively. We found that administration with hUCBMNCs improved behavioral functions and reduced infarct volume. Rats treated with hUCBMNCs showed a significant reduction in the level of IL-6, and TNF-α and increased the level of IL-4 and IL-10 compared to those treated without hUCBMNCs. Furthermore, hUCBMNCs inhibited M1 polarization and promoted M2 polarization of microglia/macrophages after MCAO. We conclude that hUCBMNCs could ameliorate cerebral brain injury by promoting microglia/macrophages M2 polarization in MCAO Rats. This experiment provides evidence that hUCBMNCs represent a promising therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Gai Xiao
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiao Tan
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guojun Liu
- Shandong Cord Blood Bank, Jinan, Shangdong, China
| | - Yangzhou Xu
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shaojuan Gu
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Satani N, Parsha K, Savitz SI. Enhancing Stroke Recovery With Cellular Therapies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X, Zhang J, Jing L. Selenium attenuates ischemia/reperfusion injury‑induced damage to the blood‑brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway‑mediated autophagy inhibition. Int J Mol Med 2021; 48:178. [PMID: 34296284 PMCID: PMC8354314 DOI: 10.3892/ijmm.2021.5011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and disability. Diabetes mellitus, characterized by hyperglycemia, is a common concomitant disease of ischemic stroke, which is associated with autophagy dysfunction and blood‑brain barrier (BBB) damage following cerebral ischemia/reperfusion (I/R) injury. At present, there is no effective treatment strategy for the disease. The purpose of the present study was to explore the molecular mechanisms underlying the protective effects of selenium on the BBB following I/R injury in hyperglycemic rats. Middle cerebral artery occlusion was performed in diabetic Sprague‑Dawley rats. Treatment with selenium and the autophagy inhibitor 3‑methyladenine significantly reduced cerebral infarct volume, brain water content and Evans blue leakage, while increasing the expression of tight junction (TJ) proteins and decreasing that of autophagy‑related proteins (P<0.05). In addition, selenium increased the phosphorylation levels of PI3K, AKT and mTOR (P<0.05). A mouse bEnd.3 brain microvascular endothelial cell line was co‑cultured in vitro with an MA‑h mouse astrocyte‑hippocampal cell line to simulate the BBB. The cells were then subjected to hyperglycemia, followed by oxygen‑glucose deprivation for 1 h and reoxygenation for 24 h. It was revealed that selenium increased TJ protein levels, reduced BBB permeability, decreased autophagy levels and enhanced the expression of phosphorylated (p)‑AKT/AKT and p‑mTOR/mTOR proteins (P<0.05). Treatment with wortmannin (an inhibitor of PI3K) significantly prevented the beneficial effects of selenium on the BBB, whereas insulin‑like growth factor 1 (a PI3K activator) mimicked the effects of selenium. In conclusion, the present findings indicated that selenium can inhibit autophagy by regulating the PI3K/AKT/mTOR signaling pathway, significantly preventing BBB damage following cerebral I/R injury in hyperglycemic conditions.
Collapse
Affiliation(s)
- Biao Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yaqiong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanmei Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaopeng Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lan Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xilin Shen
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianzhong Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Li Jing
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
6
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
He J, Liu J, Huang Y, Tang X, Xiao H, Hu Z. Oxidative Stress, Inflammation, and Autophagy: Potential Targets of Mesenchymal Stem Cells-Based Therapies in Ischemic Stroke. Front Neurosci 2021; 15:641157. [PMID: 33716657 PMCID: PMC7952613 DOI: 10.3389/fnins.2021.641157] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of death worldwide; currently available treatment approaches for ischemic stroke are to restore blood flow, which reduce disability but are time limited. The interruption of blood flow in ischemic stroke contributes to intricate pathophysiological processes. Oxidative stress and inflammatory activity are two early events in the cascade of cerebral ischemic injury. These two factors are reciprocal causation and directly trigger the development of autophagy. Appropriate autophagy activity contributes to brain recovery by reducing