1
|
Ahlbrand R, Wilson A, Woller P, Sachdeva Y, Lai J, Davis N, Wiggins J, Sah R. Sex-specific threat responding and neuronal engagement in carbon dioxide associated fear and extinction: Noradrenergic involvement in female mice. Neurobiol Stress 2024; 30:100617. [PMID: 38433995 PMCID: PMC10907837 DOI: 10.1016/j.ynstr.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Difficulty in appropriately responding to threats is a key feature of psychiatric disorders, especially fear-related conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD). Most prior work on threat and fear regulation involves exposure to external threatful cues. However, fear can also be triggered by aversive, within-the-body, sensations. This interoceptive signaling of fear is highly relevant to PD and PTSD but is not well understood, especially in the context of sex. Using female and male mice, the current study investigated fear-associated spontaneous and conditioned behaviors to carbon dioxide (CO2) inhalation, a potent interoceptive threat that induces fear and panic. We also investigated whether behavioral sensitivity to CO2 is associated with delayed PTSD-relevant behaviors. CO2 evoked heterogenous freezing behaviors in both male and female animals. However, active, rearing behavior was significantly reduced in CO2-exposed male but not female mice. Interestingly, behavioral sensitivity to CO2 was associated with compromised fear extinction, independent of sex. However, in comparison to CO2-exposed males, females elicited less freezing and higher rearing during extinction suggesting an engagement of active versus passive defensive coping. Persistent neuronal activation marker ΔFosB immuno-mapping revealed attenuated engagement of infralimbic-prefrontal areas in both sexes but higher activation of brain stem locus coeruleus (LC) area in females. Inter-regional co-activation mapping revealed sex-independent disruptions in the infralimbic-amygdala associations but altered LC associations only in CO2-exposed female mice. Lastly, dopamine β hydroxylase positive (DβH + ve) noradrenergic neuronal cell counts in the LC correlated with freezing and rearing behaviors during CO2 inhalation and extinction only in female but not male mice. Collectively, these data provide evidence for higher active defensive responding to interoceptive threat CO2-associated fear in females that may stem from increased recruitment of the brainstem noradrenergic system. Our findings reveal distinct contributory mechanisms that may promote sex differences in fear and panic associated pathologies.
Collapse
Affiliation(s)
- Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Allison Wilson
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Patrick Woller
- Neuroscience Graduate Program, University of Cincinnati, USA
| | - Yuv Sachdeva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Jayden Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Nikki Davis
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - James Wiggins
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Neuroscience Graduate Program, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
Allgire E, Ahlbrand RA, Nawreen N, Ajmani A, Hoover C, McAlees JW, Lewkowich IP, Sah R. Altered Fear Behavior in Aeroallergen House Dust Mite Exposed C57Bl/6 Mice: A Model of Th2-skewed Airway Inflammation. Neuroscience 2023; 528:75-88. [PMID: 37516435 PMCID: PMC10530159 DOI: 10.1016/j.neuroscience.2023.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
There is a growing interest for studying the impact of chronic inflammation, particularly lung inflammation, on the brain and behavior. This includes asthma, a chronic inflammatory condition, that has been associated with psychiatric conditions such as posttraumatic stress disorder (PTSD). Although asthma is driven by elevated production of Th2 cytokines (IL-4, IL-5 and IL-13), which drive asthma symptomology, recent work demonstrates that concomitant Th1 or Th17 cytokine production can worsen asthma severity. We previously demonstrated a detrimental link between PTSD-relevant fear behavior and allergen-induced lung inflammation associated with a mixed Th2/Th17-inflammatory profile in mice. However, the behavioral effects of Th2-skewed airway inflammation, typical to mild/moderate asthma, are unknown. Therefore, we investigated fear conditioning/extinction in allergen house dust mite (HDM)-exposed C57Bl/6 mice, a model of Th2-skewed allergic asthma. Behaviors relevant to panic, anxiety, and depression were also assessed. Furthermore, we investigated the accumulation of Th2/Th17-cytokine-expressing cells in lung and brain, and the neuronal activation marker, ΔFosB, in fear regulatory brain areas. HDM-exposed mice elicited lower freezing during fear extinction with no effects on acquisition and conditioned fear. No HDM effect on panic, anxiety or depression-relevant behaviors was observed. While HDM evoked a Th2-skewed immune response in lung tissue, no significant alterations in brain Th cell subsets were observed. Significantly reduced ΔFosB+ cells in the basolateral amygdala of HDM mice were observed post extinction. Our data indicate that allergen-driven Th2-skewed responses may induce fear extinction promoting effects, highlighting beneficial interactions of Th2-associated immune mediators with fear regulatory circuits.
