1
|
Han Y, Hao G, Han S, Zhu T, Dong Y, Chen L, Yang X, Li X, Jin H, Liang G. Polydatin ameliorates early brain injury after subarachnoid hemorrhage through up-regulating SIRT1 to suppress endoplasmic reticulum stress. Front Pharmacol 2024; 15:1450238. [PMID: 39295935 PMCID: PMC11408241 DOI: 10.3389/fphar.2024.1450238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aims to investigate the inhibitory effect of Polydatin (PD) on endoplasmic reticulum (ER) stress following subarachnoid hemorrhage (SAH) and to elucidate the underlying mechanisms. Methods A standard intravascular puncture model was established to mimic SAH in mice. Neurological functions were assessed using neurological scoring, Grip test, and Morris water maze. Brain edema and Evans blue extravasation were measured to evaluate blood-brain barrier permeability. Western blot and quantitative real-time polymerase chain reaction (PCR) analyses were performed to examine protein and mRNA expressions related to ER stress. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to detect cell apoptosis, and transmission electron microscopy was used to observe the ultrastructure of the endoplasmic reticulum. Results The results indicated that PD significantly reduced brain edema and Evans blue extravasation after SAH, improving neurological function. Compared to the SAH group, the expression levels of ER stress-related proteins including glucose-regulated protein 78 (GRP78), phosphorylated protein kinase R-like endoplasmic reticulum kinase (p-PERK), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), were significantly lower in the PD-treated group. Moreover, PD significantly enhances the protein expression of Sirtuin 1 (SIRT1). Validation with sh-SIRT1 confirmed the critical role of SIRT1 in ER stress, with PD's inhibitory effect on ER stress being dependent on SIRT1 expression. Additionally, PD attenuated ER stress-mediated neuronal apoptosis and SAH-induced ferroptosis through upregulation of SIRT1. Conclusion PD alleviates ER stress following SAH by upregulating SIRT1 expression, thereby mitigating early brain injury. The protective effects of PD are mediated through SIRT1, which inhibits ER stress and reduces neuronal apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Yuwei Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Song Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Tingzhun Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xiaoming Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
3
|
Zeng GG, Tang SS, Jiang WL, Yu J, Nie GY, Tang CK. Apelin-13: A Protective Role in Vascular Diseases. Curr Probl Cardiol 2024; 49:102088. [PMID: 37716542 DOI: 10.1016/j.cpcardiol.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Shang-Shu Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Tian Y, Wang R, Liu L, Zhang W, Liu H, Jiang L, Jiang Y. The regulatory effects of the apelin/APJ system on depression: A prospective therapeutic target. Neuropeptides 2023; 102:102382. [PMID: 37716179 DOI: 10.1016/j.npep.2023.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Depression is a debilitating neuropsychological disorder characterized by high incidence, high recurrence, high suicide, and high disability rates, which poses serious threats to human health and imposes heavy psychological and economic burdens on family and society. The pathogenesis of depression is extremely complex, and its etiology is multifactorial. Mounting evidence suggests that apelin and apelin receptor APJ, which compose the apelin/APJ system, are related to the development of depression. However, the specific mechanism is still unclear, and research in this area in human is still insufficient. Acceleration of research into the regulatory effects and underlying mechanisms of the apelin/APJ system in depression may identify attractive therapeutic targets and contribute to the development of novel intervention strategies against this devastating psychological disorder. In this review, we mainly discuss the regulatory effects of apelin/APJ system on depression and its potential therapeutic applications.
Collapse
Affiliation(s)
- Yanjun Tian
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Ruihao Wang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Lin Liu
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Wenhuan Zhang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Liqing Jiang
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yunlu Jiang
- School of Mental Health, Jining Medical University, Jining 272067, China.
| |
Collapse
|
5
|
Zhang J, Zhang Z, Wang X, Liu Y, Yu Q, Wang K, Fang Y, Lenahan C, Chen M, Chen S. Connection between oxidative stress and subcellular organelle in subarachnoid hemorrhage: Novel mechanisms and therapeutic implications. CNS Neurosci Ther 2023; 29:3672-3683. [PMID: 37408392 PMCID: PMC10651993 DOI: 10.1111/cns.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) is one of the most devastating forms of stroke, with limited treatment modalities and poor patient outcomes. Previous studies have proposed multiple prognostic factors; however, relative research on treatment has not yet yielded favorable clinical outcomes. Moreover, recent studies have suggested that early brain injury (EBI) occurring within 72 h after SAH may contribute to its poor clinical outcomes. Oxidative stress is recognized as one of the main mechanisms of EBI, which causes damage to various subcellular organelles, including the mitochondria, nucleus, endoplasmic reticulum (ER), and lysosomes. This could lead to significant impairment of numerous cellular functions, such as energy supply, protein synthesis, and autophagy, which may directly contribute to the development of EBI and poor long-term prognostic outcomes. In this review, the mechanisms underlying the connection between oxidative stress and subcellular organelles after SAH are discussed, and promising therapeutic options based on these mechanisms are summarized.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
- Department of Neurosurgery, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Qian Yu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Cameron Lenahan
- Center for Neuroscience ResearchLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Maohua Chen
- Department of Neurosurgery, Wenzhou Central HospitalAffiliated Dingli Clinical Institute of Wenzhou Medical UniversityWenzhouChina
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
6
|
Lin Q, Ye L, Dai J, Ye Z, Ba H, Li Z, Chen X, Chen M, Lu C, Sun J, Cai J. A prospective cohort study on decreased serum apelin-13 levels after human aneurysmal subarachnoid hemorrhage: associations with severity and prognosis. Neurosurg Rev 2023; 46:235. [PMID: 37682366 DOI: 10.1007/s10143-023-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Apelin-13 may have neuroprotective effects. We aimed to determine whether serum apelin-13 could serve as a potential biomarker for severity, delayed cerebral ischemia (DCI), and prognosis after human aneurysmal subarachnoid hemorrhage (aSAH). In this prospective, observational, cohort, single-center study of 139 patients with aSAH and 139 healthy individuals, serum apelin-13 levels were determined. The indicators of stroke severity were the Hunt-Hess scale and the modified Fisher grading scale. The prognostic parameters were DCI and 6-month worse prognosis (Extended Glasgow Outcome Scale scores of 1-4). Using binary logistic regression analysis, the relationship between serum apelin-13 levels and prognosis was reported as odds ratios (ORs) with 95% confidence intervals (CIs). Under the receiver operating characteristic curve, prognostic abilities were shown as areas under the curve (AUCs) with 95% CIs. Serum apelin-13 levels were substantially lower in patients than in controls (median, 28.8 versus 48.6 ng/ml; P < 0.001), in patients with DCI than in non-DCI patients (median, 14.9 versus 31.6 ng/ml; P < 0.001), and in patients with worse prognosis than in those with good prognosis (median, 16.3 versus 33.7 ng/ml; P < 0.001). Serum apelin-13 levels were independently correlated with Hunt-Hess scores (beta, -6.836; 95% CI, -8.963-4.708; VIF, 2.219; P = 0.001) and modified Fisher scores (beta, -3.350; 95% CI, -6.151-0.549; VIF, 1.562; P = 0.019). Serum apelin-13 levels were an independent predictor of DCI (OR, 0.951; 95% CI, 0.914-0.990; P = 0.022) and worse prognosis (OR, 0.954; 95% CI, 0.916-0.993; P = 0.013). Serum apelin-13 levels significantly differentiated DCI and poor prognosis, with AUCs of 0.753 (95% CI, 0.656-0.850) and 0.791 (95% CI, 0.713-0.868) respectively. Using the Youden method, serum apelin-13 levels < 19.3 ng/ml distinguished the risk of DCI with 64.7% sensitivity and 77.1% specificity, and serum apelin-13 levels < 30.2 ng/ml discriminated the development of worse prognosis with 89.1% sensitivity and 63.4% specificity. Serum apelin-13 levels combined with Hunt-Hess scores and modified Fisher scores displayed a significantly higher AUC than any one of them for prognostic prediction (all P < 0.05). Decreased serum apelin-13 levels, which are strongly correlated with disease severity, independently predicted poor outcomes following aSAH, substantializing serum apelin-13 as a useful prognostic biomarker of aSAH.
