1
|
Hernández-Frausto M, Galván EJ, López-Rubalcava C. Dopamine D1 receptors activation rescues hippocampal synaptic plasticity and cognitive impairments in the MK-801 neonatal schizophrenia model. Behav Brain Res 2025; 476:115250. [PMID: 39277140 DOI: 10.1016/j.bbr.2024.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Schizophrenia is a disorder with a higher cognitive decline in early adulthood, causing impaired retention of episodic memories. However, the physiological and behavioral functions that underlie cognitive deficits with a potential mechanism to ameliorate and improve cognitive performance are unknown. In this study, we used the MK-801 neurodevelopmental schizophrenia-like model. Rats were divided into two groups: one received MK-801, and the other received saline for five consecutive days (7-11 postnatal days, PND). We evaluated synaptic plasticity late-LTP and spatial memory consolidation in early adolescence and young adulthood using extracellular field recordings in acute hippocampal slices and the Barnes maze task. Next, we examined D1 receptor (D1R) activation as a mechanism to ameliorate cognitive impairments. Our results suggest that MK-801 neonatal treatment induces impairment in late-LTP expression and deficits in spatial memory retrieval in early adolescence that is maintained until young adulthood. Furthermore, we found that activation of dopamine D1R ameliorates the impairments and promotes a robust expression of late-LTP and an improved performance in the Barnes maze task, suggesting a novel and potential therapeutic role in treating cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
2
|
Shang Q, Zhang L, Xiao B, Yang J, Sun J, Gao X, Huang Y, Wang Z. Juvenile bright light exposure ameliorates adult behavioral abnormalities by enhancing neurogenesis in a N-methyl-D-aspartate receptor dysfunction mouse model relevant for cognitive impairment in schizophrenia. Behav Brain Res 2024; 472:115157. [PMID: 39047873 DOI: 10.1016/j.bbr.2024.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Exposure to light has been demonstrated to stimulate brain regions associated with cognition; however, investigations into its cognitive-enhancing effects have primarily focused on wild-type rodents. This study seeks to elucidate how bright light exposure mitigates cognitive deficits associated with schizophrenia by examining its impact on hippocampal neurogenesis and its potential to alleviate sub-chronic MK-801-induced cognitive impairments in mice. Following three weeks of juvenile bright light exposure (5-8 weeks old), significant increases in proliferating neurons (BrdU+) and immature neurons (DCX+ cells) were observed in the dentate gyrus (DG) and lateral ventricle of MK-801-treated mice. Long-term bright light treatment further promoted the differentiation of BrdU+ cells into immature neurons (BrdU+ DCX+ cells), mature neurons (BrdU+ NeuN+ cells), or astrocytes (BrdU+ GFAP+ cells) in the hippocampal DG. This augmented neurogenesis correlated with the attenuation of sub-chronic MK- 801-induced cognitive deficits, as evidenced by enhancements in Y-maze, novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) test performances. These findings suggest a promising noninvasive clinical approach for alleviating cognitive impairments associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qing Shang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Lizhi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Biao Xiao
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Jianhong Yang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Jie Sun
