1
|
Eiró-Quirino L, Yoshino FK, de Amorim GC, de Araújo DB, Barbosa GB, de Souza LV, Dos Santos MF, Hamoy MKO, Dos Santos RG, Amóras LHB, Gurgel do Amaral AL, Hartcopff PFP, de Souza RV, da Silva Deiga Y, Hamoy M. Recording of hippocampal activity on the effect of convulsant doses of caffeine. Biomed Pharmacother 2024; 178:117148. [PMID: 39032287 DOI: 10.1016/j.biopha.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Seizures occur when there is a hyper-excitation of the outer layer of the brain, with subsequent excessive synchrony in a group of neurons. According to the World Health Organization (WHO), an estimated 50 million people are affected by this disease, a third of whom are resistant to the treatments available on the market. Caffeine (1,3,7-trimethylxanthine), which belongs to the purine alkaloid family, is the most widely consumed psychoactive drug in the world. It is ingested by people through drinks containing this substance, such as coffee, and as an adjuvant in analgesic therapy with non-steroidal antiflammatory drugs. The present study evaluated the electrocorticographic changes observed in the hippocampus of Wistar rats subjected to acute doses of caffeine (150 mg/kg i.p), which represents a toxic dose of caffeine corresponding to an estimated acute intake of more than 12 cups of coffee to record its convulsant activity. Our results showed, for the first time, that the administration of high doses of caffeine (150 mg/kg i.p.) in rats caused an increase in the spectral distribution of power in all frequency bands and suggested the appearance of periods of ictal and interictal peaks in the electrocorticogram (ECog). We have also shown that the anticonvulsants phenytoin, diazepam and phenobarbital have a satisfactory response when associated with caffeine.
Collapse
Affiliation(s)
- Luciana Eiró-Quirino
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil.
| | - Felipe Kiyoshi Yoshino
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Gloria Calandrini de Amorim
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Daniella Bastos de Araújo
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Gabriela Brito Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Luana Vasconcelos de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Murilo Farias Dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Maria Klara Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Rodrigo Gonçalves Dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Laís Helena Baptista Amóras
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Anthony Lucas Gurgel do Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Priscille Fidelis Pacheco Hartcopff
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Raíssa Vieira de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Yris da Silva Deiga
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil.
| |
Collapse
|
2
|
Purnell BS, Petrucci AN, Li R, Buchanan GF. Effect of adenosinergic manipulations on amygdala-kindled seizures in mice: Implications for sudden unexpected death in epilepsy. Epilepsia 2024; 65:2812-2826. [PMID: 38980980 PMCID: PMC11534534 DOI: 10.1111/epi.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) results in more years of potential life lost than any neurological condition with the exception of stroke. It is generally agreed that SUDEP happens due to some form of respiratory, cardiac, and electrocerebral dysfunction following a seizure; however, the mechanistic cause of these perturbations is unclear. One possible explanation lies with adenosinergic signaling. Extracellular levels of the inhibitory neuromodulator adenosine rapidly rise during seizures, a countermeasure that is necessary for seizure termination. Previous evidence has suggested that excessive adenosinergic inhibition could increase the risk of SUDEP by silencing brain areas necessary for life, such as the respiratory nuclei of the brainstem. The goal of this investigation was to further clarify the role of adenosine in seizure-induced respiratory and electrocerebral dysfunction. METHODS To determine the role of adenosine in postictal physiological dysregulation, we pharmacologically manipulated adenosine signaling prior to amygdala-kindled seizures in mice while recording electroencephalogram (EEG), electromyogram, and breathing using whole body plethysmography. The adenosinergic drugs used in this study included selective and nonselective adenosine receptor antagonists and inhibitors of adenosine metabolism. RESULTS We found that high doses of adenosine receptor antagonists caused some seizures to result in seizure-induced death; however, counterintuitively, animals in these conditions that did not experience seizure-induced death had little or no postictal generalized EEG suppression. Inhibitors of adenosine metabolism had no effect on postictal breathing but did worsen some postictal electrocerebral outcomes. SIGNIFICANCE The unexpected effect of high doses of adenosine antagonists on seizure-induced death observed in this study may be due to the increase in seizure severity, vasoconstriction, or phosphodiesterase inhibition caused by these drugs at high doses. These findings further clarify the role of adenosine in seizure-induced death and may have implications for the consumption of caffeine in epilepsy patients and the prevention of SUDEP.