Collapse
Affiliation(s)
- Qun Lin
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Liangzhi Ye
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Junxia Dai
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Zhengrong Ye
- The Central Blood Station of Wenzhou, 451 Nixian Road, Wenzhou, 325026, China
| | - Huajun Ba
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Zhiwei Li
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Xiaoxiang Chen
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Maohua Chen
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Chuan Lu
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Jun Sun
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
| | - Jianyong Cai
- Department of Neurosurgery, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Zhang S, Li X, Yuan T, Guo X, Jin C, Jin Z, Li J. Glutamine inhibits inflammation, oxidative stress, and apoptosis and ameliorates hyperoxic lung injury. J Physiol Biochem 2023:10.1007/s13105-023-00961-5. [PMID: 37145351 DOI: 10.1007/s13105-023-00961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Glutamine (Gln) is the most widely acting and abundant amino acid in the body and has anti-inflammatory properties, regulates body metabolism, and improves immune function. However, the mechanism of Gln's effect on hyperoxic lung injury in neonatal rats is unclear. Therefore, this work focused on examining Gln's function in lung injury of newborn rats mediated by hyperoxia and the underlying mechanism. We examined body mass and ratio of wet-to-dry lung tissue weights of neonatal rats. Hematoxylin and eosin (HE) staining was performed to examine histopathological alterations of lung tissues. In addition, enzyme-linked immunoassay (ELISA) was conducted to measure pro-inflammatory cytokine levels within bronchoalveolar lavage fluid (BALF). Apoptosis of lung tissues was observed using TUNEL assay. Western blotting was performed for detecting endoplasmic reticulum stress (ERS)-associated protein levels. The results showed that Gln promoted body weight gain, significantly reduced pathological damage and oxidative stress in lung tissue, and improved lung function in neonatal rats. Gln reduced pro-inflammatory cytokine release as well as inflammatory cell production in BALF and inhibited apoptosis in lung tissue cells. Furthermore, we found that Gln could downregulate ERS-associated protein levels (GRP78, Caspase-12, CHOP) and inhibit c-Jun N-terminal kinase (JNK) and inositol-requiring enzyme 1 alpha (IRE1α) phosphorylation. These results in an animal model of bronchopulmonary dysplasia (BPD) suggest that Gln may have a therapeutic effect on BPD by reducing lung inflammation, oxidative stress, and apoptosis and improving lung function; its mechanism of action may be related to the inhibition of the IRE1α/JNK pathway.
Collapse
Affiliation(s)
- Shujian Zhang
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Xuewei Li
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tiezheng Yuan
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin, China
| | - Xiangyu Guo
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin, China
| | - Can Jin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhengyong Jin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China.
- Department of Pediatrics, Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Jinliang Li
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
8
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, Fu M, Wan T, Yuan M. Neuroprotective Roles of Apelin-13 in Neurological Diseases. Neurochem Res 2023; 48:1648-1662. [PMID: 36745269 DOI: 10.1007/s11064-023-03869-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Apelin is a natural ligand for the G protein-coupled receptor APJ, and the apelin/APJ system is widely distributed in vivo. Among the apelin family, apelin-13 is the major apelin isoform in the central nervous system and cardiovascular system, and is involved in the regulation of various physiopathological mechanisms such as apoptosis, neuroinflammation, angiogenesis, and oxidative stress. Apelin is currently being extensively studied in the nervous system, and apelin-13 has been shown to be associated with the onset and progression of a variety of neurological disorders, including stroke, neurodegenerative diseases, epilepsy, spinal cord injury (SCI), and psychiatric diseases. This study summarizes the pathophysiological roles of apelin-13 in the development and progression of neurological related diseases.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiwei Jiang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjie Sun
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Beibei Xia
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Teng Wan
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China. .,Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
10
|
Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023; 50:1639-1653. [PMID: 36378421 PMCID: PMC9665010 DOI: 10.1007/s11033-022-08075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Ao Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Zhang YP, Yang Q, Li YA, Yu MH, He GW, Zhu YX, Liu ZG, Liu XC. Inhibition of the Activating Transcription Factor 6 Branch of Endoplasmic Reticulum Stress Ameliorates Brain Injury after Deep Hypothermic Circulatory Arrest. J Clin Med 2023; 12:jcm12030814. [PMID: 36769462 PMCID: PMC9917384 DOI: 10.3390/jcm12030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Neurological dysfunction is a common complication of deep hypothermic circulatory arrest (DHCA). Endoplasmic reticulum (ER) stress plays a role in neuronal ischemia-reperfusion injury; however, it is unknown whether it contributes to DHCA-induced brain injury. Here, we aimed to investigate the role of ER stress in a rat DHCA model and cell hypothermic oxygen-glucose deprivation reoxygenation (OGD/R) model. ER stress and apoptosis-related protein expression were identified using Western blot analysis. Cell counting assay-8 and flow cytometry were used to determine cell viability and apoptosis, respectively. Brain injury was evaluated using modified neurological severity scores, whereas brain injury markers were detected through histological examinations and immunoassays. We observed significant ER stress molecule upregulation in the DHCA rat hippocampus and in hypothermic OGD/R PC-12 cells. In vivo and in vitro experiments showed that ER stress or activating transcription factor 6 (ATF6) inhibition alleviated rat DHCA-induced brain injury, increased cell viability, and decreased apoptosis accompanied by C/EBP homologous protein (CHOP). ER stress is involved in DHCA-induced brain injury, and the inhibition of the ATF6 branch of ER stress may ameliorate this injury by inhibiting CHOP-mediated apoptosis. This study establishes a scientific foundation for identifying new therapeutic targets for perioperative brain protection in clinical DHCA.
Collapse
Affiliation(s)
- You-Peng Zhang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Qin Yang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Yi-Ai Li
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Ming-Huan Yu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Guo-Wei He
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Department of Cardiac Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
- School of Pharmacy, Wannan Medical College, Wuhu 241001, China
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yu-Xiang Zhu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| | - Xiao-Cheng Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| |
Collapse
|
12
|
Feedback Interaction Between Apelin and Endoplasmic Reticulum Stress in the Rat Myocardium. J Cardiovasc Pharmacol 2023; 81:21-34. [PMID: 36084017 DOI: 10.1097/fjc.0000000000001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/01/2022] [Indexed: 01/26/2023]
Abstract
ABSTRACT Apelin is an endogenous active peptide, playing a crucial role in regulating cardiovascular homeostasis. This study aimed to investigate the interaction between apelin and endoplasmic reticulum stress (ERS). Tunicamycin (Tm) and dithiothreitol (DTT) were used to induce ERS in the ex vivo cultured myocardium of rats. Myocardial injury was determined by the activities of lactate dehydrogenase and creatine kinase-MB in the culture medium. The protein levels of an ERS-associated molecule, apelin, and its receptor angiotensin domain type 1 receptor-associated proteins (APJ) in the myocardium were determined by western blot analysis. The level of apelin in the culture medium was determined by enzyme immunoassay. Administration of Tm and DTT triggered ERS activation and myocardial injury, and led to a decrease in protein levels of apelin and APJ, in a dose-dependent manner. Integrated stress response inhibitor, an inhibitor of eukaryotic initiation factor 2α phosphorylation that is commonly used to prevent activation of protein kinase R-like ER kinase cascades, blocked ERS-induced myocardial injury and reduction of apelin and APJ levels. The ameliorative effect of integrated stress response inhibitor was partially inhibited by [Ala]-apelin-13, an antagonist of APJ. Furthermore, apelin treatment inhibited activation of the 3 branches of ERS induced by Tm and DTT in a dose-dependent manner, thereby preventing Tm-induced or DTT-induced myocardial injury. The negative feedback regulation between ERS activation and apelin/APJ suppression might play a critical role in myocardial injury. Restoration of apelin/APJ signaling provides a potential target for the treatment and prevention of ERS-associated tissue injury and diseases.
Collapse
|
13
|
Li MC, Tian Q, Liu S, Han SM, Zhang W, Qin XY, Chen JH, Liu CL, Guo YJ. The mechanism and relevant mediators associated with neuronal apoptosis and potential therapeutic targets in subarachnoid hemorrhage. Neural Regen Res 2023; 18:244-252. [PMID: 35900398 PMCID: PMC9396483 DOI: 10.4103/1673-5374.346542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a dominant cause of death and disability worldwide. A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neurons, which subsequently promotes a series of pathophysiological responses leading to neuronal death. Many previous experimental studies have reported that excitotoxicity, mitochondrial death pathways, the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy, and inflammation are involved solely or in combination in this disorder. Among them, irreversible neuronal apoptosis plays a key role in both short- and long-term prognoses after SAH. Neuronal apoptosis occurs through multiple pathways including extrinsic, mitochondrial, endoplasmic reticulum, p53 and oxidative stress. Meanwhile, a large number of blood contents enter the subarachnoid space after SAH, and the secondary metabolites, including oxygenated hemoglobin and heme, further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema, causing early brain injury and delayed cerebral ischemia, and ultimately increasing neuronal apoptosis. Even there is no clear and effective therapeutic strategy for SAH thus far, but by understanding apoptosis, we might excavate new ideas and approaches, as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH. In this review, we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH, which provides a possible target or new strategy for the treatment of SAH.