Collapse
Affiliation(s)
- E Allgire
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R A Ahlbrand
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States
| | - N Nawreen
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - A Ajmani
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - C Hoover
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - J W McAlees
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States
| | - I P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R Sah
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States; VA Medical Center, Cincinnati, OH 45220, United States.
| |
Collapse
|
3
|
Joshi SA, Aupperle RL, Khalsa SS. Interoception in Fear Learning and Posttraumatic Stress Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:266-277. [PMID: 37404967 PMCID: PMC10316209 DOI: 10.1176/appi.focus.20230007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric condition characterized by sustained symptoms, including reexperiencing, hyperarousal, avoidance, and mood alterations, following exposure to a traumatic event. Although symptom presentations in PTSD are heterogeneous and incompletely understood, they likely involve interactions between neural circuits involved in memory and fear learning and multiple body systems involved in threat processing. PTSD differs from other psychiatric conditions in that it is a temporally specific disorder, triggered by a traumatic event that elicits heightened physiological arousal, and fear. Fear conditioning and fear extinction learning have been studied extensively in relation to PTSD, because of their central role in the development and maintenance of threat-related associations. Interoception, the process by which organisms sense, interpret, and integrate their internal body signals, may contribute to disrupted fear learning and to the varied symptom presentations of PTSD in humans. In this review, the authors discuss how interoceptive signals may serve as unconditioned responses to trauma that subsequently serve as conditioned stimuli, trigger avoidance and higher-order conditioning of other stimuli associated with these interoceptive signals, and constitute an important aspect of the fear learning context, thus influencing the specificity versus generalization of fear acquisition, consolidation, and extinction. The authors conclude by identifying avenues for future research to enhance understanding of PTSD and the role of interoceptive signals in fear learning and in the development, maintenance, and treatment of PTSD.
Collapse
Affiliation(s)
- Sonalee A Joshi
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| |
Collapse
|
4
|
Reeder EL, O'Connell CJ, Collins SM, Traubert OD, Norman SV, Cáceres RA, Sah R, Smith DW, Robson MJ. Increased Carbon Dioxide Respiration Prevents the Effects of Acceleration/Deceleration Elicited Mild Traumatic Brain Injury. Neuroscience 2023; 509:20-35. [PMID: 36332692 DOI: 10.1016/j.neuroscience.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Acceleration/deceleration forces are a common component of various causes of mild traumatic brain injury (mTBI) and result in strain and shear forces on brain tissue. A small quantifiable volume dubbed the compensatory reserve volume (CRV) permits energy transmission to brain tissue during acceleration/deceleration events. The CRV is principally regulated by cerebral blood flow (CBF) and CBF is primarily determined by the concentration of inspired carbon dioxide (CO2). We hypothesized that experimental hypercapnia (i.e. increased inspired concentration of CO2) may act to prevent and mitigate the actions of acceleration/deceleration-induced TBI. To determine these effects C57Bl/6 mice underwent experimental hypercapnia whereby they were exposed to medical-grade atmospheric air or 5% CO2 immediately prior to an acceleration/deceleration-induced mTBI paradigm. mTBI results in significant increases in righting reflex time (RRT), reductions in core body temperature, and reductions in general locomotor activity-three hours post injury (hpi). Experimental hypercapnia immediately preceding mTBI was found to prevent mTBI-induced increases in RRT and reductions in core body temperature and general locomotor activity. Ribonucleic acid (RNA) sequencing conducted four hpi revealed that CO2 exposure prevented mTBI-induced transcriptional alterations of several targets related to oxidative stress, immune, and inflammatory signaling. Quantitative real-time PCR analysis confirmed the prevention of mTBI-induced increases in mitogen-activated protein kinase kinase kinase 6 and metallothionein-2. These initial proof of concept studies reveal that increases in inspired CO2 mitigate the detrimental contributions of acceleration/deceleration events in mTBI and may feasibly be translated in the future to humans using a medical device seeking to prevent mTBI among high-risk groups.