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Xiang Gao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yi Huang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zhengchun Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Li M, Liu Y, Sun M, Yang Y, Zhang L, Liu Y, Li F, Liu H. SEP-363856 exerts neuroprotection through the PI3K/AKT/GSK-3β signaling pathway in a dual-hit neurodevelopmental model of schizophrenia-like mice. Drug Dev Res 2024; 85:e22225. [PMID: 38879781 DOI: 10.1002/ddr.22225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 10/11/2024]
Abstract
Schizophrenia (SZ) is a serious, destructive neurodevelopmental disorder. Antipsychotic medications are the primary therapy approach for this illness, but it's important to pay attention to the adverse effects as well. Clinical studies for SZ are currently in phase ΙΙΙ for SEP-363856 (SEP-856)-a new antipsychotic that doesn't work on dopamine D2 receptors. However, the underlying action mechanism of SEP-856 remains unknown. This study aimed to evaluate the impact and underlying mechanisms of SEP-856 on SZ-like behavior in a perinatal MK-801 treatment combined with social isolation from the weaning to adulthood model (MK-SI). First, we created an animal model that resembles SZ that combines the perinatal MK-801 with social isolation from weaning to adulthood. Then, different classical behavioral tests were used to evaluate the antipsychotic properties of SEP-856. The levels of proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1β), apoptosis-related genes (Bax and Bcl-2), and synaptic plasticity-related genes (brain-derived neurotrophic factor [BDNF] and PSD-95) in the hippocampus were analyzed by quantitative real-time PCR. Hematoxylin and eosin staining were used to observe the morphology of neurons in the hippocampal DG subregions. Western blot was performed to detect the protein expression levels of BDNF, PSD-95, Bax, Bcl-2, PI3K, p-PI3K, AKT, p-AKT, GSK-3β, p-GSK-3β in the hippocampus. MK-SI neurodevelopmental disease model studies have shown that compared with sham group, MK-SI group exhibit higher levels of autonomic activity, stereotyped behaviors, withdrawal from social interactions, dysregulated sensorimotor gating, and impaired recognition and spatial memory. These findings imply that the MK-SI model can mimic symptoms similar to those of SZ. Compared with the MK-SI model, high doses of SEP-856 all significantly reduced increased activity, improved social interaction, reduced stereotyping behavior, reversed sensorimotor gating dysregulation, and improved recognition memory and spatial memory impairment in MK-SI mice. In addition, SEP-856 can reduce the release of proinflammatory factors in the MK-SI model, promote the expression of BDNF and PSD-95 in the hippocampus, correct the Bax/Bcl-2 imbalance, turn on the PI3K/AKT/GSK-3β signaling pathway, and ultimately help the MK-SI mice's behavioral abnormalities. SEP-856 may play an antipsychotic role in MK-SI "dual-hit" model-induced SZ-like behavior mice by promoting synaptic plasticity recovery, decreasing death of hippocampal neurons, lowering the production of pro-inflammatory substances in the hippocampal region, and subsequently initiating the PI3K/AKT/GSK-3β signaling cascade.
Collapse
Affiliation(s)
- Mengdie Li
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunxiao Liu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Meng Sun
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuexia Liu
- The Second People's Hospital of Huizhou, Huizhou, Guangdong, China
| | - Fujin Li
- The Second People's Hospital of Huizhou, Huizhou, Guangdong, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Wang X, Li Z, Kuai S, Wang X, Chen J, Yang Y, Qin L. Correlation between desynchrony of hippocampal neural activity and hyperlocomotion in the model mice of schizophrenia and therapeutic effects of aripiprazole. CNS Neurosci Ther 2024; 30:e14739. [PMID: 38702935 PMCID: PMC11069053 DOI: 10.1111/cns.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.