Collapse
Affiliation(s)
- Benton S. Purnell
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Alexandra N. Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Rui Li
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Gordon F. Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
3
|
Purnell B, Bhasin J, Rust B, George S, Bah K, Lu T, Fedele D, Boison D. Disruption of adenosine metabolism increases risk of seizure-induced death despite decreased seizure severity. Epilepsia 2024; 65:2798-2811. [PMID: 39018000 PMCID: PMC11534556 DOI: 10.1111/epi.18055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Respiratory arrest plays an important role in sudden unexpected death in epilepsy (SUDEP). Adenosine is of interest in SUDEP pathophysiology due to its influence on seizures and breathing. The objective of this investigation was to examine the role of adenosine in seizure severity, seizure-induced respiratory disruption, and seizure-induced death using mouse models. Understanding adenosinergic contributions to seizure cessation and seizure-induced death may provide insights into how SUDEP can be prevented while avoiding increased seizure severity. METHODS Our approach was to examine: (1) seizure severity and seizure-induced death after 15 mA electroshock seizures and during repeated pentylenetetrazol (PTZ) administration in wild-type mice (Adk +/+) and transgenic mice with reduced adenosine metabolism (Adk +/-); (2) the postictal hypercapnic ventilatory response (HCVR) in wild-type mice (the postictal HCVR could not be examined in Adk +/- mice due to their high mortality rate); and (3) the effects of adenosinergic drugs on seizure severity and seizure-induced death following maximal electroshock (MES). RESULTS Adk +/- mice were more vulnerable to seizure-induced death in the 15 mA electroshock and repeated PTZ models. Despite increased mortality, Adk +/- mice had comparable seizure severity in the PTZ model and reduced seizure severity in the 15 mA electroshock model. Breathing and HCVR were suppressed by 15 mA electroshock seizures in wild-type mice. Pharmacological inhibition of adenosine metabolism decreased MES seizure severity but did not increase mortality. A1 selective and nonselective adenosine receptor antagonists increased seizure-induced death following MES. SIGNIFICANCE Adenosine has opposing effects on seizure severity and seizure-induced death. On the one hand, our seizure severity data highlight the importance of adenosine in seizure suppression. On the other hand, our mortality data indicate that excessive extracellular adenosine signaling can increase the risk of seizure-induced respiratory arrest.
Collapse
Affiliation(s)
- Benton Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Jayant Bhasin
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Brian Rust
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Steven George
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Kadiatou Bah
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Tracy Lu
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
4
|
Villa BR, George AG, Shutt TE, Sullivan PG, Rho JM, Teskey GC. Postictal hypoxia involves reactive oxygen species and is ameliorated by chronic mitochondrial uncoupling. Neuropharmacology 2023; 238:109653. [PMID: 37422182 DOI: 10.1016/j.neuropharm.2023.109653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Prolonged severe hypoxia follows brief seizures and represents a mechanism underlying several negative postictal manifestations without interventions. Approximately 50% of the postictal hypoxia phenomenon can be accounted for by arteriole vasoconstriction. What accounts for the rest of the drop in unbound oxygen is unclear. Here, we determined the effect of pharmacological modulation of mitochondrial function on tissue oxygenation in the hippocampus of rats after repeatedly evoked seizures. Rats were treated with mitochondrial uncoupler 2,4 dinitrophenol (DNP) or antioxidants. Oxygen profiles were recorded using a chronically implanted oxygen-sensing probe, before, during, and after seizure induction. Mitochondrial function and redox tone were measured using in vitro mitochondrial assays and immunohistochemistry. Postictal cognitive impairment was assessed using the novel object recognition task. Mild mitochondrial uncoupling by DNP raised hippocampal oxygen tension and ameliorated postictal hypoxia. Chronic DNP also lowered mitochondrial oxygen-derived reactive species and oxidative stress in the hippocampus during postictal hypoxia. Uncoupling the mitochondria exerts therapeutic benefits on postictal cognitive dysfunction. Finally, antioxidants do not affect postictal hypoxia, but protect the brain from associated cognitive deficits. We provided evidence for a metabolic component of the prolonged oxygen deprivation that follow seizures and its pathological sequelae. Furthermore, we identified a molecular underpinning of this metabolic component, which involves excessive oxygen conversion into reactive species. Mild mitochondrial uncoupling may be a potential therapeutic strategy to treat the postictal state where seizure control is absent or poor.
