1
|
Bontempi B, Lévêque P, Dubreuil D, Jay TM, Edeline JM. Effects of Head-Only Exposure to 900 MHz GSM Electromagnetic Fields in Rats: Changes in Neuronal Activity as Revealed by c-Fos Imaging without Concomitant Cognitive Impairments. Biomedicines 2024; 12:1954. [PMID: 39335468 PMCID: PMC11428239 DOI: 10.3390/biomedicines12091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last two decades, animal models have been used to evaluate the physiological and cognitive effects of mobile phone exposure. Here, we used a head-only exposure system in rats to determine whether exposure to 900 MHz GSM electromagnetic fields (EMFs) induces regional changes in neuronal activation as revealed by c-Fos imaging. In a first study, rats were exposed for 2 h to brain average specific absorption rates (BASARs) ranging from 0.5 to 6 W/kg. Changes in neuronal activation were found to be dose-dependent, with significant increases in c-Fos expression occurring at BASAR of 1 W/kg in prelimbic, infralimbic, frontal, and cingulate cortices. In a second study, rats were submitted to either a spatial working memory (WM) task in a radial maze or a spatial reference memory (RM) task in an open field arena. Exposures (45 min) were conducted before each daily training session (BASARs of 1 and 3.5 W/kg). Control groups included sham-exposed and control cage animals. In both tasks, behavioral performance evolved similarly in the four groups over testing days. However, c-Fos staining was significantly reduced in cortical areas (prelimbic, infralimbic, frontal, cingulate, and visual cortices) and in the hippocampus of animals engaged in the WM task (BASARs of 1 and 3.5 W/kg). In the RM task, EMF exposure-induced decreases were limited to temporal and visual cortices (BASAR of 1 W/kg). These results demonstrate that both acute and subchronic exposures to 900 MHz EMFs can produce region-specific changes in brain activity patterns, which are, however, insufficient to induce detectable cognitive deficits in the behavioral paradigms used here.
Collapse
Affiliation(s)
- Bruno Bontempi
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux et Ecole Pratique des Hautes Etudes, 33000 Bordeaux, France
| | - Philippe Lévêque
- XLIM, CNRS UMR 6172, Université de Limoges, 87060 Limoges, France
| | - Diane Dubreuil
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| | - Thérèse M Jay
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S 1266 INSERM, Université Paris Cité, 75014 Paris, France
| | - Jean-Marc Edeline
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| |
Collapse
|
2
|
Jing X, Menghua L, Lihui Z, Qian W, Xueli W, Xuelong Z, Zhihui L, Guofu D, Changzhen W. Multi-frequency electromagnetic radiation induces anxiety in mice via inflammation in the cerebral cortex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35161-35172. [PMID: 38724846 DOI: 10.1007/s11356-024-33447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Modern life is filled with radiofrequency electromagnetic radiation (RF-EMR) in various frequency bands, while the health risks are not clear. In this study, mice were whole-body exposed to 0.9/1.5/2.65 GHz radiofrequency radiation at 4 W/kg for 2 h per day for 4 weeks to investigate the emotional effects. It was found that the mice showed anxiety but no severe depression. The ELISA results showed a significant decrease in amino acid neurotransmitters (GABA, DA, 5-HT), although acetylcholine (ACH) levels were not significantly altered. Furthermore, Western blot results showed that BDNF, TrkB, and CREB levels were increased in the cerebral cortex, while NF-κB levels were decreased. In addition, pro-inflammatory factors (IL-6, IL-1β, TNF-α) were significantly elevated, and anti-inflammatory factors (IL-4, IL-10) tended to decrease. In conclusion, multi-frequency electromagnetic radiation induces an inflammatory response through the CREB-BDNF-TrkB and NF-κB pathways in the cerebral cortex and causes a decrease in excitatory neurotransmitters, which ultimately causes anxiety in mice.
