1
|
Qi G, Tang H, Hu J, Kang S, Qin S. Potential role of tanycyte-derived neurogenesis in Alzheimer's disease. Neural Regen Res 2025; 20:1599-1612. [PMID: 38934388 DOI: 10.4103/nrr.nrr-d-23-01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly, metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore, the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood-brain barrier function. However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianian Hu
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
3
|
Sharif A, Prevot V. Astrogenesis in the hypothalamus: A life-long process contributing to the development and plasticity of neuroendocrine networks. Front Neuroendocrinol 2024; 75:101154. [PMID: 39226950 DOI: 10.1016/j.yfrne.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Astrocytes are now recognized as integral components of neural circuits, regulating their maturation, activity and plasticity. Neuroendocrinology has provided fertile ground for revealing the diverse strategies used by astrocytes to regulate the physiological and behavioural outcomes of neural circuit activity in response to internal and environmental inputs. However, the development of astrocytes in the hypothalamus has received much less attention than in other brain regions such as the cerebral cortex and spinal cord. In this review, we synthesize our current knowledge of astrogenesis in the hypothalamus across various life stages. A distinctive feature of hypothalamic astrogenesis is that it persists all throughout lifespan, and involves multiple cellular sources corresponding to radial glial cells during early development, followed by tanycytes, parenchymal progenitors and locally dividing astrocytes. Astrogenesis in the hypothalamus is closely coordinated with the maturation of hypothalamic neurons. This coordination is exemplified by recent findings in neurons producing gonadotropin-releasing hormone, which actively shape their astroglial environment during infancy to integrate functionally into their neural network and facilitate sexual maturation, a process vulnerable to endocrine disruption. While hypothalamic astrogenesis shares common principles with other brain regions, it also exhibits specific features in its dynamics and regulation, both at the inter- and intra-regional levels. These unique properties emphasize the importance of further exploration. Additionally, we discuss the experimental strategies used to assess astrogenesis in the hypothalamus and their potential bias and limitations. Understanding the mechanisms of hypothalamic astrogenesis throughout life will be crucial for comprehending the development and function of the hypothalamus under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| |
Collapse
|
4
|
Kostin A, Alam MA, Saevskiy A, Alam MN. Chronic Astrocytic TNFα Production in the Preoptic-Basal Forebrain Causes Aging-like Sleep-Wake Disturbances in Young Mice. Cells 2024; 13:894. [PMID: 38891027 PMCID: PMC11171867 DOI: 10.3390/cells13110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Sleep disruption is a frequent problem of advancing age, often accompanied by low-grade chronic central and peripheral inflammation. We examined whether chronic neuroinflammation in the preoptic and basal forebrain area (POA-BF), a critical sleep-wake regulatory structure, contributes to this disruption. We developed a targeted viral vector designed to overexpress tumor necrosis factor-alpha (TNFα), specifically in astrocytes (AAV5-GFAP-TNFα-mCherry), and injected it into the POA of young mice to induce heightened neuroinflammation within the POA-BF. Compared to the control (treated with AAV5-GFAP-mCherry), mice with astrocytic TNFα overproduction within the POA-BF exhibited signs of increased microglia activation, indicating a heightened local inflammatory milieu. These mice also exhibited aging-like changes in sleep-wake organization and physical performance, including (a) impaired sleep-wake functions characterized by disruptions in sleep and waking during light and dark phases, respectively, and a reduced ability to compensate for sleep loss; (b) dysfunctional VLPO sleep-active neurons, indicated by fewer neurons expressing c-fos after suvorexant-induced sleep; and (c) compromised physical performance as demonstrated by a decline in grip strength. These findings suggest that inflammation-induced dysfunction of sleep- and wake-regulatory mechanisms within the POA-BF may be a critical component of sleep-wake disturbances in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
| | - Md. Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Psychiatry, University of California, Los Angeles, CA 90025, USA
| | - Anton Saevskiy
- Scientific Research and Technology Center for Neurotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Md. Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Medicine, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
5
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
6