Collapse
Affiliation(s)
- Bianca R Villa
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Timothy E Shutt
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Departments of Medical Genetics and Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Patrick G Sullivan
- Department of Anatomy and Neurobiology, and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Jong M Rho
- Department of Neurosciences, Pediatrics and Pharmacology, University of California San Diego, Rady Children's Hospital, San Diego, CA, 92037, USA.
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
5
|
Villa BR, Bhatt D, Wolff MD, Addo-Osafo K, Epp JR, Teskey GC. Repeated episodes of postictal hypoxia are a mechanism for interictal cognitive impairments. Sci Rep 2023; 13:15474. [PMID: 37726428 PMCID: PMC10509159 DOI: 10.1038/s41598-023-42741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Comorbidities during the period between seizures present a significant challenge for individuals with epilepsy. Despite their clinical relevance, the pathophysiology of the interictal symptomatology is largely unknown. Postictal severe hypoxia (PIH) in those brain regions participating in the seizure has been indicated as a mechanism underlying several negative postictal manifestations. It is unknown how repeated episodes of PIH affect interictal symptoms in epilepsy. Using a rat model, we observed that repeated seizures consistently induced episodes of PIH that become increasingly severe with each seizure occurrence. Additionally, recurrent seizure activity led to decreased levels of oxygen in the hippocampus during the interictal period. However, these reductions were prevented when we repeatedly blocked PIH using either the COX-inhibitor acetaminophen or the L-type calcium channel antagonist nifedipine. Moreover, we found that interictal cognitive deficits caused by seizures were completely alleviated by repeated attenuation of PIH events. Lastly, mitochondrial dysfunction may contribute to the observed pathological outcomes during the interictal period. These findings provide evidence that seizure-induced hypoxia may play a crucial role in several aspects of epilepsy. Consequently, developing and implementing treatments that specifically target and prevent PIH could potentially offer significant benefits for individuals with refractory epilepsy.
Collapse
Affiliation(s)
- Bianca R Villa
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Dhyey Bhatt
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kwaku Addo-Osafo
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jonathan R Epp
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
6
|
George AG, Federico A, Gom RC, Harris SA, Teskey GC. Caffeine exacerbates seizure-induced death via postictal hypoxia. Sci Rep 2023; 13:14150. [PMID: 37644198 PMCID: PMC10465499 DOI: 10.1038/s41598-023-41409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading epilepsy-related cause of premature mortality in people with intractable epilepsy, who are 27 times more likely to die than the general population. Impairment of the central control of breathing following a seizure has been identified as a putative cause of death, but the mechanisms underlying this seizure-induced breathing failure are largely unknown. Our laboratory has advanced a vascular theory of postictal behavioural dysfunction, including SUDEP. We have recently reported that seizure-induced death occurs after seizures invade brainstem breathing centres which then leads to local hypoxia causing breathing failure and death. Here we investigated the effects of caffeine and two adenosine receptors in two models of seizure-induced death. We recorded local oxygen levels in brainstem breathing centres as well as time to cessation of breathing and cardiac activity relative to seizure activity. The administration of the non-selective A1/A2A antagonist caffeine or the selective A1 agonist N6-cyclopentyladenosine reveals a detrimental effect on postictal hypoxia, providing support for caffeine modulating cerebral vasculature leading to brainstem hypoxia and cessation of breathing. Conversely, A2A activation with CGS-21680 was found to increase the lifespan of mice in both our models of seizure-induced death.