Collapse
Affiliation(s)
- Xu Jing
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Li Menghua
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhang Lihui
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Qian
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wang Xueli
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhao Xuelong
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhihui
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dong Guofu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wang Changzhen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
3
|
Chen CP, Chen PC, Pan YL, Hsu YC. Prenatal lipopolysaccharide exposure induces anxiety-like behaviour in male mouse offspring and aberrant glial differentiation of embryonic neural stem cells. Cell Mol Biol Lett 2023; 28:67. [PMID: 37592237 PMCID: PMC10436442 DOI: 10.1186/s11658-023-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Prenatal infection has been implicated in the development of neuropsychiatric disorders in children. We hypothesised that exposure to lipopolysaccharide during prenatal development could induce anxiety-like behaviour and sensorineural hearing loss in offspring, as well as disrupt neural differentiation during embryonic neural development. METHODS We simulated prenatal infection in FVB mice and mouse embryonic stem cell (ESC) lines, specifically 46C and E14Tg2a, through lipopolysaccharide treatment. Gene expression profiling analyses and behavioural tests were utilized to study the effects of lipopolysaccharide on the offspring and alterations in toll-like receptor (TLR) 2-positive and TLR4-positive cells during neural differentiation in the ESCs. RESULTS Exposure to lipopolysaccharide (25 µg/kg) on gestation day 9 resulted in anxiety-like behaviour specifically in male offspring, while no effects were detected in female offspring. We also found significant increases in the expression of GFAP and CNPase, as well as higher numbers of GFAP + astrocytes and O4+ oligodendrocytes in the prefrontal cortex of male offspring. Furthermore, increased scores for genes related to oligodendrocyte and lipid metabolism, particularly ApoE, were observed in the prefrontal cortex regions. Upon exposure to lipopolysaccharide during the ESC-to-neural stem cell (NSC) transition, Tuj1, Map2, Gfap, O4, and Oligo2 mRNA levels increased in the differentiated neural cells on day 14. In vitro experiments demonstrated that lipopolysaccharide exposure induced inflammatory responses, as evidenced by increased expression of IL1b and ApoB mRNA. CONCLUSIONS Our findings suggest that prenatal infection at different stages of neural differentiation may result in distinct disturbances in neural differentiation during ESC-NSC transitions. Furthermore, early prenatal challenges with lipopolysaccharide selectively induce anxiety-like behaviour in male offspring. This behaviour may be attributed to the abnormal differentiation of astrocytes and oligodendrocytes in the brain, potentially mediated by ApoB/E signalling pathways in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy, Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ling Pan
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
4
|
Ur-Rehman M, Alfadhl Y, Chen X, Whiting R, Wright A, Lindsay CD, Tattersall J, Scott I. A resonant cavity system for exposing cell cultures to intense pulsed RF fields. Sci Rep 2022; 12:4755. [PMID: 35306515 PMCID: PMC8934360 DOI: 10.1038/s41598-022-08662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe IEEE and ICNIRP had specified a maximum permissible exposure for instantaneous peak electric field of 100 kV/m. However, no rationale was given for this limit. A novel exposure system was designed through a detailed process of analytical analysis, numerical modelling and prototype testing. The system consists of a cylindrical re-entrant resonant cavity that can achieve an electric field strength of more than 100 kV/m with an input power of 200 W. The working of the system was evaluated in simulation and experiment in terms of scattering parameters, electric field distributions and specific absorption rate. The system was then used to carry out in-vitro exposures of a human lymphoid cell line (GG0257) to a 1195 MHz signal at 53 dBm peak power and a pulse width of 550 ns at a range of interpulse intervals to identify heating-induced changes in cell viability. The proposed system offers high Q value of 5920 in unloaded condition which was reduced to 57 when loaded with 12 ml of cell culture but still offering 67 kV/m of the field intensity. Using the system for the exposure of GG0257 cells lasting 18 min, interpulse intervals of 11 μs or less caused a reduction in the number of viable cells and a corresponding increase in necrotic cells. For a shorter exposure duration of 6 min, the reduction in cell viability was seen at interpulse intervals of 5.5 μs or less. The designed exposure system is well capable of handling high intensity electric fields. Temperature measurements with a fibre optic probe and temperature sensitive labels showed that changes in viability were associated with temperature increases above 46 °C. This novel exposure system is an efficient means to investigate the possible relationship between peak field intensity and biological effects to provide a rationale behind the maximum exposure limit of 100 kV/m.