Collapse
Affiliation(s)
- Xueru Wang
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Zijie Li
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Shihui Kuai
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xuejiao Wang
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Jingyu Chen
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Yanping Yang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ling Qin
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
5
|
Hajipour S, Farbood Y, Dianat M, Nesari A, Sarkaki A. Effect of Berberine against Cognitive Deficits in Rat Model of Thioacetamide-Induced Liver Cirrhosis and Hepatic Encephalopathy (Behavioral, Biochemical, Molecular and Histological Evaluations). Brain Sci 2023; 13:944. [PMID: 37371422 DOI: 10.3390/brainsci13060944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Liver cirrhosis (LC) is one of the chronic liver diseases with high disability and mortality accompanying hepatic encephalopathy (HE) followed by cognitive dysfunctions. In this work, the effect of berberine (Ber) on spatial cognition was studied in a rat model of LC induced by thioacetamide (TAA). MATERIALS AND METHODS Male Wistar rats (200-250 g) were divided into six groups: (1) control; (2) TAA, 200 mg/kg/day, i.p.; (3-5) TAA + Ber; received Ber (10, 30, and 60 mg/kg, i.p., daily after last TAA injection); (6) Dizocilpine (MK-801) + TAA, received MK-801 (2 mg/kg/day, i.p.) 30 m before TAA injection. The spatial memory, BBB permeability, brain edema, liver enzymes, urea, serum and brain total bilirubin, oxidative stress and cytokine markers in the hippocampus were measured. Furthermore, a histological examination of the hippocampus was carried out. RESULTS The BBB permeability, brain edema, liver enzymes, urea, total bilirubin levels in serum and hippocampal MDA and TNF-α increased significantly after TAA injection (p < 0.001); the spatial memory was impaired (p < 0.001), and hippocampal IL-10 decreased (p < 0.001). Ber reversed all the above parameters significantly (p < 0.05, p < 0.01 and p < 0.001). MK-801 prevented the development of LC via TAA (p < 0.001). CONCLUSION Results showed that Ber improves spatial learning and memory in TAA-induced LC by improving the BBB function, oxidative stress and neuroinflammation. Ber might be a promising therapeutic agent for cognitive improvement in LC.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Ali Nesari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- National Institute for Medical Research Development "NIMAD", Tehran 1419693111, Iran
| |
Collapse
|
6
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
7
|
Shi XJ, Du Y, Lei-Chen, Li XS, Yao CQ, Cheng Y. Effects of brain-derived neurotrophic factor (BDNF) on the Schizophrenia model of animals. J Psychiatr Res 2022; 156:538-546. [PMID: 36368243 DOI: 10.1016/j.jpsychires.2022.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Schizophrenia(SCZ)is a common clinically chronic psychiatric disease, and there have no effective specific therapeutic drugs in clinical practice currently. Studies have shown that the expression level of brain-derived neurotrophic factor (BDNF) in schizophrenics has decreased, so the expression level of BDNF has always been one of the evaluation indicators of SCZ. The neurotrophic factor hypothesis believes that increase or decrease of the expression level of BDNF may be one of the pathophysiological basis of SCZ. METHODS In this study, schizophrenic mice model with MK-801-induced glutamate dysfunction was established, and two doses of BDNF were administered to schizophrenic mice by intranasal administration. The four groups of mice: Control group, Model group, BDNF-20, BDNF-100 performed a series of behavioral tests to explore the effects of BDNF on sensory motor gating, anxiety, depression, social interaction, spontaneous activity, and memory in schizophrenic mice. Transcriptome sequencing of the BDNF high group and Model group in prefrontal cortex and hippocampus, using Metascape for gene function annotation and enrichment pathway analysis, to obtain BDNF transcription regulation information, understand the molecular mechanism of BDNF in SCZ further. Subsequently,immunofluorescence detected the effects of BDNF on neurons and glial cells in the prefrontal cortex and hippocampus. CONCLUSION The results show that BDNF can improve the behavior of SCZ by regulating the construction of the nervous system, affecting the growth and distribution of neurons and glial cells, and changing inflammation and apoptosis in the brain.