Collapse
|
14
|
Abot A, Robert V, Fleurot R, Dardente H, Hellier V, Froment P, Duittoz A, Knauf C, Dufourny L. How does apelin affect LH levels? An investigation at the level of GnRH and KNDy neurons. Mol Cell Endocrinol 2022; 557:111752. [PMID: 35973528 DOI: 10.1016/j.mce.2022.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Hypothalamic control of reproduction relies on GnRH and kisspeptin (KP) secretions. KP neurons are sensitive to sex steroids and metabolic status and their distribution overlaps with neurons producing apelin, a metabolic hormone known to decrease LH secretion in rats. Here, we observed neuroanatomical contacts between apelin fibers and both KP and GnRH neurons in the hypothalamus of male rodents. Intracerebroventricular apelin infusion for 2 weeks in male mice did not decrease LH levels nor did it affect gene expression for KP, neurokinin B and dynorphin. Finally, increasing apelin concentrations did not modulate Ca2+ levels of cultured GnRH neurons, while 10 μM apelin infusion on forskolin pretreated GnRH neurons revoked a rhythmic activity in 18% of GnRH neurons. These results suggest that acute apelin effect on LH secretion does not involve modulation of gene expression in KP neurons but may affect the secretory activity of GnRH neurons.
Collapse
Affiliation(s)
- Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, International Laboratory NeuroMicrobiota, CS 60039, 31024, Toulouse Cedex 3, France
| | - Vincent Robert
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Renaud Fleurot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Vincent Hellier
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Anne Duittoz
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, International Laboratory NeuroMicrobiota, CS 60039, 31024, Toulouse Cedex 3, France
| | - Laurence Dufourny
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
15
|
Li J, Chen Z, Chen J, Yu Y. The beneficial roles of apelin-13/APJ system in cerebral ischemia: Pathogenesis and therapeutic strategies. Front Pharmacol 2022; 13:903151. [PMID: 36034795 PMCID: PMC9399844 DOI: 10.3389/fphar.2022.903151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The incidence of cerebral ischemia has increased in the past decades, and the high fatality and disability rates seriously affect human health. Apelin is a bioactive peptide and the ligand of the G protein-coupled receptor APJ. Both are ubiquitously expressed in the peripheral and central nervous systems, and regulate various physiological and pathological process in the cardiovascular, nervous and endocrine systems. Apelin-13 is one of the subtypes of apelin, and the apelin-13/APJ signaling pathway protects against cerebral ischemia by promoting angiogenesis, inhibiting excitotoxicity and stabilizing atherosclerotic plaques. In this review, we have discussed the role of apelin-13 in the regulation of cerebral ischemia and the underlying mechanisms, along with the therapeutic potential of the apelin-13/APJ signaling pathway in cerebral ischemia.
Collapse
Affiliation(s)
- Jiabin Li
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhang Chen
- Department of Tuina, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyu Chen
- Department of Critical Care Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Jingyu Chen, ; Yue Yu,
| | - Yue Yu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jingyu Chen, ; Yue Yu,
| |
Collapse
|
16
|
Gao X, Cao Z, Tan H, Li P, Su W, Wan T, Guo W. LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Front Neurosci 2022; 16:903472. [PMID: 35860297 PMCID: PMC9289270 DOI: 10.3389/fnins.2022.903472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders cause untold human disability and death each year. For most neurological disorders, the efficacy of their primary treatment strategies remains suboptimal. Microglia are associated with the development and progression of multiple neurological disorders. Targeting the regulation of microglia polarization has emerged as an important therapeutic strategy for neurological disorders. Their pro-inflammatory (M1)/anti-inflammatory (M2) phenotype microglia are closely associated with neuronal apoptosis, synaptic plasticity, blood-brain barrier integrity, resistance to iron death, and astrocyte regulation. LncRNA, a recently extensively studied non-coding transcript of over 200 nucleotides, has shown great value to intervene in microglia polarization. It can often participate in gene regulation of microglia by directly regulating transcription or sponging downstream miRNAs, for example. Through proper regulation, microglia can exert neuroprotective effects, reduce neurological damage and improve the prognosis of many neurological diseases. This paper reviews the progress of research linking lncRNAs to microglia polarization and neurological diseases.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zilong Cao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Haifeng Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenen Su
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Teng Wan,
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Weiming Guo,
| |
Collapse
|
17
|
Wang Y, Xu J, You W, Shen H, Li X, Yu Z, Li H, Chen G. Roles of Rufy3 in experimental subarachnoid hemorrhage-induced early brain injury via accelerating neuronal axon repair and synaptic plasticity. Mol Brain 2022; 15:35. [PMID: 35461284 PMCID: PMC9034509 DOI: 10.1186/s13041-022-00919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
RUN and FYVE domain-containing 3 (Rufy3) is a well-known adapter protein of a small GTPase protein family and is bound to the activated Ras family protein to maintain neuronal polarity. However, in experimental subarachnoid hemorrhage (SAH), the role of Rufy3 has not been investigated. Consequently, we aimed to investigate the potential role of Rufy3 in an in vivo model of SAH-induced early brain injury (EBI). In addition, we investigated the relevant brain-protective mechanisms. Oxyhemoglobin (OxyHb) stimulation of cultured primary neurons simulated vitro SAH condition. The SAH rat model was induced by infusing autologous blood into the optic chiasma pool and treating the rats with lentivirus-negative control 1 (LV-NC1), lentivirus-Rufy3 shRNA (LV-shRNA), lentivirus-negative control 2 (LV-NC2), lentivirus-Rufy3 (LV-Rufy3), or 8-pCPT-2′-O-Me-cAMP (8p-CPT) (Rap1 agonist). In experiment one, we found that the protein level of Rufy3 decreased and neuronal axon injury in the injured neurons but was rectified by LV-Rufy3 treatment. In experiment two, mRNA and protein levels of Rufy3 were downregulated in brain tissue and reached the lowest level at 24 h after SAH. In addition, the expression of Myelin Basic Protein was downregulated and that of anti-hypophosphorylated neurofilament H (N52) was upregulated after SAH. In experiments three and four, Rufy3 overexpression (LV-Rufy3) increased the interactions between Rufy3 and Rap1, the level of Rap1-GTP, and the ratio of Rap1-GTP/total GTP. In addition, LV-Rufy3 treatment inhibited axon injury and accelerated axon repair by activating the Rap1/Arap3/Rho/Fascin signaling pathway accompanied by upregulated protein expression levels of ARAP3, Rho, Fascin, and Facin. LV-Rufy3 also enhanced synaptic plasticity by activating the Rap1/MEK/ERK/synapsin I signaling pathway accompanied by upregulated protein expression levels of ERK1, p-ERK1, MEK1, p-MEK1, synaspin I, and p-synaspin I. Moreover, LV-Rufy3 also alleviated brain damage indicators, including cortical neuronal cell apoptosis and degeneration, brain edema, and cognitive impairment after SAH. However, the downregulation of Rufy3 had the opposite effect and aggravated EBI induced by SAH. Notably, the combined application of LV-Rufy3 and 8p-CPT showed a significant synergistic effect on the aforementioned parameters. Our findings suggest that enhanced Rufy3 expression may reduce EBI by inhibiting axon injury and promoting neuronal axon repair and synaptic plasticity after SAH.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
18
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
19
|
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 2022; 12:794580. [PMID: 35082783 PMCID: PMC8784382 DOI: 10.3389/fimmu.2021.794580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
20
|