Collapse
|
5
|
Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons. Sci Rep 2022; 12:4063. [PMID: 35260711 PMCID: PMC8902282 DOI: 10.1038/s41598-022-07923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Increased needs for mobile phone communications have raised successive generations (G) of wireless technologies, which could differentially affect biological systems. To test this, we exposed rats to single head-only exposure of a 4G long-term evolution (LTE)-1800 MHz electromagnetic field (EMF) for 2 h. We then assessed the impact on microglial space coverage and electrophysiological neuronal activity in the primary auditory cortex (ACx), under acute neuroinflammation induced by lipopolysaccharide. The mean specific absorption rate in the ACx was 0.5 W/kg. Multiunit recording revealed that LTE-EMF triggered reduction in the response strength to pure tones and to natural vocalizations, together with an increase in acoustic threshold in the low and medium frequencies. Iba1 immunohistochemistry showed no change in the area covered by microglia cell bodies and processes. In healthy rats, the same LTE-exposure induced no change in response strength and acoustic threshold. Our data indicate that acute neuroinflammation sensitizes neuronal responses to LTE-EMF, which leads to an altered processing of acoustic stimuli in the ACx.
Collapse
|
6
|
Wallace J, Yahia-Cherif L, Gitton C, Hugueville L, Lemaréchal JD, Selmaoui B. Modulation of magnetoencephalography alpha band activity by radiofrequency electromagnetic field depicted in sensor and source space. Sci Rep 2021; 11:23403. [PMID: 34862418 PMCID: PMC8642443 DOI: 10.1038/s41598-021-02560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023] Open
Abstract
Several studies reported changes in spontaneous electroencephalogram alpha band activity related to radiofrequency electromagnetic fields, but findings showed both an increase and a decrease of its spectral power or no effect. Here, we studied the alpha band modulation after 900 MHz mobile phone radiofrequency exposure and localized cortical regions involved in these changes, via a magnetoencephalography (MEG) protocol with healthy volunteers in a double-blind, randomized, counterbalanced crossover design. MEG was recorded during eyes open and eyes closed resting-state before and after radiofrequency exposure. Potential confounding factors, known to affect alpha band activity, were assessed as control parameters to limit bias. Entire alpha band, lower and upper alpha sub-bands MEG power spectral densities were estimated in sensor and source space. Biochemistry assays for salivary biomarkers of stress (cortisol, chromogranin-A, alpha amylase), heart rate variability analysis and high-performance liquid chromatography for salivary caffeine concentration were realized. Results in sensor and source space showed a significant modulation of MEG alpha band activity after the radiofrequency exposure, with different involved cortical regions in relation to the eyes condition, probably because of different attention level with open or closed eyes. None of the control parameters reported a statistically significant difference between experimental sessions.
Collapse
Affiliation(s)
- Jasmina Wallace
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Lydia Yahia-Cherif
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Christophe Gitton
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Laurent Hugueville
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Jean-Didier Lemaréchal
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Brahim Selmaoui
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
- PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
7
|
He GL, Wang ZZ, Yu XT, Shen TT, Luo Z, Li P, Luo X, Tan YL, Gao P, Yang XS. The involvement of microglial CX3CR1 in heat acclimation-induced amelioration of adult hippocampal neurogenesis impairment in EMF-exposed mice. Brain Res Bull 2021; 177:181-193. [PMID: 34555433 DOI: 10.1016/j.brainresbull.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Microglial CX3C chemokine receptor 1 (CX3CR1) has been implicated in numerous cellular mechanisms, including signalling pathways that regulate brain homoeostasis and adult hippocampal neurogenesis. Specific environmental conditions can impair hippocampal neurogenesis-related cognition, learning and memory. However, the role of CX3CR1 in the neurogenic alterations resulting from the cross-tolerance protection conferred by heat acclimation (HA) against the effects of electromagnetic field (EMF) exposure is less well understood. Here, we investigated the role of microglial CX3CR1 signalling in adult hippocampal neurogenesis induced by HA in EMF-exposed mice. We found that EMF exposure significantly decreased the number of proliferating and differentiating cells in the dentate gyrus (DG) of the hippocampus, resulting in a reduced neurogenesis rate. Moreover, alterations in the phenotypes of activated microglia and decreased expression levels of CX3CR1, but not sirtuin 1 (SIRT1), were observed in the brains of EMF-exposed mice. Remarkably, HA treatment improved microglial phenotypes, restored the expression of CX3CR1, and ameliorated the decrease in the adult hippocampal neurogenesis rate following EMF exposure. Moreover, pharmacological inhibition of CX3CR1 and SIRT1 failed to restore CX3CR1 expression and ameliorate hippocampal neurogenesis impairment following HA plus EMF stimulation. These results indicate that microglial CX3CR1 is involved in the cross-tolerance protective effect of HA on adult hippocampal neurogenesis upon EMF exposure.