oxidative stress and inflammatory activity, while autophagy dysfunction aggravates cerebral injury. Abundant evidence demonstrates the beneficial impact of mesenchymal stem cells (MSCs) and secretome on cerebral ischemic injury. MSCs reduce oxidative stress through suppressing reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation and transferring healthy mitochondria to damaged cells. Meanwhile, MSCs exert anti-inflammation properties by the production of cytokines and extracellular vesicles, inhibiting proinflammatory cytokines and inflammatory cells activation, suppressing pyroptosis, and alleviating blood–brain barrier leakage. Additionally, MSCs regulation of autophagy imbalances gives rise to neuroprotection against cerebral ischemic injury. Altogether, MSCs have been a promising candidate for the treatment of ischemic stroke due to their pleiotropic effect.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Role of Nrf2 in Lipopolysaccharide-Induced Acute Kidney Injury: Protection by Human Umbilical Cord Blood Mononuclear Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6123459. [PMID: 32774680 PMCID: PMC7407026 DOI: 10.1155/2020/6123459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Background Acute kidney injury (AKI) is one of the common complications of sepsis. Heretofore, there is no effective treatment for septic AKI. Recent studies have revealed that besides treating hematological malignancies, human umbilical cord blood mononuclear cells (hUCBMNCs) show good therapeutic effects on other diseases. But whether hUCBMNCs can protect against septic AKI and its underlying mechanism are unknown. Methods The rat model of lipopolysaccharide- (LPS-) induced AKI was developed, and the injection of hUCBMNCs was executed to prevent and treat AKI. ML385, a specific nuclear factor E2-related factor 2 (Nrf2) inhibitor, was used to silence Nrf2. The cell experiments were conducted to elaborate the protective mechanism of Nrf2 pathway. Results An effective model of LPS-induced AKI was established. Compared to the rats only with LPS injection, the levels of inflammation, reactive oxygen species (ROS), and apoptosis in renal tissues after hUCBMNC injection were markedly attenuated. Pathological examination also indicated significant remission of renal tissue injury in the LPS+MNCs group, compared to rats in the LPS group. Transmission electron microscopy (TEM) showed that the damage of the mitochondria in the LPS+MNCs group was lighter than that in the LPS group. Noteworthily, the renal Nrf2/HO-1 pathway was activated and autophagy was enhanced after hUCBMNC injection. ML385 could partly reverse the renoprotective effect of hUCBMNCs, which could demonstrate that Nrf2 participated in the protection of hUCBMNCs. Cell experiments showed that increasing the expression level of Nrf2 could alleviate LPS-induced cell injury by increasing the autophagy level and decreasing the injury of the mitochondria in HK-2 cells. Conclusion All results suggest that hUCBMNCs can protect against LPS-induced AKI via the Nrf2 pathway. Activating Nrf2 can upregulate autophagy to protect LPS-induced cell injury.
Collapse
|
9
|
Feng YS, Tan ZX, Wang MM, Xing Y, Dong F, Zhang F. Inhibition of NLRP3 Inflammasome: A Prospective Target for the Treatment of Ischemic Stroke. Front Cell Neurosci 2020; 14:155. [PMID: 32581721 PMCID: PMC7283578 DOI: 10.3389/fncel.2020.00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stroke is one of the major devastating diseases with no effective medical therapeutics. Because of the high rate of disability and mortality among stroke patients, new treatments are urgently required to decrease brain damage following a stroke. In recent years, the inflammasome is a novel breakthrough point that plays an important role in the stroke, and the inhibition of inflammasome may be an effective method for stroke treatment. Briefly, inflammasome is a multi-protein complex that causes activation of caspase-1 and subsequent production of pro-inflammatory factors including interleukin (IL)-18 and IL-1β. Among them, the NLRP3 inflammasome is the most typical inflammasome, which can detect cell damage and mediate inflammatory response to tissue damage in ischemic stroke. The NLRP3 inflammasome has become a key mediator of post-ischemic inflammation, leading to a cascade of inflammatory reactions and cell death eventually. Thus, NLRP3 inflammasome is an ideal therapeutic target due to its important role in the inflammatory response after ischemic stroke. In this mini review article, we will summarize the structure, assembly, and regulation of NLRP3 inflammasome, the role of NLRP3 inflammasome in ischemic stroke, and several treatments targeting NLRP3 inflammasome in ischemic stroke. The further understanding of the mechanism of NLRP3 inflammasome in patients with ischemic stroke will provide novel targets for the treatment of cerebral ischemic stroke patients.