Shen X, Yuan G, Li B, Cao C, Cao D, Wu J, Li X, Li H, Shen H, Wang Z, Chen G. Apelin-13 attenuates early brain injury through inhibiting inflammation and apoptosis in rats after experimental subarachnoid hemorrhage. Mol Biol Rep 2022; 49:2107-2118. [PMID: 35000047 DOI: 10.1007/s11033-021-07028-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Early brain injury (EBI) has been considered as the major contributor to the neurological dysfunction and poor clinical outcomes of subarachnoid hemorrhage (SAH). Studies showed that apelin-13 exhibits a neuroprotective effect in brain damage induced by cerebral ischemia. However, it remains unclear whether apelin-13 could exhibit the protective functions following SAH. The present study aimed to validate the neuroprotective role of apelin-13 in SAH, and further investigated the underlying mechanisms. METHODS AND RESULTS We constructed SAH rat model and we found that apelin-13 significantly alleviated neurological disorder and brain edema, improved memory deficits in SAH rats. Apelin-13 treatment decreased contents of TNF-α and IL-1β in cerebral spinal fluid of SAH rat by using ELISA. Apelin-13 treatment promoted the expression of APJ and Bcl-2, and decreased the level of active caspase-3 and Bax in the temporal cortex after SAH by using western blot. Also, apelin-13 attenuated the cortical cell death and neuronal degeneration as shown by TUNEL, FJB and Nissl staining. However, ML221, an inhibitor of APJ, significantly reversed all the above neuroprotective effects of apelin-13. Moreover, a neuron-microglia co-culture system, which mimic SAH in vitro, confirmed the protective effect of apelin-13 on neurons and the inhibitory effect on inflammation through apoptosis-related proteins. CONCLUSIONS These data demonstrated that apelin-13 exhibit a neuroprotective role after SAH through inhibition of apoptosis in an APJ dependent manner.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai, 200127, China
| | - Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurosurgery, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurocritical Intensive Care Unit, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu Province, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
21
|
ZENG X, XU X, KONG J, RONG C, SHE J, GUO W, SHI L, ZHAO D. Effect of Puerarin on EBI after SAH. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Xiangwu ZENG
- The Second People's Hospital of Zhangye City, China
| | - Xiuzhen XU
- The Second People's Hospital of Zhangye City, China
| | | | - Congxue RONG
- The Second People's Hospital of Zhangye City, China
| | - Jianhu SHE
- The Second People's Hospital of Zhangye City, China
| | - Wanliang GUO
- The Second People's Hospital of Zhangye City, China
| | - Lijuan SHI
- The Second People's Hospital of Zhangye City, China
| | - Dianfan ZHAO
- The Second People's Hospital of Zhangye City, China
| |
Collapse
|
22
|
Han L, Xu Y, Shi Y. Molecular Mechanism of the ATF6α/S1P/S2P Signaling Pathway in Hippocampal Neuronal Apoptosis in SPS Rats. J Mol Neurosci 2021; 71:2487-2499. [PMID: 33738762 DOI: 10.1007/s12031-021-01823-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
Apoptosis of hippocampal neurons is one of the mechanisms of hippocampal atrophy in posttraumatic stress disorder (PTSD), and it is also an important cause of memory impairment in PTSD patients. Endoplasmic reticulum stress (ERS) mediated by activated transcription factor 6α (ATF6α)/site 1 protease (S1P)/S2P is involved in cell apoptosis, but it is not clear whether it is involved in hippocampal neuron apoptosis caused by PTSD. A PTSD rat model was constructed by the single prolonged stress (SPS) method. The study was divided into three parts. Experiment 1 included the control group, SPS 1 d group, SPS 7 d group, and SPS 14 d group. Experiment 2 included the control group, SPS 7 d group, SPS 7 d + AEBSF group, and control + AEBSF group. (4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) is an ATF6α pathway inhibitor). Experiment 3 included the control group, SPS 4 d group, SPS 4 d + AEBSF group, and control + AEBSF group. The protein and mRNA expression levels of ATF6α, glucose-regulated protein (GRP78), S1P, S2P, C/EBP homologous protein (CHOP), and caspase-12 in the hippocampus of PTSD rats were detected by immunohistochemistry, Western blotting and qRT-PCR. Apoptosis of hippocampal neurons was detected by TUNEL staining. In experiment 1, the protein and mRNA expression of ATF6α and GRP78 increased gradually in the SPS 1 d group and the SPS 7 d group but decreased in the SPS 14 d group (P < 0.01). In experiment 2, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly increased in the SPS 7 d group (P < 0.01). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly decreased after AEBSF pretreatment (P < 0.01). In experiment 3, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were increased in the SPS 14 d group (P < 0.05). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were decreased after AEBSF pretreatment (P < 0.05). SPS induced apoptosis of hippocampal neurons by activating ERS mediated by ATF6α, suggesting that ERS-induced apoptosis is involved in the occurrence of PTSD.
Collapse
Affiliation(s)
- Liang Han
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China
- Department of Thoracic Surgery, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanhao Xu
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Tian Y, Wang L, Qiu Z, Xu Y, Hua R. Autophagy triggers endoplasmic reticulum stress and C/EBP homologous protein-mediated apoptosis in OGD/R-treated neurons in a caspase-12-independent manner. J Neurophysiol 2021; 126:1740-1750. [PMID: 34644182 DOI: 10.1152/jn.00649.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on caspase-8 and -9 but not on caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links is needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.NEW & NOTEWORTHY ER stress induced by autophagy mediates caspase-8- and caspase-9-dependent apoptosis pathways by regulating CHOP in neurons exposed to OGD/R. We hypothesized that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons.
Collapse
Affiliation(s)
- Ying Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Qiu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yulun Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rongrong Hua
- Department of Radiology, the Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| |
Collapse
|
24
|
Jiang B, Li Y, Dai W, Wu A, Wu H, Mao D. Hydrogen-rich saline alleviates early brain injury through regulating of ER stress and autophagy after experimental subarachnoid hemorrhage. Acta Cir Bras 2021; 36:e360804. [PMID: 34644772 PMCID: PMC8516430 DOI: 10.1590/acb360804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Subarachnoid hemorrhage (SAH) is a common complication of cerebral vascular disease. Hydrogen has been reported to alleviate early brain injury (EBI) through oxidative stress injury, reactive oxygen species (ROS), and autophagy. Autophagy is a programmed cell death mechanism that plays a vital role in neuronal cell death after SAH. However, the precise role of autophagy in hydrogen-mediated neuroprotection following SAH has not been confirmed. METHODS In the present study, the objective was to investigate the neuroprotective effects and potential molecular mechanisms of hydrogen-rich saline in SAH-induced EBI by regulating neural autophagy in the C57BL/6 mice model. Mortality, neurological score, brain water content, ROS, malondialdehyde (MDA), and neuronal death were evaluated. RESULTS The results show that hydrogen-rich saline treatment markedly increased the survival rate and neurological score, increased neuron survival, downregulated the autophagy protein expression of Beclin-1 and LC3, and endoplasmic reticulum (ER) stress. That indicates that hydrogen-rich saline-mediated inhibition of autophagy and ER stress ameliorate neuronal death after SAH. The neuroprotective capacity of hydrogen-rich saline is partly dependent on the ROS/Nrf2/heme oxygenase-1 (HO-1) signaling pathway. CONCLUSIONS The results of this study demonstrate that hydrogen-rich saline improves neurological outcomes in mice and reduces neuronal death by protecting against neural autophagy and ER stress.
Collapse
Affiliation(s)
| | | | | | - An Wu
- Wenzhou Medical University, China
| | | | | |
Collapse
|
25
|
Apelin-13-Mediated AMPK ameliorates endothelial barrier dysfunction in acute lung injury mice via improvement of mitochondrial function and autophagy. Int Immunopharmacol 2021; 101:108230. [PMID: 34655850 DOI: 10.1016/j.intimp.2021.108230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023]
Abstract
Maintaining the pulmonary endothelial barrier that prevents the exudation of inflammatory factors and proteins is the key to the treatment of acute lung injury (ALI). Apelin-13 plays an important role in vascular diseases; however, the protective effects of Apelin-13 on ALI with pulmonary endothelial barrier are unknown. Therefore, mice and human umbilical vein endothelial cells (HUVECs) were injured by LPS following Apelin-13 administration. ALI mice showed reduced pulmonary vascular permeability, adhesion junction, mitochondrial function, mitochondrial biogenesis, and autophagy compared to the control group. Apelin-13 administration in ALI mice ameliorated LPS-induced lung injury, pulmonary vascular permeability, mitochondrial function, and promoted autophagic flux in mice and HUVECs. However, the effect of Apelin-13 was reduced after AMPK inhibition using Compound C. These data suggest that Apelin-13 ameliorates pulmonary vascular permeability in mice with ALI induced by LPS, which may be related to enhanced phosphorylation of AMPK to regulate mitochondrial function and autophagy.