Collapse
Affiliation(s)
- Gen-Lin He
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ze-Ze Wang
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue-Ting Yu
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ting-Ting Shen
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ping Li
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Yu-Long Tan
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Army Medical University, Chongqing, China
| | - Xue-Sen Yang
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China.
| |
Collapse
|
8
|
Kaprana AE, Vardiambasis IO, Kapetanakis TN, Ioannidou MP, Nikolopoulos CD, Lyronis GE. Experimental study of potential adverse effects on the auditory system of rabbits exposed to short-term GSM-1800 radiation. Int J Radiat Biol 2020; 97:421-430. [PMID: 33264581 DOI: 10.1080/09553002.2021.1859152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The effects of the electromagnetic (EM) radiation emitted by a mobile phone on the central auditory system of rabbits are investigated in this paper. Auditory brainstem response (ABR) measurements were performed before and after short-term exposure to EM radiation. MATERIALS AND METHODS Excitation was provided by a GSM-1800 emitter placed in contact with the (randomly selected) ear of the anesthetized rabbit/subject. The latency of waves I, II, III, IV, V and the interpeak latencies I-III, I-V, III-V were recorded, for both ears, before (baseline recordings) and after 1, 15, 30, 45 and 60 minutes of exposure to the EM radiation. The repeated measures one-way analysis of variance (ANOVA) followed by the post hoc Tukey test for pairwise comparisons was performed in order to decide about the significance of the results. RESULTS The statistical tests indicated that, as regards the ear ipsilateral to the radiating module, the mean latencies of waves I, II, III, IV, V, I-III, I-IV after 60 min exposure, the mean latencies of waves I, III, IV, V, I-III, I-IV after 45 min exposure and the mean latencies of waves I, III, IV, V, I-IV after 30 min exposure, were significantly prolonged compared to the corresponding baseline values. Statistically significant differences were also found for certain peak and interpeak latencies for 60 min exposure as compared with the corresponding results for 1 min and 15 min exposure. No statistically significant delay was observed for the latencies before and after the exposure, for the ear contralateral to the radiation source. CONCLUSIONS Although we found that more than 30 min exposure to GSM-1800 radiation resulted in prolongation of certain ABR components of rabbits, further investigation may be needed into the potential adverse effects on the auditory pathways.
Collapse
Affiliation(s)
- Antigoni E Kaprana
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital Aachen, Aachen, Germany
| | | | | | - Melina P Ioannidou
- Department of Information & Electronic Engineering, International Hellenic University, Thessaloniki, Greece
| | | | | |
Collapse
|
9
|
Kacprzyk A, Kocoń S, Składzień J, Rokita E, Pawlak R, Kwiecień J, Tatoń G. Does the short-term exposure to radiofrequency electromagnetic field originating from mobile phone affect auditory functions as measured by Acoustic Admittance and Evoked Otoacoustic Emission tests? Electromagn Biol Med 2020; 39:411-418. [PMID: 32993394 DOI: 10.1080/15368378.2020.1826960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mobile phones constitute an important source of radiofrequency electromagnetic field (RF-EMF) for humans. Taking into account high sensitivity of sensory hair cells of the inner ear to endogenous and exogenous agents, the potential impact of mobile phone usage on auditory organs is of particular interest. AIM The aim of the study was to evaluate the impact of short-term exposure to RF-EMF generated by a mobile phone during 15-minute simulated phone call on human hearing as measured by Transient Evoked Otoacoustic Emission (TEOAE) and Acoustic Admittance Testing (AAT). MATERIAL AND METHODS Within-subject study was performed on 23 healthy volunteers. All of the participants underwent TEOAE and AAT before and immediately after 15-minute simulated phone call with the use of a standard, modern smartphone. Analyzed parameters included: static compliance of tympanic membrane, middle ear pressure, ipsi- and contralateral acoustic reflex thresholds and percentage of signal reproducibility in TEOAE for exposed and non-exposed ear. Additionally, the results were compared in subgroups distinguished basing on self-reported sensitivity to RF-EMF originating from mobile phones. RESULTS No statistically significant differences were identified between results of TEOAE and AAT before and after exposure, both in exposed and non-exposed ear. The results of EMF sensitive and non-sensitive subjects were comparable in all performed tests. CONCLUSIONS Short-term exposure to mobile phone electromagnetic field did not influence auditory functions as measured by Evoked Otoacoustic Emission test and Acoustic Admittance Testing.