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Yang XL, Cao CZ, Zhang QX. MiR-195 alleviates oxygen-glucose deprivation/reperfusion-induced cell apoptosis via inhibition of IKKα-mediated NF-κB pathway. Int J Neurosci 2020; 131:755-764. [PMID: 32271641 DOI: 10.1080/00207454.2020.1754212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Increasing evidence confirmed that miRNA plays a critical role in the occurrence and development of ischemic stroke. Here, the aim of this study was to examine the function and mechanisms of miR-195 in vascular endothelial cell apoptosis induced by oxygen-glucose deprivation (OGD). METHODS This study intended to use OGD to simulate ischemia in vitro. The mRNA expression of miR-195, IKKα and NF-κB in human umbilical vein endothelial cells (HUVECs) were detected by RT-qPCR. The proliferation and apoptosis ability of HUVECs were evaluated using MTT assay, colony formation assay and flow cytometry, respectively. Western blot was applied to examine related protein expression. The interaction between miR-195 and IKKα was verified by dual-luciferase reporter gene assay. RESULTS OGD significantly inhibited cell viability and induced cell apoptosis in HUVECs. Meanwhile, OGD treatment notably decreased the expression of miR-195, as well as enhanced NF-κB expression. Moreover, miR-195 directly interacted with IKKα and suppressed its expression. Mechanically, overexpression of miR-195 exhibited pro-proliferation and anti-apoptotic effect on HUVECs treated with OGD through targeting IKKα-mediated NF-κB pathway. At the molecular level, through suppressing IKKα/NF-κB pathway, miR-195 inhibited the expression of pro-apoptotic protein Bax and active caspase-3, but increased the expression of anti-apoptotic Bcl-2 in HUVECs. CONCLUSIONS Our finding uncovers the protective effect of miR-195 on the biological behavior of HUVECs via suppression of the NF-κB pathway induced by IKKα, which may provide a new potential strategy for ischemic stroke clinical treatment.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, P. R. China
| | - Cheng-Zhu Cao
- Department of Physiology, Medical College of Qinghai University, Xining, P. R. China
| | - Qing-Xin Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, P. R. China
| |
Collapse
|
11
|
Li XW, Feng LX, Zhu XJ, Liu Q, Wang HS, Wu X, Yan P, Duan XJ, Xiao YQ, Cheng W, Peng JC, Zhao F, Deng YH, Duan SB. Human umbilical cord blood mononuclear cells protect against renal tubulointerstitial fibrosis in cisplatin-treated rats. Biomed Pharmacother 2019; 121:109662. [PMID: 31810124 DOI: 10.1016/j.biopha.2019.109662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/18/2023] Open
Abstract
Currently, there is no effective method to prevent renal interstitial fibrosis after acute kidney injury (AKI). In this study, we established and screened a new renal interstitial fibrosis rat model after cisplatin-induced AKI. Our results indicated that rats injected with 4 mg/kg cisplatin once a week for two weeks after firstly administrated with 6.5 mg/kg loading dose of cisplatin could set up a more accurate model reflecting AKI progression to renal interstitial fibrosis. Then, we investigated the effects and possible mechanisms of human umbilical cord blood mononuclear cells (hUCBMNCs) on renal tubular interstitial fibrosis after cisplatin-induced AKI. In rats injected with hUCBMNCs for four times, level of matrix metalloproteinase 7 (MMP-7) in serum and urine, urinary albumin/creatinine ratio, tubular pathological scores, the relative collagen area of the tubulointerstitial region, endoplasmic reticulum dilation and the mitochondrial ultrastructural damage were significantly improved. The level of reactive oxygen species, α-smooth muscle actin (α-SMA), [NOD]-like pyrin domain containing protein 3 and cleaved-Caspase 3 in renal tissue decreased significantly. However, in rats injected with hUCBMNCs for two times, no significant difference was discovered in MMP-7 levels and urinary albumin/creatinine ratio. Although expression of α-SMA and the percentage areas of collagen staining in tubulointerstitial tissues were ameliorated in rats injected with hUCBMNCs for two times, the effects were significantly weaker than those in rats injected with hUCBMNCs for four times. Taken together, our study constructed a highly efficient, duplicable novel rat model of renal fibrosis after cisplatin-induced AKI. Multiple injections of hUCBMNCs may prevent renal interstitial fibrosis after cisplatin-induced AKI.