Collapse
|
26
|
Gao L, Wang C, Qin B, Li T, Xu W, Lenahan C, Ying G, Li J, Zhao T, Zhu Y, Chen G. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase Suppresses Neuronal Apoptosis by Increasing Glycolysis and "cyclin-dependent kinase 1-Mediated Phosphorylation of p27 After Traumatic Spinal Cord Injury in Rats. Cell Transplant 2021; 29:963689720950226. [PMID: 32841050 PMCID: PMC7563815 DOI: 10.1177/0963689720950226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is a vital pathological factor that accounts for the poor prognosis of
traumatic spinal cord injury (t-SCI). The
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is a critical
regulator for energy metabolism and proven to have antiapoptotic effects. This
study aimed to investigate the neuroprotective role of PFKFB3 in t-SCI. A
compressive clip was introduced to establish the t-SCI model. Herein, we
identified that PFKFB3 was extensively distributed in neurons, and PFKFB3 levels
significantly increased and peaked 24 h after t-SCI. Additionally, knockdown of
PFKFB3 inhibited glycolysis, accompanied by aggravated neuronal apoptosis and
white matter injury, while pharmacological activation of PFKFB3 with meclizine
significantly enhanced glycolysis, attenuated t-SCI-induced spinal cord injury,
and alleviated neurological impairment. The PFKFB3 agonist, meclizine, activated
cyclin-dependent kinase 1 (CDK1) and promoted the phosphorylation of p27,
ultimately suppressing neuronal apoptosis. However, the neuroprotective effects
of meclizine against t-SCI were abolished by the CDK1 antagonist, RO3306. In
summary, our data demonstrated that PFKFB3 contributes robust neuroprotection
against t-SCI by enhancing glycolysis and modulating CDK1-related antiapoptotic
signals. Moreover, targeting PFKFB3 may be a novel and promising therapeutic
strategy for t-SCI.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Qin
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Xu
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- 448838Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Guangyu Ying
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianru Li
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tengfei Zhao
- Department of Orthopedics, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongjian Zhu
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Luo J, Liu W, Feng F, Chen L. Apelin/APJ system: A novel therapeutic target for locomotor system diseases. Eur J Pharmacol 2021; 906:174286. [PMID: 34174264 DOI: 10.1016/j.ejphar.2021.174286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. Apelin/APJ system is widely expressed in abundant tissues, especially bone, joint and muscle tissue. This review focus on the effects of apelin/APJ system on locomotor system. An increasing number of evidence suggests that apelin/APJ system plays a crucial role in many physiological and pathological processes of locomotor system. Physiologically, apelin/APJ system promotes bone formation, muscle metabolism and skeletal muscle production. Pathologically, apelin/APJ system exacerbates osteoarthritis pathogenesis, whereas it alleviates osteoporosis. Besides, the level of apelin expression is regulated by different training modes, including continuous aerobic exercise, high-intensity interval training and resistance exercises. More importantly, exercise-induced apelin may be a potent pharmacological agent for the treatment of diseases and the regulation of physiological processes. Considering the pleiotropic effects of apelin on locomotor system, apelin/APJ system may be an important therapeutic target for locomotor system diseases.
Collapse
Affiliation(s)
- Jingshun Luo
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fen Feng
- School of Medicine, Shaoyang University, Shaoyang, 422000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
28
|
Oguzoglu AS, Senol N, Asci H, Erzurumlu Y, Gulle K, Savran M, Sadef M, Acar BG, Goksel HM. Pregabalin Protects Brain Tissue from Subarachnoid Hemorrhage by Enhancing HIF-1α/eNOS Signaling and VEGF Production. World Neurosurg 2021; 152:e713-e720. [PMID: 34129987 DOI: 10.1016/j.wneu.2021.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We investigated the effects of different doses of pregabalin on the pathophysiologic changes in early brain injury after subarachnoid hemorrhage (SAH) in rats. METHODS Thirty-eight Wistar albino rats were divided into 4 groups: control (n = 8), SAH (n = 10), SAH plus 30 mg/kg/day of pregabalin (n = 10), and SAH plus 60 mg/kg/day of pregabalin (n = 10). SAH was induced with 0.3 mL of autologous blood injected to the cisterna magna of rats. Pregabalin was administered intraperitoneally. Oxidative stress markers, mRNA expression of endothelial nitric oxide synthase, hypoxia-inducible factor-1α, and vascular endothelial growth factor, and histopathological changes were evaluated. RESULTS Pregabalin increased mRNA expression of endothelial nitric oxide synthase, hypoxia-inducible factor-1α, and vascular endothelial growth factor in a dose-dependent manner. Significant improvement in the histopathological parameters was observed at 60 mg/kg, including a decrease in diffuse hemorrhagic areas, edema and apoptotic bodies in the associated cortical area, evident vacuolization in the hippocampal area, and apoptotic bodies. However, these improvements were not observed with the lower dose (30 mg/kg). In contrast, the antioxidant effect was greater with 30 mg/kg of pregabalin than with 60 mg/kg. CONCLUSIONS Although the antioxidant effect was significant with the lower dose of pregabalin, the anti-inflammatory effects via vasodilatation were more marked with the higher dose. Significant improvements in the histopathological changes were observed with the higher dose of pregabalin. The dose-dependent effects of pregabalin on SAH should be evaluated in animal studies as a function of time and in the acute and chronic phases.
Collapse
Affiliation(s)
- Ali Serdar Oguzoglu
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Nilgun Senol
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey.
| | - Halil Asci
- Department of Medical Pharmacology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Kanat Gulle
- Departments of Histology and Embryology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Mehtap Savran
- Department of Medical Pharmacology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Mustafa Sadef
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Berivan Gunduru Acar
- Department of Medical Pharmacology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Hakan Murat Goksel
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| |
Collapse
|
29
|
Kim CW, Choi KC. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 2021; 277:119607. [PMID: 33992675 DOI: 10.1016/j.lfs.2021.119607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
30
|
Melatonin Ameliorates Hemorrhagic Transformation via Suppression of ROS-Induced NLRP3 Activation after Cerebral Ischemia in Hyperglycemic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659282. [PMID: 33777317 PMCID: PMC7972845 DOI: 10.1155/2021/6659282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Melatonin is a strong antioxidant which beneficially protects against middle cerebral artery occlusion (MCAO) followed by hemorrhagic transformation in rats; protection includes the reduction of neurological deficits, infarction, and hematoma volume. The molecular mechanisms underlying these neuroprotective effects in the MCAO model have not been clearly identified. This study examined the influence and involved mechanism of melatonin on inflammation in hemorrhagic transformation following hyperglycemia MCAO rat model. Compared with the MCAO group, MCAO+dextrose (DX) group showed worse neurological function and higher infarction and hematoma volume. Interestingly, the protein expression of Nod-like receptor protein 3 (NLRP3) inflammasome increased in the MCAO+DX group compared with the MCAO group, which indicated that NLRP3 inflammasome may be involved in the DX-induced hemorrhagic transformation following MCAO. Then, three dosages of melatonin were intraperitoneally injected 2 h after MCAO induction. Melatonin treatment attenuated inflammatory response by inhibiting the reactive oxygen species (ROS) and NLRP3 inflammasome, alleviating neuronal injury, and reducing infarction and hematoma volume, finally improving neurological score. Melatonin also repressed cortical levels of proinflammatory cytokine IL-1β, which were increased 24 h after hyperglycemia MCAO. In order to identify the potential mechanisms, we further revealed that nigericin administration reversed the neuroprotective effect of melatonin by promoting NLRP3 inflammasome activation. In general, this present study reveals that melatonin prevents the occurrence of hyperglycemia-enhanced hemorrhagic transformation, and this effect might be beneficial to attenuate neurological dysfunction via suppressing the inflammatory response after MCAO which possibly associated with the inhibition of the ROS/NLRP3 inflammasome pathway.