Collapse
Affiliation(s)
- Artur Kacprzyk
- Department of Biophysics, Chair of Physiology, Jagiellonian University Medical College , Cracow, Poland.,Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College , Cracow, Poland
| | - Sebastian Kocoń
- Department of Otolaryngology, Jagiellonian University Medical College , Cracow, Poland
| | - Jacek Składzień
- Department of Otolaryngology, Jagiellonian University Medical College , Cracow, Poland
| | - Eugeniusz Rokita
- Department of Biophysics, Chair of Physiology, Jagiellonian University Medical College , Cracow, Poland
| | - Rafał Pawlak
- National Institute of Telecommunications, Warsaw, Poland
| | - Jakub Kwiecień
- National Institute of Telecommunications, Warsaw, Poland
| | - Grzegorz Tatoń
- Department of Biophysics, Chair of Physiology, Jagiellonian University Medical College , Cracow, Poland
| |
Collapse
|
10
|
Effects of a Single Head Exposure to GSM-1800 MHz Signals on the Transcriptome Profile in the Rat Cerebral Cortex: Enhanced Gene Responses Under Proinflammatory Conditions. Neurotox Res 2020; 38:105-123. [PMID: 32200527 PMCID: PMC7223958 DOI: 10.1007/s12640-020-00191-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Mobile communications are propagated by electromagnetic fields (EMFs), and since the 1990s, they operate with pulse-modulated signals such as the GSM-1800 MHz. The biological effects of GSM-EMF in humans affected by neuropathological processes remain seldom investigated. In this study, a 2-h head-only exposure to GSM-1800 MHz was applied to (i) rats undergoing an acute neuroinflammation triggered by a lipopolysaccharide (LPS) treatment, (ii) age-matched healthy rats, or (iii) transgenic hSOD1G93A rats that modeled a presymptomatic phase of human amyotrophic lateral sclerosis (ALS). Gene responses were assessed 24 h after the GSM head-only exposure in a motor area of the cerebral cortex (mCx) where the mean specific absorption rate (SAR) was estimated to be 3.22 W/kg. In LPS-treated rats, a genome-wide mRNA profiling was performed by RNA-seq analysis and revealed significant (adjusted p value < 0.05) but moderate (fold changes < 2) upregulations or downregulations affecting 2.7% of the expressed genes, including genes expressed predominantly in neuronal or in glial cell types and groups of genes involved in protein ubiquitination or dephosphorylation. Reverse transcription-quantitative PCR analyses confirmed gene modulations uncovered by RNA-seq data and showed that in a set of 15 PCR-assessed genes, significant gene responses to GSM-1800 MHz depended upon the acute neuroinflammatory state triggered in LPS-treated rats, because they were not observed in healthy or in hSOD1G93A rats. Together, our data specify the extent of cortical gene modulations triggered by GSM-EMF in the course of an acute neuroinflammation and indicate that GSM-induced gene responses can differ according to pathologies affecting the CNS.