Collapse
Affiliation(s)
- Xiao-Jie Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei-Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Xue-Song Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, China
| | - Ci-Qin Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
8
|
Griego E, Hernández-Frausto M, Márquez LA, Lara-Valderrabano L, López Rubalcava C, Galván EJ. Activation of D1/D5 Receptors Ameliorates Decreased Intrinsic Excitability of Hippocampal Neurons Induced by Neonatal Blockade of NMDA Receptors. Br J Pharmacol 2021; 179:1695-1715. [PMID: 34791647 DOI: 10.1111/bph.15735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of dopaminergic transmission combined with transient hypofunction of N-methyl-D-aspartate receptors (NMDARs) is a key mechanism that may underlie cognitive symptoms of schizophrenia. EXPERIMENTAL APPROACH Therefore, we aimed to identify electrophysiologic alterations in animals neonatally treated with the NMDA receptor antagonist, MK-801 or with saline solution. KEY RESULTS Patch-clamp whole-cell recordings from MK-801-treated animals revealed altered passive and active electrophysiologic properties compared with CA1 pyramidal cells from saline-treated animals, including upregulation of the K+ inward-rectifier conductance and fast-inactivating and slow/non-inactivating K+ currents. Upregulation of these membrane ionic currents reduced the overall excitability and altered the firing properties of CA1 pyramidal cells. We also explored the capability of cells treated with MK-801 to express intrinsic excitability potentiation, a non-synaptic form of hippocampal plasticity associated with cognition and memory formation. CA1 pyramidal cells from animals treated with MK-801 were unable to convey intrinsic excitability potentiation and had blunted synaptic potentiation. Furthermore, MK-801-treated animals also exhibited reduced cognitive performance in the Barnes maze task. Notably, activation of D1/D5 receptors with SKF-38, 393 partially restored electrophysiologic alterations caused by neonatal treatment with MK-801. CONCLUSION AND IMPLICATIONS Our results offer a molecular and mechanistic explanation based on dysregulation of glutamatergic in addition to dopaminergic transmission that may contribute to the understanding of the cognitive deterioration associated with schizophrenia.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Melissa Hernández-Frausto
- Current address: Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Luis A Márquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Leonardo Lara-Valderrabano
- Current address: A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Carolina López Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
9
|
Wan J, Shen CM, Wang Y, Wu QZ, Wang YL, Liu Q, Sun YM, Cao JP, Wu YQ. Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood. Brain Res Bull 2021; 169:63-72. [PMID: 33450329 DOI: 10.1016/j.brainresbull.2021.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/09/2022]
Abstract
Anesthesia of neonates with propofol induces persistent behavioral abnormalities in adulthood. Although propofol-triggered apoptosis of neurons in the developing brain may contribute to the development of cognitive deficits, the mechanism of neurotoxicity induced by neonatal exposure to propofol remains unclear. In this study, the effects of neonatal propofol anesthesia on synaptic plasticity and neurocognitive function were investigated. Postnatal day 7 (PND-7) Sprague-Dawley rats were intraperitoneally injected with fat emulsion or 20, 40 or 60 mg/kg propofol for three consecutive days. The expression of brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and postsynaptic density protein 95 (PSD-95) in the rat hippocampus at PND-10 and PND-12 was measured by Western blotting. The number of dendritic branches, total dendritic length and dendritic spine density were observed by Golgi-Cox staining 24 h and 72 h after the last propofol administration. Long-term potentiation (LTP) was measured electrophysiologically in hippocampus of PND-60 rats to evaluate the synaptic function. The learning and memory abilities of rats were evaluated by Morris water maze (MWM) experiments, Novel object recognition test (NORT) and Object location test (OLT) at PND-60. Our results showed that neonatal exposure to propofol significantly inhibited the expression of BDNF, TrkB and PSD-95 in the rat hippocampus. The number of dendritic branches, total dendritic length and dendritic spine density of neurons in the rat hippocampus were markedly reduced after neonatal propofol anesthesia. LTP was significantly diminished in hippocampus of PND-60 rats after repeated exposure to propofol in the neonatal period. Morris water maze experiments showed that repeated neonatal exposure to propofol significantly prolonged the escape latency and decreased the time spent in the target quadrant and the number of platform crossings. NORT and OLT showed that repeated neonatal exposure to propofol markedly reduced the Investigation Time for novel object or location. All of the results above indicate that repeated exposure to propofol in the neonatal period can impair hippocampal synaptic plasticity and the recognition function of rats in adulthood.