Collapse
Affiliation(s)
- Evan L Reeder
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Christopher J O'Connell
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Sean M Collins
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Owen D Traubert
- University of Cincinnati College of Arts and Sciences, Department of Biological Sciences, Cincinnati, OH 45221, USA
| | - Sophia V Norman
- University of Cincinnati College of Arts and Sciences, Department of Biological Sciences, Cincinnati, OH 45221, USA
| | - Román A Cáceres
- University of Cincinnati College of Medicine, Department of Cancer and Cell Biology Cincinnati, OH 45267, USA
| | - Renu Sah
- University of Cincinnati College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH 45267, USA
| | | | - Matthew J Robson
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
6
|
Winter A, McMurray KMJ, Ahlbrand R, Allgire E, Shukla S, Jones J, Sah R. The subfornical organ regulates acidosis-evoked fear by engaging microglial acid-sensor TDAG8 and forebrain neurocircuits in male mice. J Neurosci Res 2022; 100:1732-1746. [PMID: 35553084 PMCID: PMC9812228 DOI: 10.1002/jnr.25059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 01/07/2023]
Abstract
An important role of pH homeostasis has been suggested in the physiology of panic disorder, with acidosis as an interoceptive trigger leading to fear and panic. Identification of novel mechanisms that can translate acidosis into fear will promote a better understanding of panic physiology. The current study explores a role of the subfornical organ (SFO), a blood-brain barrier compromised brain area, in translating acidosis to fear-relevant behaviors. We performed SFO-targeted acidification in male, wild-type mice and mice lacking microglial acid-sensing G protein-coupled receptor-T-cell death-associated gene 8 (TDAG8). Localized SFO acidification evoked significant freezing and reduced exploration that was dependent on the presence of acid-sensor TDAG8. Acidosis promoted the activation of SFO microglia and neurons that were absent in TDAG8-deficient mice. The assessment of regional neuronal activation in wild-type and TDAG8-deficient mice following SFO acidification revealed significant acidosis and genotype-dependent alterations in the hypothalamus, amygdala, prefrontal cortex, and periaqueductal gray nuclei. Furthermore, mapping of interregional co-activation patterns revealed that SFO acidosis promoted positive hypothalamic-cortex associations and desynchronized SFO-cortex and amygdala-cortex associations, suggesting an interplay of homeostatic and fear regulatory areas. Importantly, these alterations were not evident in TDAG8-deficient mice. Overall, our data support a regulatory role of subfornical organ microglial acid sensing in acidosis-evoked fear, highlighting a centralized role of blood-brain barrier compromised nodes in interoceptive sensing and behavioral regulation. Identification of pathways by which humoral information can modulate fear behavior is relevant to panic disorder, where aberrant interoceptive signaling has been reported.
Collapse
Affiliation(s)
- Andrew Winter
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- VA Medical Center, Cincinnati, Ohio, USA
| | - Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- VA Medical Center, Cincinnati, Ohio, USA
| | - Emily Allgire
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sachi Shukla
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - James Jones
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
- VA Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Feinstein JS, Gould D, Khalsa SS. Amygdala-driven apnea and the chemoreceptive origin of anxiety. Biol Psychol 2022; 170:108305. [PMID: 35271957 DOI: 10.1016/j.biopsycho.2022.108305] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Although the amygdala plays an important part in the pathogenesis of anxiety and generation of exteroceptive fear, recent discoveries have challenged the directionality of this brain-behavior relationship with respect to interoceptive fear. Here we highlight several paradoxical findings including: (1) amygdala lesion patients who experience excessive fear and panic following inhalation of carbon dioxide (CO2), (2) clinically anxious patients who have significantly smaller (rather than larger) amygdalae and a pronounced hypersensitivity toward CO2, and (3) epilepsy patients who exhibit apnea immediately following stimulation of their amygdala yet have no awareness that their breathing has stopped. The above findings elucidate an entirely novel role for the amygdala in the induction of apnea and inhibition of CO2-induced fear. Such a role is plausible given the strong inhibitory connections linking the central nucleus of the amygdala with respiratory and chemoreceptive centers in the brainstem. Based on this anatomical arrangement, we propose a model of Apnea-induced Anxiety (AiA) which predicts that recurring episodes of apnea are being unconsciously elicited by amygdala activation, resulting in transient spikes in CO2 that provoke fear and anxiety, and lead to characteristic patterns of escape and avoidance behavior in patients spanning the spectrum of anxiety. If this new conception of AiA proves to be true, and activation of the amygdala can repeatedly trigger states of apnea outside of one's awareness, then it remains possible that the chronicity of anxiety disorders is being interoceptively driven by a chemoreceptive system struggling to maintain homeostasis in the midst of these breathless states.