Collapse
|
11
|
Bosquillon de Jenlis A, Del Vecchio F, Delanaud S, Bach V, Pelletier A. Effects of co-exposure to 900 MHz radiofrequency electromagnetic fields and high-level noise on sleep, weight, and food intake parameters in juvenile rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113461. [PMID: 31706765 DOI: 10.1016/j.envpol.2019.113461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/13/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Electrohypersensitive people attribute various symptoms to exposure of radiofrequency electromagnetic fields (RF-EMF); sleep disturbance is the most frequently cited. However, laboratory experiments have yielded conflicting results regarding sleep alterations. Our hypothesis was that exposure to RF-EMF alone would lead to slight or non-significant effects but that co-exposure to RF-EMFs and other environmental constraints (such as noise) would lead to significant effects. METHODS 3-week-old male Wistar rats (4 groups, n = 12 per group) were exposed for 5 weeks to continuous RF-EMF (900 MHz, 1.8 V/m, SAR = 30 mW/kg) in the presence or absence of high-level noise (87.5 dB, 50-20000 Hz) during the rest period. After 5 weeks of exposure, sleep (24 h recording), food and water intakes, and body weight were recorded with or without RF-EMF and/or noise. At the end of this recording period, sleep was scored during the 1 h resttime in the absence of noise and of RF-EMF exposure. RESULTS Exposure to RF-EMF and/or noise was associated with body weight gain, with hyperphagia in the noise-only and RF-EMF + noise groups and hypophagia in the RF-EMF-only group. Sleep parameters recording over 24 h highlighted a higher frequency of active wakefulness in the RF-EMF-only group and a lower non-rapid eye movement/rapid eye movement sleep ratio during the active period in the noise-only group. There were no differences in sleep duration in either group. During the 1-h, constraint-free sleep recording, sleep rebound was observed in the noise-only group but not in the RF-EMF-only and RF-EMF + noise groups. CONCLUSION Our study showed effects of RF-EMF, regardless of whether or not the animals were also exposed to noise. However, the RF-EMF + noise group presented no exacerbation of those effects. Our results did not support the hypothesis whereby the effects of RF-EMF on physiological functions studied are only visible in animals exposed to both noise and RF-EMF.
Collapse
Affiliation(s)
| | - Flavia Del Vecchio
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025, Amiens, France
| | - Stéphane Delanaud
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025, Amiens, France
| | - Véronique Bach
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025, Amiens, France
| | - Amandine Pelletier
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025, Amiens, France.
| |
Collapse
|
12
|
Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG. Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30693-30710. [PMID: 31463749 DOI: 10.1007/s11356-019-06278-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, PO Box 11172, Ras Al Khaimah, UAE.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | | - Raju Suresh Kumar
- Department of Basic Sciences, College of Science and Health Professions-Jeddah, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, P. O. Box 9515, Jeddah, 21423, Kingdom of Saudi Arabia
| | - Satheesha B Nayak
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, 576104, India
| | - P Gopalakrishna Bhat
- Division of Biotechnology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| |
Collapse
|
13
|
Wallace J, Selmaoui B. Effect of mobile phone radiofrequency signal on the alpha rhythm of human waking EEG: A review. ENVIRONMENTAL RESEARCH 2019; 175:274-286. [PMID: 31146099 DOI: 10.1016/j.envres.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/14/2023]
Abstract
In response to the exponential increase in mobile phone use and the resulting increase in exposure to radiofrequency electromagnetic fields (RF-EMF), there have been several studies to investigate via electroencephalography (EEG) whether RF-EMF exposure affects brain activity. Data in the literature have shown that exposure to radiofrequency signals modifies the waking EEG with the main effect on the alpha band frequency (8-13 Hz). However, some studies have reported an increase in alpha band power, while others have shown a decrease, and other studies showed no effect on EEG power. Given that changes in the alpha amplitude are associated with attention and some cognitive aspects of human behavior, researchers deemed necessary to look whether alpha rhythm was modulated under RF-EMF exposure. The present review aims at comparing and discussing the main findings obtained so far regarding RF-EMF effects on alpha rhythm of human waking spontaneous EEG, focusing on differences in protocols between studies, which might explain the observed discrepancies and inconclusive results.
Collapse
Affiliation(s)
- Jasmina Wallace
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I-01, Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| | - Brahim Selmaoui
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I-01, Faculty of Medicine, University of Picardy Jules Verne, Amiens, France.
| |
Collapse
|