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Kostin A, Alam MA, Saevskiy A, Yang C, Golshani P, Alam MN. Calcium Dynamics of the Ventrolateral Preoptic GABAergic Neurons during Spontaneous Sleep-Waking and in Response to Homeostatic Sleep Demands. Int J Mol Sci 2023; 24:8311. [PMID: 37176016 PMCID: PMC10179316 DOI: 10.3390/ijms24098311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The ventrolateral preoptic area (VLPO) contains GABAergic sleep-active neurons. However, the extent to which these neurons are involved in expressing spontaneous sleep and homeostatic sleep regulatory demands is not fully understood. We used calcium (Ca2+) imaging to characterize the activity dynamics of VLPO neurons, especially those expressing the vesicular GABA transporter (VGAT) across spontaneous sleep-waking and in response to homeostatic sleep demands. The VLPOs of wild-type and VGAT-Cre mice were transfected with GCaMP6, and the Ca2+ fluorescence of unidentified (UNID) and VGAT cells was recorded during spontaneous sleep-waking and 3 h of sleep deprivation (SD) followed by 1 h of recovery sleep. Although both VGAT and UNID neurons exhibited heterogeneous Ca2+ fluorescence across sleep-waking, the majority of VLPO neurons displayed increased activity during nonREM/REM (VGAT, 120/303; UNID, 39/106) and REM sleep (VGAT, 32/303; UNID, 19/106). Compared to the baseline waking, VLPO sleep-active neurons (n = 91) exhibited higher activity with increasing SD that remained elevated during the recovery period. These neurons also exhibited increased Ca2+ fluorescence during nonREM sleep, marked by increased slow-wave activity and REM sleep during recovery after SD. These findings support the notion that VLPO sleep-active neurons, including GABAergic neurons, are components of neuronal circuitry that mediate spontaneous sleep and homeostatic responses to sustained wakefulness.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
| | - Md. Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
| | - Anton Saevskiy
- Scientific Research and Technology Center for Neurotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Chenyi Yang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA;
| | - Peyman Golshani
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Md. Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Bartkowska K, Turlejski K, Koguc-Sobolewska P, Djavadian R. Adult Neurogenesis in the Mammalian Hypothalamus: Impact of Newly Generated Neurons on Hypothalamic Function. Neuroscience 2023; 515:83-92. [PMID: 36805005 DOI: 10.1016/j.neuroscience.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
In mammals, adult neurogenesis was first demonstrated in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation. Further research showed that adult neurogenesis persists in other brain structures, such as the cerebral cortex, piriform cortex, striatum, amygdala, and hypothalamus. However, the origin of newly generated cells in these structures is not clear. Accumulating evidence indicates that newly generated neurons in the striatum or amygdala are derived from the SVZ, while in the adult hypothalamus, the proliferation of progenitor cells occurs in the ependymal cells lining the third ventricle, which give rise to new neurons. The heterogeneous cellular organization of the ependymal layer of the hypothalamus leads to different conclusions regarding the type of hypothalamic progenitor cells. In addition, adult hypothalamic neurogenesis occurs at low levels. Based on comparative and functional approaches, we synthesize the knowledge of newly generated cells in the adult hypothalamus. The aim of this review is to provide new insights on adult neurogenesis in the mammalian hypothalamus, with particular attention given to marsupial species. We highlight the number of adult-born neurons in various hypothalamic nuclei, debating whether their low number has an impact on hypothalamic function.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
9
|
Hui Y, Guo G, Mao L, Li Y, Sun M, Wang X, Yang W, Fan X, Jiang K, Cui B, Sun C. Associations of Multiple Serum Trace Elements with Abnormal Sleep Duration Patterns in Hospitalized Patient with Cirrhosis. Biol Trace Elem Res 2022; 201:3202-3209. [PMID: 36136288 DOI: 10.1007/s12011-022-03425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
The associations of circulating trace elements with sleep health have attracted increasing attention given their potential link. However, there is scant data on the relationship between serum trace elements and abnormal sleep duration patterns in cirrhosis. We aimed to investigate these associations with the purpose of identifying modifiable risk factors. The blood samples were collected from inpatients with cirrhosis, and serum levels of several trace elements were assessed by inductively coupled plasma mass spectrometry. Self-reported sleep duration was categorized to short- (< 7 h/night), optimal (7-8 h/night), and long-sleep duration (> 8 h/night). The dose-response trends and associations of trace elements levels with sleep duration were determined by restricted cubic splines (RCS) and logistic regression, respectively. Cirrhotic patients with optimal sleep duration experienced the highest levels of serum Zinc (Zn) and the lowest values of copper to zinc ratio (CZr). RCS model corroborated non-linear associations of serum Zn and CZr against sleep duration. Multiple regression analysis showed that both CZr (short vs optimal sleep duration: OR 4.785, P < 0.001; long vs optimal sleep duration: OR 4.150, P = 0.019) and serum Zn levels (short vs optimal sleep duration: OR 0.985, P = 0.040; long vs optimal sleep duration: OR 0.956, P = 0.008) serve as independent risk factors for sleep duration abnormalities. In conclusion, our findings unraveled a close relationship of serum Zn and CZr with sleep duration in cirrhosis. Further trace element-based therapy such as Zn supplementation may be novel approach to reverse this sleep problem.