Collapse
Affiliation(s)
- Justin S Feinstein
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104; University of Iowa, Department of Neurology, Iowa City, Iowa, USA, 52242.
| | - Dylan Gould
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104
| |
Collapse
|
8
|
Subfornical organ interleukin 1 receptor: A novel regulator of spontaneous and conditioned fear associated behaviors in mice. Brain Behav Immun 2022; 101:304-317. [PMID: 35032573 PMCID: PMC9836229 DOI: 10.1016/j.bbi.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired threat responding and fear regulation is a hallmark of psychiatric conditions such as post-traumatic stress disorder (PTSD) and Panic Disorder (PD). Most studies have focused on external psychogenic threats to study fear, however, accumulating evidence suggests a primary role of homeostatic perturbations and interoception in regulating emotional behaviors. Heightened reactivity to interoceptive threat carbon dioxide (CO2) inhalation associates with increased risk for developing PD and PTSD, however, contributory mechanisms and molecular targets are not well understood. Previous studies from our group suggested a potential role of interleukin 1 receptor (IL-1R1) signaling within BBB-devoid sensory circumventricular organ, the subfornical organ (SFO) in CO2-evoked fear. However, the necessity of SFO-IL-1R1 in regulating CO2-associated spontaneous fear as well as, long-term fear potentiation relevant to PD/PTSD has not been investigated. The current study tested male mice with SFO-targeted microinfusion of the IL-1R1 antagonist (IL-1RA) or vehicle in a recently developed CO2-startle-fear conditioning-extinction paradigm. Consistent with our hypothesis, SFO IL-1RA treatment elicited significant attenuation of freezing and increased rearing during CO2 inhalation suggesting SFO-IL1R1 regulation of spontaneous fear to CO2. Intriguingly, SFO IL-1RA treatment normalized CO2-associated potentiation of conditioned fear and impaired extinction a week later suggesting modulation of long-term fear by SFO-IL-1R1 signaling. Post behavior FosB mapping revealed recruitment of prefrontal cortex-amygdala-periaqueductal gray (PAG) areas in SFO-IL-1RA mediated effects. Additionally, we localized cellular IL-1R1 expression within the SFO to blood vessel endothelial cells and observed CO2-induced alterations in IL-1β/IL-1R1 expression in peripheral mononuclear cells and SFO. Lastly, CO2-evoked microglial activation was attenuated in SFO-IL-1RA treated mice. These observations suggest a peripheral monocyte-endothelial-microglia interplay in SFO-IL-1R1 modulation of CO2-associated spontaneous fear and delayed fear memory. Collectively, our data highlight a novel, "bottom-up" neuroimmune mechanism that integrates interoceptive and exteroceptive threat processing of relevance to fear-related pathologies.
Collapse
|
9
|
Vinckier F, Betka S, Nion N, Serresse L, Similowski T. Harnessing the power of anticipation to manage respiratory-related brain suffering and ensuing dyspnoea: insights from the neurobiology of the respiratory nocebo effect. Eur Respir J 2021; 58:58/3/2101876. [PMID: 34556533 DOI: 10.1183/13993003.01876-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Fabien Vinckier
- Université de Paris, Paris, France.,Dept of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatry and Neurosciences, Paris, France
| | - Sophie Betka
- Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Nathalie Nion
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, UMRS1158, Sorbonne Université, Paris, France.,Département R3S (Respiration, Réanimation, Réhabilitation respiratoire, Sommeil), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| | - Laure Serresse
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, UMRS1158, Sorbonne Université, Paris, France.,Equipe mobile de soins palliatifs, AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| | - Thomas Similowski
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, UMRS1158, Sorbonne Université, Paris, France .,Département R3S (Respiration, Réanimation, Réhabilitation respiratoire, Sommeil), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
10
|
Abstract
The aim of this review is to summarize evidence regarding rat emotional experiences during carbon dioxide (CO2) exposure. The studies reviewed show that CO2 exposure is aversive to rats, and that rats respond to CO2 exposure with active and passive defense behaviors. Plasma corticosterone and bradycardia increased in rats exposed to CO2. As with anxiogenic drugs, responses to CO2 are counteracted by the administration of anxiolytics, SRIs, and SSRI's. Human studies reviewed indicate that, when inhaling CO2, humans experience feelings of anxiety fear and panic, and that administration of benzodiazepines, serotonin precursors, and SSRIs ameliorate these feelings. In vivo and in vitro rat studies reviewed show that brain regions, ion channels, and neurotransmitters involved in negative emotional responses are activated by hypercapnia and acidosis associated with CO2 exposure. On the basis of the behavioral, physiological, and neurobiological evidence reviewed, we conclude that CO2 elicits negative emotions in rats.
Collapse
|