Collapse
|
31
|
Li Y, Lu H, Xu W, Shang Y, Zhao C, Wang Y, Yang R, Jin S, Wu Y, Wang X, Teng X. Apelin ameliorated acute heart failure via inhibiting endoplasmic reticulum stress in rabbits. Amino Acids 2021; 53:417-427. [PMID: 33609179 DOI: 10.1007/s00726-021-02955-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate whether inhibition of endoplasmic reticulum stress (ERS) mediated the ameliorative effect of apelin on acute heart failure (AHF). Rabbit model of AHF was induced by sodium pentobarbital. Cardiac dysfunction and injury were detected in the rabbit models of AHF, including impaired hemodynamic parameters and increased levels of CK-MB and cTnI. Apelin treatment dramatically improved cardiac impairment caused by AHF. ERS, indexed by increased GRP78, CHOP, and cleaved-caspase12 protein levels, was simultaneously attenuated by apelin. Apelin also could ameliorate increased protein levels of cleaved-caspase3 and Bax, and improved decreased protein levels of Bcl-2. Two common ERS stimulators, tunicamycin (Tm) and dithiothreitol (DTT) blocked the ameliorative effect of apelin on AHF. Phosphorylated Akt levels increased after apelin treatment in the rabbit models of AHF. The Akt signaling inhibitors wortmannin and LY294002 could block the cardioprotective effect of apelin, which could be relieved by ERS inhibitor 4-phenyl butyric acid (4-PBA). The aforementioned beneficial effects of apelin could all be blocked by APJ receptor antagonist F13A. 4-PBA and SC79, an Akt activator, can restore the ameliorative effect of apelin on AHF blocked by F13A. Apelin treatment dramatically ameliorated cardiac impairment caused by AHF, which might be mediated by APJ/Akt/ERS signaling pathway. These results will shed new light on AHF therapy.
Collapse
Affiliation(s)
- Yanqing Li
- Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chines Medicine, Shijiazhuang, 050011, China
| | - Haohan Lu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Wenyuan Xu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yuxuan Shang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Cece Zhao
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yipu Wang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Rui Yang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050017, China
| | - Xiaoning Wang
- The Second Hospital, Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China.
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Laboratory Animal Science, Shijiazhuang, 050017, China.
| |
Collapse
|
32
|
Zhuang Y, Wang W, Chen L, Lu W, Xu M. Serum apelin-13 and risk of death following severe traumatic brain injury. Clin Chim Acta 2021; 516:64-68. [PMID: 33508251 DOI: 10.1016/j.cca.2021.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Apelin-13 can be expressed in brain tissue and exert neuroprotective effects. We attempted to determine whether serum apelin-13 is a prognostic biomarker for severe traumatic brain injury (sTBI). METHODS Of 126 sTBI patients and 126 healthy controls, serum apelin-13 concentrations were quantified using ELISA. The trauma severity was assessed by Glasgow coma scale scores and Rotterdam computerized tomography scores. The relationship between serum apelin-13 concentrations and posttraumatic 30-day mortality was assessed using multivariate analysis. RESULTS Serum apelin-13 concentrations were significantly lower in patients than in controls. Serum apelin-13 concentrations of non-surviving and surviving patients within posttraumatic 30 days were strongly correlated with Glasgow coma scale scores and Rotterdam computerized tomography scores. Serum apelin-13 emerged as an independent predictor for 30-day mortality and overall survival. There was a significant discriminatory capability with respect to serum apelin-13 concentrations for the risk of 30-day death. Moreover, its prognostic predictive ability was similar to those of Glasgow coma scale scores and Rotterdam computerized tomography scores. CONCLUSIONS Declined serum apelin-13 concentrations, in substantial correlation with increasing severity, are independently associated with short-term mortality, hinting than serum apelin-13 might represent a useful prognostic biomarker for sTBI.
Collapse
Affiliation(s)
- Yaokun Zhuang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Long Chen
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Wei Lu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China.
| |
Collapse
|
33
|
Li Y, Li Y, Li Y, Yang Z, Geng H, Liu C, Hao W, Yang R, Jin S, Wu Y, Wang X, Teng X. Inhibition of endoplasmic reticulum stress mediates the ameliorative effect of apelin on vascular calcification. J Mol Cell Cardiol 2020; 152:17-28. [PMID: 33279504 DOI: 10.1016/j.yjmcc.2020.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS Apelin is the endogenous ligand of G protein-coupled receptor APJ and play an important role in the regulation of cardiovascular homeostasis. We aimed to investigate whether apelin ameliorates vascular calcification (VC) by inhibition of endoplasmic reticulum stress (ERS). METHODS AND RESULTS VC model in rats was induced by nicotine plus vitamin D, while calcification of vascular smooth muscle cell (VSMC) was induced by beta-glycerophosphate. Alizarin Red S staining showed dramatic calcium deposition in the aorta of rats with VC, while calcium contents and ALP activity also increased in calcified aorta. Protein levels of apelin and APJ were decreased in the calcified aorta. In rats with VC, apelin treatment significantly ameliorated aortic calcification, compliance and stimulation of ERS. The ameliorative effect of apelin on VC and ERS was also observed in calcified VSMCs. ERS stimulator (tunicamycin or DTT) blocked the beneficial effect of apelin. Apelin treatment activated the PI3K/Akt signaling, blockage of which by wortmannin or inhibitor IV prevented the ameliorative effect of apelin, while ERS inhibitor 4-PBA rescued the blockade effect of wortmannin. Akt-induced GSK inhibition prevented the phosphorylation of PERK and IRE1, and the activation of these two major ERS branches. F13A blocked the ameliorative effect of apelin on VC and ERS, which was reversed by treatment with 4-PBA or Akt activator SC79 CONCLUSIONS: Apelin ameliorated VC by binding to APJ and then prevented ERS activation by stimulating Akt signaling. These results might provide new target for therapy and prevention of VC.
Collapse
Affiliation(s)
- Yanqing Li
- Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chines Medicine, Shijiazhuang 050011, China
| | - Yuqing Li
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ziyuan Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Haigang Geng
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chenxi Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wei Hao
- Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chines Medicine, Shijiazhuang 050011, China
| | - Rui Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050017, China
| | - Xiaoning Wang
- The Second Hospital, Hebei Medical University, Shijiazhuang 050000, China.
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Laboratory Animal Science, Shijiazhuang 050017, China.
| |
Collapse
|
34
|
Chen S, Xu P, Fang Y, Lenahan C. The Updated Role of the Blood Brain Barrier in Subarachnoid Hemorrhage: From Basic and Clinical Studies. Curr Neuropharmacol 2020; 18:1266-1278. [PMID: 32928088 PMCID: PMC7770644 DOI: 10.2174/1570159x18666200914161231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke associated with high mortality and morbidity. The blood-brain-barrier (BBB) is a structure consisting primarily of cerebral microvascular endothelial cells, end feet of astrocytes, extracellular matrix, and pericytes. Post-SAH pathophysiology included early brain injury and delayed cerebral ischemia. BBB disruption was a critical mechanism of early brain injury and was associated with other pathophysiological events. These pathophysiological events may propel the development of secondary brain injury, known as delayed cerebral ischemia. Imaging advancements to measure BBB after SAH primarily focused on exploring innovative methods to predict clinical outcome, delayed cerebral ischemia, and delayed infarction related to delayed cerebral ischemia in acute periods. These predictions are based on detecting abnormal changes in BBB permeability. The parameters of BBB permeability are described by changes in computed tomography (CT) perfusion and magnetic resonance imaging (MRI). Kep seems to be a stable and sensitive indicator in CT perfusion, whereas Ktrans is a reliable parameter for dynamic contrast-enhanced MRI. Future prediction models that utilize both the volume of BBB disruption and stable parameters of BBB may be a promising direction to develop practical clinical tools. These tools could provide greater accuracy in predicting clinical outcome and risk of deterioration. Therapeutic interventional exploration targeting BBB disruption is also promising, considering the extended duration of post-SAH BBB disruption.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
Zhejiang Province, China
| | - PengLei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
Zhejiang Province, China
| | - YuanJian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
35
|
The Role of Oxidative Stress in Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8877116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review focuses on the problem of oxidative stress in early brain injury (EBI) after spontaneous subarachnoid hemorrhage (SAH). EBI involves complex pathophysiological mechanisms, including oxidative stress. In the first section, we describe the main sources of free radicals in EBI. There are several sources of excessive generation of free radicals from mitochondrial free radicals’ generation and endoplasmic reticulum stress, to hemoglobin and enzymatic free radicals’ generation. The second part focuses on the disruption of antioxidant mechanisms in EBI. The third section describes some newly found molecular mechanisms and pathway involved in oxidative stress after EBI. The last section is dedicated to the pathophysiological mechanisms through which free radicals mediate early brain injury.