Collapse
Affiliation(s)
- Yangyang Hui
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Lihong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Yifan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Mingyu Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China
| | - Binxin Cui
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin Airport Economic Area, East Street 6, Tianjin, 300308, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China.
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Heping District, Anshan Road 154, Tianjin, 300052, China.
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin Airport Economic Area, East Street 6, Tianjin, 300308, China.
| |
Collapse
|
10
|
Kostin A, Alam MA, Saevskiy A, McGinty D, Alam MN. Activation of the Ventrolateral Preoptic Neurons Projecting to the Perifornical-Hypothalamic Area Promotes Sleep: DREADD Activation in Wild-Type Rats. Cells 2022; 11:2140. [PMID: 35883583 PMCID: PMC9319714 DOI: 10.3390/cells11142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The ventrolateral preoptic area (VLPO) predominantly contains sleep-active neurons and is involved in sleep regulation. The perifornical-hypothalamic area (PF-HA) is a wake-regulatory region and predominantly contains wake-active neurons. VLPO GABAergic/galaninergic neurons project to the PF-HA. Previously, the specific contribution of VLPO neurons projecting to the PF-HA (VLPO > PF-HAPRJ) in sleep regulation in rats could not be investigated due to the lack of tools that could selectively target these neurons. We determined the contribution of VLPO > PF-HAPRJ neurons in sleep regulation by selectively activating them using designer receptors exclusively activated by designer drugs (DREADDs) in wild-type Fischer-344 rats. We used a combination of two viral vectors to retrogradely deliver the Cre-recombinase gene, specifically, in VLPO > PF-HA neurons, and further express hM3Dq in those neurons to selectively activate them for delineating their specific contributions to sleep−wake functions. Compared to the control, in DREADD rats, clozapine-N-oxide (CNO) significantly increased fos-expression, a marker of neuronal activation, in VLPO > PF-HAPRJ neurons (2% vs. 20%, p < 0.01) during the dark phase. CNO treatment also increased nonREM sleep (27% vs. 40%, p < 0.01) during the first 3 h of the dark phase, when rats are typically awake, and after exposure to the novel environment (55% vs. 65%; p < 0.01), which induces acute arousal during the light phase. These results support a hypothesis that VLPO > PF-HAPRJ neurons constitute a critical component of the hypothalamic sleep−wake regulatory circuitry and promote sleep by suppressing wake-active PF-HA neurons.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (D.M.)
| | - Md. Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (D.M.)
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
| | - Anton Saevskiy
- Scientific Research and Technology Center for Neurotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (D.M.)
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Md. Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (D.M.)
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Jia YN, Sun J, Chen L, Xue Y. Associations of Serum Zinc, Copper, and Zinc/Copper Ratio with Sleep Duration in Adults. Biol Trace Elem Res 2022; 200:2651-2659. [PMID: 34453310 DOI: 10.1007/s12011-021-02897-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
The existing evidence on the relationships of serum zinc, copper, and zinc/copper ratio with sleep duration is limited and conflicting. The present cross-sectional study aimed to investigate these associations in general adults by utilizing data from the 2011-2016 National Health and Nutrition Examination Survey. The concentrations of zinc and copper were measured in serum samples. Sleep duration (self-reported usual sleep duration) was categorized as < 7 h/night (short sleep duration), 7-8 h/night (optimal sleep duration), and > 8 h/night (long sleep duration). Multinomial logistic regression models and restricted cubic splines were constructed to examine the associations of serum zinc, copper, and zinc/copper ratio with sleep duration. A total of 5067 adults were included. After multivariate adjustment, compared with the optimal sleep duration group, the odds ratios (ORs) (95% confidence intervals, CIs) in the long sleep duration group for the highest versus lowest quartile of serum zinc concentration and zinc/copper ratio were 0.61 (0.39-0.96) and 0.58 (0.38-0.89), respectively. Furthermore, among males, the OR (95% CI) of long sleep duration for the highest versus lowest quartile of serum copper concentration was 2.23 (1.15-4.32). Finally, the dose-response trends suggested that participants with optimal sleep duration had the highest serum zinc concentration and zinc/copper ratio and a slightly lower serum copper concentration. No significant association was found between serum zinc, copper concentrations and the zinc/copper ratio and short sleep duration. In conclusion, serum zinc and zinc/copper ratio were inversely related to long sleep duration in adults, while serum copper was positively associated with long sleep duration in males.