Collapse
Affiliation(s)
- Xu-Wei Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Li-Xin Feng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Xue-Jing Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Qian Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Hong-Shen Wang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Xi Wu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Ping Yan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Xiang-Jie Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Ye-Qing Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Wei Cheng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Jin-Cheng Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Fei Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Ying-Hao Deng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Shao-Bin Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Li XW, Feng LX, Zhu XJ, Liu Q, Wang HS, Wu X, Yan P, Duan XJ, Xiao YQ, Cheng W, Peng JC, Zhao F, Deng YH, Duan SB. Human umbilical cord blood mononuclear cells protect against renal tubulointerstitial fibrosis in cisplatin-treated rats. Biomed Pharmacother 2019; 121:109310. [PMID: 31710895 DOI: 10.1016/j.biopha.2019.109310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/18/2023] Open
Abstract
Currently, there is no effective method to prevent renal interstitial fibrosis after acute kidney injury (AKI). In this study, we established and screened a new renal interstitial fibrosis rat model after cisplatin-induced AKI. Our results indicated that rats injected with 4 mg/kg cisplatin once a week for two weeks after firstly administrated with 6.5 mg/kg loading dose of cisplatin could set up a more accurate model reflecting AKI progression to renal interstitial fibrosis. Then, we investigated the effects and possible mechanisms of human umbilical cord blood mononuclear cells (hUCBMNCs) on renal tubular interstitial fibrosis after cisplatin-induced AKI. In rats injected with hUCBMNCs for four times, level of matrix metalloproteinase 7(MMP-7)in serum and urine, urinary albumin/creatinine ratio, tubular pathological scores, the relative collagen area of the tubulointerstitial region, endoplasmic reticulum dilation and the mitochondrial ultrastructural damage were significantly improved. The level of reactive oxygen species, α-smooth muscle actin (α-SMA), [NOD]-like pyrin domain containing protein 3 and cleaved-Caspase 3 in renal tissue decreased significantly. However, in rats injected with hUCBMNCs for two times, no significant difference was discovered in MMP-7 levels and urinary albumin/creatinine ratio. Although expression of α-SMA and the percentage areas of collagen staining in tubulointerstitial tissues were ameliorated in rats injected with hUCBMNCs for two times, the effects were significantly weaker than those in rats injected with hUCBMNCs for four times. Taken together, our study constructed a highly efficient, duplicable novel rat model of renal fibrosis after cisplatin-induced AKI. Multiple injections of hUCBMNCs may prevent renal interstitial fibrosis after cisplatin-induced AKI.
Collapse
Affiliation(s)
- Xu-Wei Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Li-Xin Feng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Xue-Jing Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Qian Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Hong-Shen Wang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Xi Wu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Ping Yan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Xiang-Jie Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Ye-Qing Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Wei Cheng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Jin-Cheng Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Fei Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Ying-Hao Deng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China
| | - Shao-Bin Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
Zhou Y, Gu Y, Liu J. BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis. Biochem Biophys Res Commun 2019; 519:481-488. [DOI: 10.1016/j.bbrc.2019.07.097] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
|
14
|
Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE. NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke 2019; 14:574-591. [PMID: 30940045 DOI: 10.1177/1747493019841242] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammation is a devastating pathophysiological process during stroke, a devastating disease that is the second most common cause of death worldwide. Activation of the NOD-like receptor protein (NLRP3)-infammasome has been proposed to mediate inflammatory responses during ischemic stroke. Briefly, NLRP3 inflammasome activates caspase-1, which cleaves both pro-IL-1 and pro-IL-18 into their active pro-inflammatory cytokines that are released into the extracellular environment. Several NLRP3 inflammasome inhibitors have been promoted, including small molecules, type I interferon, micro RNAs, nitric oxide, and nuclear factor erythroid-2 related factor 2 (Nrf2), some of which are potentially efficacious clinically. This review will describe the structure and cellular signaling pathways of the NLRP3 inflammasome during ischemic stroke, and current evidence for NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- 1 Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Farzaneh
- 2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- 3 Immunology Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Nejabatdoust
- 4 Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Sarkaki
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Apigenin Protects the Brain against Ischemia/Reperfusion Injury via Caveolin-1/VEGF In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7017204. [PMID: 30622670 PMCID: PMC6304859 DOI: 10.1155/2018/7017204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Apigenin is a natural flavonoid found in several dietary plant foods as vegetables and fruits. To investigate potential anti-ischemia/reperfusion injury properties of apigenin in vitro, cell proliferation assay, tube formation, cell migration, apoptosis, and autophagy were performed in human brain microvascular endothelial cells (HBMVECs) after oxygen-glucose deprivation/reoxygenation (OGD/R). The effect of apigenin was also explored in rats after middle cerebral artery occlusion/reperfusion (MCAO/R) via neurobehavioral scores, pathological examination, and measurement of markers involved in ischemia/reperfusion injury. Data in vitro indicated that apigenin could prompt cell proliferation, tube formation, and cell migration while inhibiting apoptosis and autophagy by affecting Caveolin-1/VEGF, Bcl-2, Caspase-3, Beclin-1, and mTOR expression. Results in vivo showed that apigenin significantly reduced neurobehavioral scores and volume of cerebral infarction while prompting vascular endothelial cell proliferation by upregulating VEGFR2/CD34 double-labeling endothelial progenitor cell (EPC) number and affecting Caveolin-1, VEGF, and eNOS expression in brain tissue of MCAO/R rats. All the data suggested that apigenin may be protective for the brain against ischemia/reperfusion injury by alleviating apoptosis and autophagy, promoting cell proliferation in HBMVECs of OGD/R, and attenuating brain damage and improved neurological function in rats of MCAO/R through the Caveolin-1/VEGF pathway.
Collapse
|