Collapse
|
36
|
Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, Zhang X, He X, Li X, Duan C. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging (Albany NY) 2020; 12:21161-21185. [PMID: 33168786 PMCID: PMC7695377 DOI: 10.18632/aging.103796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). T cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of adaptive and innate immune responses, and has been identified to play a vital role in certain inflammatory diseases; The present study explored the effect of Tim-3 on inflammatory responses and detailed mechanism in EBI following SAH. We investigated the effects of Tim-3 on SAH models established by endovascular puncture method in Sprague–Dawley rats. The present studies revealed that SAH induced a significant inflammatory response and significantly increased Tim-3 expression. Tim-3-AAV administration aggravated neurocyte apoptosis, brain edema, blood-brain barrier permeability, and neurological dysfunction; significantly inhibited Nrf2 expression; and increased HMGB1 expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-17, and IL-18. However, Tim-3 siRNA or NK252 administration abolished the pro-inflammatory effects of Tim-3. Our results indicate a function for Tim-3 as a molecular player that links neuroinflammation and brain damage after SAH. We reveal that Tim-3 overexpression deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats.
Collapse
Affiliation(s)
- Shenquan Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanzhi Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Boyang Wei
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenping Cheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
38
|
Fu J, Tao T, Li Z, Chen Y, Li J, Peng L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2020; 131:110658. [PMID: 32841895 DOI: 10.1016/j.biopha.2020.110658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are a diverse group of neurological disorders, which are characterized by spontaneous recurrent seizures. Although a wide range of pathogenic mechanisms such as alterations in ion channels, inflammation and neuronal loss have been reported to be implicated in the epileptogenesis, the underlying pathogenesis of epilepsy remains unclear currently. Endoplasmic reticulum (ER) stress is regarded as a condition that unfolded or misfolded proteins accumulate in the ER lumen. Excessive or prolonged ER stress causes the activation of the unfolded protein response (UPR) to buffer ER stress and restore ER homeostasis. Increasing evidence has indicated dysregulated ER stress during epileptogenesis, which may participate in various pathological processes associated with epilepsy. In this present review, we summarized recent advances in the involvement of ER stress in the pathogenesis of epilepsy. Additionally, the antiepileptic and neuroprotective effects of interventions targeting ER stress were also discussed.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China; Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tao Tao
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Zuoxiao Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jinglun Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| | - Lilei Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
39
|
Liu Y, Wen D, Gao J, Xie B, Yu H, Shen Q, Zhang J, Jing W, Cong B, Ma C. Methamphetamine induces GSDME-dependent cell death in hippocampal neuronal cells through the endoplasmic reticulum stress pathway. Brain Res Bull 2020; 162:73-83. [PMID: 32544512 DOI: 10.1016/j.brainresbull.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is an illegal amphetamine-typed psychostimulant that is abused worldwide and causes serious public health problems. METH exposure induces apoptosis and autophagy in neuronal cells. However, the role of pyroptosis in METH-induced neurotoxicity is still unclear. Here, we investigate whether pyroptosis is involved in METH-induced hippocampal neurotoxicity and the potential mechanisms of Endoplasmic reticulum (ER) stress in hippocampal neuronal cells. For this purpose, the expression levels of pyroptosis-related proteins, GSDMD and GSDME, were analyzed by immunoblotting and immunohistochemistry in the hippocampal neuron cell line HT-22. Next, we explored METH-induced pyroptosis in HT-22 using immunoblotting, LDH assays and SYTOX green acid staining. Further, the relationship between pyroptosis and ER stress in METH-induced hippocampal neuron damage was studied in HT-22 cells using inhibitors including TUDCA, a specific inhibitor of ER stress, GSK-2656157, a PERK pathway inhibitor and STF-0803010, an inhibitor of IRE1α endoribonuclease activity. This relationship was also studied using siRNAs, including siTRAF2, an siRNA against IRE1α kinase activity and siATF6 against the ATF6 pathway, which were analyzed by immunoblotting, LDH assays and SYTOX green acid staining. GSDME but not GSDMD was found to be expressed in HT-22 cells. METH treatment induced the upregulation of cleaved GSDME-NT and LDH release, as well as the increase of SYTOX green positive cells in HT-22 cells, which was partly reversed by inhibitors and siRNAs, indicating that the ER stress signaling pathway was involved in GSDME-dependent cell death induced by METH. In summary, these results revealed that METH induced ER stress that mediated GSDME-dependent cell death in hippocampal neuronal cells. These findings provide novel insight into the mechanisms of METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Yi Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Jingqi Gao
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Qianchao Shen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Jingjing Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Weiwei Jing
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China.
| |
Collapse
|
40
|
Tauroursodeoxycholic acid prevents ER stress-induced apoptosis and improves cerebral and vascular function in mice subjected to subarachnoid hemorrhage. Brain Res 2020; 1727:146566. [DOI: 10.1016/j.brainres.2019.146566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
|
41
|
Xu W, Mo J, Ocak U, Travis ZD, Enkhjargal B, Zhang T, Wu P, Peng J, Li T, Zuo Y, Shao A, Tang J, Zhang J, Zhang JH. Activation of Melanocortin 1 Receptor Attenuates Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage viathe Suppression of Neuroinflammation through AMPK/TBK1/NF-κB Pathway in Rats. Neurotherapeutics 2020; 17:294-308. [PMID: 31486022 PMCID: PMC7007470 DOI: 10.1007/s13311-019-00772-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation plays a vital role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). The hypothesis of this study was that activation of melanocortin 1 receptor (MC1R) with BMS-470539 attenuates EBI by suppression of neuroinflammation after SAH. We utilized BMS-470539, MSG-606, and MRT-68601 to verify the neuroprotective effects of MC1R. We evaluated brain water content, short-term and long-term neurobehavior after SAH. Western blotting and immunofluorescence staining were utilized to assess the changes of protein levels. The results of western blotting suggested that the expressions of MC1R, phosphorylated-adenosine monophosphate-activated protein kinase (p-AMPK), and phosphorylated-TANK binding kinase 1 (p-TBK1) were increased and reached their peak points at 24 h following SAH. Moreover, BMS-470539 treatment notably attenuated neurological deficits caused by SAH, and also notably improved long-term spatial learning and memory abilities after SAH. The underlying mechanisms of the neuroprotection of BMS-470539 involved the suppression of microglia activation, promotion of CD206+ microglia transformation and reduction of neutrophil infiltration by increasing the levels of p-AMPK and p-TBK1 while decreasing the levels of NF-κB, IL-1β, and TNFα. The neuroprotective effects of BMS-470539 were significantly abolished by MSG-606 and MRT-68601. The activation of MC1R with BMS-470539 notably attenuates EBI after SAH by suppression of microglial activation and neutrophil infiltration via the AMPK/TBK1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, The second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jun Mo
- Department of Neurosurgery, The second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Umut Ocak
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Zachary D Travis
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Budbazar Enkhjargal
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Tongyu Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Pei Wu
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jianhua Peng
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Tao Li
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yuchun Zuo
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Anwen Shao
- Department of Neurosurgery, The second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA.
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA.
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
42
|
Li Y, Wu P, Bihl JC, Shi H. Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Curr Neuropharmacol 2020; 18:1168-1179. [PMID: 31903882 PMCID: PMC7770641 DOI: 10.2174/1570159x18666200106154203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of hemorrhagic stroke with significant morbidity and mortality. Aneurysmal bleeding causes elevated intracranial pressure, decreased cerebral blood flow, global cerebral ischemia, brain edema, blood component extravasation, and accumulation of breakdown products. These post-SAH injuries can disrupt the integrity and function of the blood-brain barrier (BBB), and brain tissues are directly exposed to the neurotoxic blood contents and immune cells, which leads to secondary brain injuries including inflammation and oxidative stress, and other cascades. Though the exact mechanisms are not fully clarified, multiple interconnected and/or independent signaling pathways have been reported to be involved in BBB disruption after SAH. In addition, alleviation of BBB disruption through various pathways or chemicals has a neuroprotective effect on SAH. Hence, BBB permeability plays an important role in the pathological course and outcomes of SAH. This review discusses the recent understandings of the underlying mechanisms and potential therapeutic targets in BBB disruption after SAH, emphasizing the dysfunction of tight junctions and endothelial cells in the development of BBB disruption. The emerging molecular targets, including toll-like receptor 4, netrin-1, lipocalin-2, tropomyosin-related kinase receptor B, and receptor tyrosine kinase ErbB4, are also summarized in detail. Finally, we discussed the emerging treatments for BBB disruption after SAH and put forward our perspectives on future research.