Collapse
Affiliation(s)
- Yi-Na Jia
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Ningde Road 16, Qingdao, 266071, Shandong, China
| | - Jing Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Ningde Road 16, Qingdao, 266071, Shandong, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Ningde Road 16, Qingdao, 266071, Shandong, China.
| |
Collapse
|
12
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
13
|
Wan L, Huang RJ, Yang C, Ai JQ, Zhou Q, Gong JE, Li J, Zhang Y, Luo ZH, Tu E, Pan A, Xiao B, Yan XX. Extracranial 125I Seed Implantation Allows Non-invasive Stereotactic Radioablation of Hippocampal Adult Neurogenesis in Guinea Pigs. Front Neurosci 2021; 15:756658. [PMID: 34916901 PMCID: PMC8670234 DOI: 10.3389/fnins.2021.756658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is important for multiple cognitive functions. We sort to establish a minimal or non-invasive radiation approach to ablate AHN using guinea pigs as an animal model. 125I seeds with different radiation dosages (1.0, 0.8, 0.6, 0.3 mCi) were implanted unilaterally between the scalp and skull above the temporal lobe for 30 and 60 days, with the radiation effect on proliferating cells, immature neurons, and mature neurons in the hippocampal formation determined by assessment of immunolabeled (+) cells for Ki67, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), as well as Nissl stain cells. Spatially, the ablation effect of radiation occurred across the entire rostrocaudal and largely the dorsoventral dimensions of the hippocampus, evidenced by a loss of DCX+ cells in the subgranular zone (SGZ) of dentate gyrus (DG) in the ipsilateral relative to contralateral hemispheres in reference to the 125I seed implant. Quantitatively, Ki67+ and DCX+ cells at the SGZ in the dorsal hippocampus were reduced in all dosage groups at the two surviving time points, more significant in the ipsilateral than contralateral sides, relative to sham controls. NeuN+ neurons and Nissl-stained cells were reduced in the granule cell layer of DG and the stratum pyramidale of CA1 in the groups with 0.6-mCi radiation for 60 days and 1.0 mCi for 30 and 60 days. Minimal cranial trauma was observed in the groups with 0.3– 1.0-mCi radiation at 60 days. These results suggest that extracranial radiation with 125I seed implantation can be used to deplete HAN in a radioactivity-, duration-, and space-controllable manner, with a “non-invasive” stereotactic ablation achievable by using 125I seeds with relatively low radioactivity dosages.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qian Zhou
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiao-E Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhang
- Department of Anesthesiology, The 2nd Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
14
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
15
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
16
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
18
|
Sex- and Age-dependent Differences in Sleep-wake Characteristics of Fisher-344 Rats. Neuroscience 2019; 427:29-42. [PMID: 31846749 DOI: 10.1016/j.neuroscience.2019.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023]
Abstract
Aging is a well-recognized risk factor for sleep disruption. The characteristics of sleep in aging include its disruption by frequent awakenings, a decline in both non-rapid eye movement (nonREM) and REM sleep amounts, and a weaker homeostatic response to sleep loss. Evidence also suggests that sleep in females is more sensitive to changes in the ovarian steroidal milieu. The Fischer-344 rats are commonly used experimental subjects in behavioral and physiological studies, including sleep and aging. Most sleep studies in Fischer-344 rats have used male subjects to avoid interactions between the estrus and sleep-waking cycles. The changes in the sleep-wake organization of female Fischer-344 rats, especially with advancing age, are not well-characterized. We determined sleep-waking features of cycling females across estrus stages. We also compared spontaneous and homeostatic sleep response profiles of young (3-4 months) and old (24-25 months) male and female Fischer-344 rats. The results suggest that: i) sleep-wake architectures across stages of estrus cycle in young females were largely comparable except for a significant suppression of REM sleep at proestrus night and an increase in REM sleep the following day; ii) despite hormonal differences, sleep-wake architecture in male and female rats of corresponding ages were comparable except for the suppression of REM sleep at proestrus night and higher nonREM delta power in recovery sleep; and iii) aging significantly affected sleep-wake amounts, sleep-wake stability, and homeostatic response to sleep loss in both male and female rats and that the adverse effects of aging were largely comparable in both sexes.
Collapse
|