Collapse
Affiliation(s)
- Jie Wan
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Chu-Meng Shen
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yu Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Qing-Zi Wu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yi-Lei Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Jun-Ping Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| |
Collapse
|
10
|
Fluoxetine attenuates prepulse inhibition deficit induced by neonatal administration of MK-801 in mice. Neuroreport 2020; 31:1128-1133. [PMID: 32956214 PMCID: PMC7531495 DOI: 10.1097/wnr.0000000000001524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Increasing evidence supports schizophrenia may be a neurodevelopmental and neurodegenerative disorder. Fluoxetine, a selective serotonin reuptake inhibitor, has been reported to have neuroprotective effects and be effective in treating neurodegenerative disorders including schizophrenia. The objective of the present study was to evaluate the effect and underlying neuroprotective mechanism of fluoxetine on the sensorimotor gating deficit, a schizophrenia-like behavior in a neurodevelopmental schizophrenic mouse model induced by MK-801, an N-methyl-d-aspartate glutamate receptor antagonist. On postnatal day 7, mouse pups were treated with a total seven subcutaneous daily injections of MK-801 (1 mg/kg/day), followed by intraperitoneal injection of fluoxetine (5 or 10 mg/kg/day) starting on postnatal day 14 in the MK-801-injected mice for 4 weeks. The sensorimotor gating deficit in mice was measured by prepulse inhibition (PPI) behavioral test on postnatal day 43. After the behavioral test, the protein expression of brain-derived neurotrophic factor (BDNF) was measured by western blot or ELISA in the frontal cortex of mice. Our results showed fluoxetine attenuated PPI deficit and the decrease of cerebral BDNF expression in the MK-801-injected mice. These results suggest that fluoxetine can be used to treat sensorimotor gating deficit in a neurodevelopmental mouse model of schizophrenia, and the attenuating effect of fluoxetine on sensorimotor gating deficit may be related to fluoxetine’s neuroprotective effect targeting on the modulation of cerebral BDNF.
Collapse
|
11
|
He J, Zu Q, Wen C, Liu Q, You P, Li X, Wang W. Quetiapine Attenuates Schizophrenia-Like Behaviors and Demyelination in a MK-801-Induced Mouse Model of Schizophrenia. Front Psychiatry 2020; 11:843. [PMID: 32973585 PMCID: PMC7466651 DOI: 10.3389/fpsyt.2020.00843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
Brain demyelination is possibly one of the main pathological factors involved in schizophrenia, and targeting on myelination may be a useful strategy for schizophrenia treatment. Quetiapine, a widely used atypical antipsychotic drug for schizophrenia treatment, has been reported to have neuroprotective effects on cerebral myelination in a demyelination animal model. The objective of the present study was to evaluate the effect and underlying neuroprotective mechanism of quetiapine on the schizophrenia-like behaviors and possible cerebral demyelination induced by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist. Mice were treated with chronic quetiapine (10 mg/kg/day, intraperitoneally) for 28 days. From day 22 to 28, 1 h after the administration of quetiapine, the mice were administered MK-801 (2 mg/kg/day, subcutaneously). The positive symptom of schizophrenia was measured in a locomotor activity test on day 29, the memory was evaluated by a Y-maze test on day 30, and the sensorimotor gating deficit in mice was measured by prepulse inhibition test on day 31. After the behavioral tests, the protein expression of myelin basic protein (MBP) was measured by Western Blot, and the protein expression of brain-derived neurotrophic factor (BDNF) was measured by ELISA in the frontal cortex of mice. Our results showed quetiapine attenuated schizophrenia-like behaviors including hyperactivity, memory impairment, and sensorimotor gating deficit in the MK-801 mice. In the same time, quetiapine attenuated demyelination, concurrent with attenuated BDNF decrease in the brain of MK-801-injected mice. These results suggest that the beneficial effects of quetiapine on schizophrenia might be partly related to its neuroprotective effect on brain myelin basic protein and its upregulating neuroprotective proteins such as BDNF, and indicate that modulation of cerebral demyelination could be a novel treatment target of schizophrenia.
Collapse
Affiliation(s)
- Jue He
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China.,Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, China.,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qian Zu
- Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, China
| | - Chunyan Wen
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China
| | - Qianqian Liu
- Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, China
| | - Pan You
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China
| | - Xinmin Li
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China.,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Wenqiang Wang
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China
| |
Collapse
|