Collapse
Affiliation(s)
- Antis G George
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W. Calgary, Alberta, T2N 4N, Canada.
| | - Alyssa Federico
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Renaud C Gom
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Sydney A Harris
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - G Campbell Teskey
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Bauer PR, Tolner EA, Keezer MR, Ferrari MD, Sander JW. Headache in people with epilepsy. Nat Rev Neurol 2021; 17:529-544. [PMID: 34312533 DOI: 10.1038/s41582-021-00516-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated. Correct diagnoses and appropriate treatment of headaches in individuals with epilepsy is essential, as headaches can contribute substantially to disease burden. Here, we review the insights that have been made into the associations between headache and epilepsy over the past 5 years, including information on the pathophysiological mechanisms and genetic variants that link the two disorders. We also discuss the current best practice for the management of headaches co-occurring with epilepsy and highlight future challenges for this area of research.
Collapse
Affiliation(s)
- Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany.
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark R Keezer
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,School of Public Health, Université de Montréal, Montreal, Quebec, Canada.,Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
8
|
Purnell B, Murugan M, Jani R, Boison D. The Good, the Bad, and the Deadly: Adenosinergic Mechanisms Underlying Sudden Unexpected Death in Epilepsy. Front Neurosci 2021; 15:708304. [PMID: 34321997 PMCID: PMC8311182 DOI: 10.3389/fnins.2021.708304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Adenosine is an inhibitory modulator of neuronal excitability. Neuronal activity results in increased adenosine release, thereby constraining excessive excitation. The exceptionally high neuronal activity of a seizure results in a surge in extracellular adenosine to concentrations many-fold higher than would be observed under normal conditions. In this review, we discuss the multifarious effects of adenosine signaling in the context of epilepsy, with emphasis on sudden unexpected death in epilepsy (SUDEP). We describe and categorize the beneficial, detrimental, and potentially deadly aspects of adenosine signaling. The good or beneficial characteristics of adenosine signaling in the context of seizures include: (1) its direct effect on seizure termination and the prevention of status epilepticus; (2) the vasodilatory effect of adenosine, potentially counteracting postictal vasoconstriction; (3) its neuroprotective effects under hypoxic conditions; and (4) its disease modifying antiepileptogenic effect. The bad or detrimental effects of adenosine signaling include: (1) its capacity to suppress breathing and contribute to peri-ictal respiratory dysfunction; (2) its contribution to postictal generalized EEG suppression (PGES); (3) the prolonged increase in extracellular adenosine following spreading depolarization waves may contribute to postictal neuronal dysfunction; (4) the excitatory effects of A2A receptor activation is thought to exacerbate seizures in some instances; and (5) its potential contributions to sleep alterations in epilepsy. Finally, the adverse effects of adenosine signaling may potentiate a deadly outcome in the form of SUDEP by suppressing breathing and arousal in the postictal period. Evidence from animal models suggests that excessive postictal adenosine signaling contributes to the pathophysiology of SUDEP. The goal of this review is to discuss the beneficial, harmful, and potentially deadly roles that adenosine plays in the context of epilepsy and to identify crucial gaps in knowledge where further investigation is necessary. By better understanding adenosine dynamics, we may gain insights into the treatment of epilepsy and the prevention of SUDEP.
Collapse
Affiliation(s)
- Benton Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Raja Jani
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
9
|
Pottkämper JCM, Hofmeijer J, van Waarde JA, van Putten MJAM. The postictal state - What do we know? Epilepsia 2020; 61:1045-1061. [PMID: 32396219 PMCID: PMC7317965 DOI: 10.1111/epi.16519] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
This narrative review provides a broad and comprehensive overview of the most important discoveries on the postictal state over the past decades as well as recent developments. After a description and definition of the postictal state, we discuss postictal sypmtoms, their clinical manifestations, and related findings. Moreover, pathophysiological advances are reviewed, followed by current treatment options.
Collapse
Affiliation(s)
- Julia C M Pottkämper
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Psychiatry, Rijnstate Hospital, Arnhem, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Michel J A M van Putten
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|