Collapse
Affiliation(s)
| | | | - Ji C. Bihl
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| | - Huaizhang Shi
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| |
Collapse
|
43
|
You M, Miao Z, Pan Y, Hu F. Trans-10-hydroxy-2-decenoic acid alleviates LPS-induced blood-brain barrier dysfunction by activating the AMPK/PI3K/AKT pathway. Eur J Pharmacol 2019; 865:172736. [DOI: 10.1016/j.ejphar.2019.172736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
|
44
|
Luo H, Han L, Xu J. Apelin/APJ system: A novel promising target for neurodegenerative diseases. J Cell Physiol 2019; 235:638-657. [DOI: 10.1002/jcp.29001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Huaiqing Luo
- Department of Physiology Changsha Medical University Changsha Hunan China
- Department of Physiology, School of Basic Medical Science Central South University Changsha Hunan China
| | - Li Han
- Department of Physiology Changsha Medical University Changsha Hunan China
| | - Jin Xu
- School of Pharmaceutical Sciences Changsha Medical University Changsha Hunan China
| |
Collapse
|
45
|
Apelin-13 attenuates early brain injury following subarachnoid hemorrhage via suppressing neuronal apoptosis through the GLP-1R/PI3K/Akt signaling. Biochem Biophys Res Commun 2019; 513:105-111. [DOI: 10.1016/j.bbrc.2019.03.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022]
|
46
|
Zhu J, Dou S, Jiang Y, Chen J, Wang C, Cheng B. Apelin-13 protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through inhibiting endoplasmic reticulum stress and promoting autophagy. Brain Res 2019; 1715:203-212. [PMID: 30914252 DOI: 10.1016/j.brainres.2019.03.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
The dopaminergic neurodegeneration in the substantia nigrapars compacta (SNpc) and striatum of the midbrain is the important pathological feature of Parkinson's disease (PD). It has been shown that autophagy and endoplasmic reticulum stress (ERS) are involved in the occurrence and development of PD. The neuropeptide Apelin-13 is neuroprotective in the neurological diseases such as PD, Alzheimer's disease and cerebral ischemic stroke. In the present work, we investigated the neuroprotective effects of Apelin-13 on ERS and autophagy in the dopaminergic neurodegeneration of SNpc of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)-treated mice. The intranigral injection of Apelin-13 alleviated the behavioral dysfunction and dopaminergic neurodegeneration induced by MPTP. After the exposure to MPTP, the expression of tyrosine hydroxylase (TH) was significantly decreased as well as the increased α-synuclein expression, which was significantly reversed by the intranigral injection of Apelin-13. Also, Apelin-13 significantly reversed the decreasing autophagy induced by MPTP which was indicated by the up-regulation of LC3B-II and Beclin1 and down-regulation of p62. And MPTP-induced ERS such as IRE1α, XBP1s, CHOP and GRP78 was significantly inhibited by Apelin-13. Taken together, Apelin-13 protects dopaminergic neurons in MPTP-induced PD model mice in vivo through inhibiting ERS and promoting autophagy, which contributes to the therapy for PD in the future.
Collapse
Affiliation(s)
- Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
47
|
Zhou MF, Feng ZP, Ou YC, Peng JJ, Li K, Gong HD, Qiu BH, Liu YW, Wang YJ, Qi ST. Endoplasmic reticulum stress induces apoptosis of arginine vasopressin neurons in central diabetes insipidus via PI3K/Akt pathway. CNS Neurosci Ther 2019; 25:562-574. [PMID: 30677238 PMCID: PMC6488892 DOI: 10.1111/cns.13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/21/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Aims Central diabetes insipidus (CDI), a typical complication caused by pituitary stalk injury, often occurs after surgery, trauma, or tumor compression around hypothalamic structures such as the pituitary stalk and optic chiasma. CDI is linked to decreased arginine vasopressin (AVP) neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus, along with a deficit in circulating AVP and oxytocin. However, little has been elucidated about the changes in AVP neurons in CDI. Hence, our study was designed to understand the role of several pathophysiologic changes such as endoplasmic reticulum (ER) stress and apoptosis of AVP neurons in CDI. Methods In a novel pituitary stalk electric lesion (PEL) model to mimic CDI, immunofluorescence and immunoblotting were used to understand the underlying regulatory mechanisms. Results We reported that in CDI condition, generated by PEL, ER stress induced apoptosis of AVP neurons via activation of the PI3K/Akt and ERK pathways. Furthermore, application of N‐acetylcysteine protected hypothalamic AVP neurons from ER stress‐induced apoptosis through blocking the PI3K/Akt and ERK pathways. Conclusion Our findings showed that AVP neurons underwent apoptosis induced by ER stress, and ER stress might play a vital role in CDI condition through the PI3K/Akt and ERK pathways.
Collapse
Affiliation(s)
- Ming-Feng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhan-Peng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Chao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Jie Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hao-Dong Gong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bing-Hui Qiu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Wei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Jia Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 2019; 9:3083. [PMID: 30662442 PMCID: PMC6328441 DOI: 10.3389/fimmu.2018.03083] [Citation(s) in RCA: 644] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cell death by which the body maintains the homeostasis of the internal environment. Apoptosis is an initiative cell death process that is controlled by genes and is mainly divided into endogenous pathways (mitochondrial pathway), exogenous pathways (death receptor pathway), and apoptotic pathways induced by endoplasmic reticulum (ER) stress. The homeostasis imbalance in ER results in ER stress. Under specific conditions, ER stress can be beneficial to the body; however, if ER protein homeostasis is not restored, the prolonged activation of the unfolded protein response may initiate apoptotic cell death via the up-regulation of the C/EBP homologous protein (CHOP). CHOP plays an important role in ER stress-induced apoptosis and this review focuses on its multifunctional roles in that process, as well as its role in apoptosis during microbial infection. We summarize the upstream and downstream pathways of CHOP in ER stress induced apoptosis. We also focus on the newest discoveries in the functions of CHOP-induced apoptosis during microbial infection, including DNA and RNA viruses and some species of bacteria. Understanding how CHOP functions during microbial infection will assist with the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Hai Hu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shengqing Yu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
49
|
Xie YK, Zhou X, Yuan HT, Qiu J, Xin DQ, Chu XL, Wang DC, Wang Z. Resveratrol reduces brain injury after subarachnoid hemorrhage by inhibiting oxidative stress and endoplasmic reticulum stress. Neural Regen Res 2019; 14:1734-1742. [PMID: 31169191 PMCID: PMC6585540 DOI: 10.4103/1673-5374.257529] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous studies have shown that resveratrol, a bioactive substance found in many plants, can reduce early brain injury after subarachnoid hemorrhage, but how it acts is still unclear. This study explored the mechanism using the experimental subarachnoid hemorrhage rat model established by injecting autologous blood into the cerebellomedullary cistern. Rat models were treated with an intraperitoneal injection of 60 mg/kg resveratrol 2, 6, 24 and 46 hours after injury. At 48 hours after injury, their neurological function was assessed using a modified Garcia score. Brain edema was measured by the wet-dry method. Neuronal apoptosis in the prefrontal cortex was detected by terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Levels of reactive oxygen species and malondialdehyde in the prefrontal cortex were determined by colorimetry. CHOP, glucose-regulated protein 78, nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1 mRNA expression levels in the prefrontal cortex were measured by reverse transcription polymerase chain reaction. Tumor necrosis factor-alpha content in the prefrontal cortex was detected by enzyme linked immunosorbent assay. Immunohistochemical staining was used to detect the number of positive cells of nuclear factor-erythroid 2-related factor 2, heme oxygenase 1, glucose-regulated protein 78, CHOP and glial fibrillary acidic protein. Western blot assay was utilized to analyze the expression levels of nuclear factor-erythroid 2-related factor 2, heme oxygenase 1, glucose-regulated protein 78 and CHOP protein expression levels in the prefrontal cortex. The results showed that resveratrol treatment markedly alleviated neurological deficits and brain edema in experimental subarachnoid hemorrhage rats, and reduced neuronal apoptosis in the prefrontal cortex. Resveratrol reduced the levels of reactive oxygen species and malondialdehyde, and increased the expression of nuclear factor-erythroid 2-related factor 2, heme oxygenase-1 mRNA and protein in the prefrontal cortex. Resveratrol decreased glucose-regulated protein 78, CHOP mRNA and protein expression and tumor necrosis factor-alpha level. It also activated astrocytes. The results suggest that resveratrol exerted neuroprotective effect on subarachnoid hemorrhage by reducing oxidative damage, endoplasmic reticulum stress and neuroinflammation. The study was approved by the Animals Ethics Committee of Shandong University, China on February 22, 2016 (approval No. LL-201602022).
Collapse
Affiliation(s)
- Yun-Kai Xie
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Xin Zhou
- Department of Physiology, School of Basic Medical Sciences, Shandong University; Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Hong-Tao Yuan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Jie Qiu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Xi-Li Chu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Da-Chuan Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|