1
|
Richardson DP, Foxe JJ, Freedman EG. Reduced Proactive and Reactive Cognitive Flexibility in Older Adults Underlies Performance Costs During Dual-Task Walking: A Mobile Brain/Body Imaging (MoBI) Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577090. [PMID: 38328169 PMCID: PMC10849668 DOI: 10.1101/2024.01.27.577090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Age-related reductions in cognitive flexibility may limit modulation of control processes during systematic increases to cognitive-motor demands, exacerbating dual-task costs. In this study, behavioral and neurophysiologic changes to proactive and reactive control during progressive cognitive-motor demands were compared across older and younger adults to explore the basis for age-differences in cognitive-motor interference (CMI). 19 younger (19 - 29 years old, mean age = 22.84 +/- 2.75 years, 6 male, 13 female) and 18 older (60 - 77 years old, mean age = 67.89 +/- 4.60 years, 9 male, 9 female) healthy adults completed cued task-switching while alternating between sitting and walking on a treadmill. Gait kinematics, task performance measures, and brain activity were recorded using electroencephalography (EEG) based Mobile Brain/Body Imaging (MoBI). Response accuracy on easier trial types improved in younger, but not older adults when they walked while performing the cognitive task. As difficulty increased, walking provoked accuracy costs in older, but not younger adults. Both groups registered faster responses and reduced gait variability during dual-task walking. Older adults exhibited lower amplitude modulations of proactive and reactive neural activity as cognitive-motor demands systematically increased, which may reflect reduced flexibility for progressive preparatory and reactive adjustments over behavioral control.
Collapse
Affiliation(s)
- David P. Richardson
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| | - John J. Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| | - Edward G. Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| |
Collapse
|
2
|
Roberts K, Jentzsch I, Otto TU. Semantic congruency modulates the speed-up of multisensory responses. Sci Rep 2024; 14:567. [PMID: 38177170 PMCID: PMC10766646 DOI: 10.1038/s41598-023-50674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Responses to multisensory signals are often faster compared to their unisensory components. This speed-up is typically attributed to target redundancy in that a correct response can be triggered by one or the other signal. In addition, semantic congruency of signals can also modulate multisensory responses; however, the contribution of semantic content is difficult to isolate as its manipulation commonly changes signal redundancy as well. To disentangle the effects of redundancy and semantic congruency, we manipulated semantic content but kept redundancy constant. We presented semantically congruent/incongruent animal pictures and sounds and asked participants to respond with the same response to two target animals (cats and dogs). We find that the speed-up of multisensory responses is larger for congruent (e.g., barking dogs) than incongruent combinations (e.g., barking cats). We then used a computational modelling approach to analyse audio-visual processing interferences that may underlie the effect. Our data is best described by a model that explains the semantic congruency modulation with a parameter that was previously linked to trial sequence effects, which in our experiment occur from the repetition/switching of both sensory modality and animal category. Yet, a systematic analysis of such trial sequence effects shows that the reported congruency effect is an independent phenomenon. Consequently, we discuss potential contributors to the semantic modulation of multisensory responses.
Collapse
Affiliation(s)
- Kalvin Roberts
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, KY16 9JP, UK.
| | - Ines Jentzsch
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, KY16 9JP, UK
| | - Thomas U Otto
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, KY16 9JP, UK.
| |
Collapse
|
3
|
Alhamdan AA, Murphy MJ, Crewther SG. Visual Motor Reaction Times Predict Receptive and Expressive Language Development in Early School-Age Children. Brain Sci 2023; 13:965. [PMID: 37371443 DOI: 10.3390/brainsci13060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Proficiency of multisensory processing and motor skill are often associated with early cognitive, social, and language development. However, little research exists regarding the relationship between multisensory motor reaction times (MRTs) to auditory, visual and audiovisual stimuli, and classical measures of receptive language and expressive vocabulary development in school-age children. Thus, this study aimed to examine the concurrent development of performance in classical tests of receptive (Peabody Picture Vocabulary Test; abbreviated as PPVT) and expressive vocabulary (Expressive Vocabulary Test; abbreviated as EVT), nonverbal intelligence (NVIQ) (determined with the aid of Raven's Colored Progressive Matrices; abbreviated as RCPM), speed of visual-verbal processing in the Rapid Automatic Naming (RAN) test, Eye-Hand Co-ordination (EHC) in the SLURP task, and multisensory MRTs, in children (n = 75), aged between 5 and 10 years. Bayesian statistical analysis showed evidence for age group differences in EVT performance, while PPVT was only different for the youngest group of children aged 5-6, supporting different developmental trajectories in vocabulary acquisition. Bayesian correlations revealed evidence for associations between age, NVIQ, and vocabulary measures, with decisive evidence and a higher correlation (r = 0.57 to 0.68) between EVT, MRT tasks, and EHC visuomotor processing. This was further supported by regression analyses indicating that EVT performance was the strongest unique predictor of multisensory MRTs, EHC, and RAN time. Additionally, visual MRTs were found to predict both receptive and expressive vocabulary. The findings of the study have important implications as accessible school-based assessments of the concurrent development of NVIQ, language, and multisensory processing; and hence as rapid and timely measures of developmental and neurodevelopmental status.
Collapse
Affiliation(s)
- Areej A Alhamdan
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Psychology, Imam Muhammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| | - Melanie J Murphy
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sheila G Crewther
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| |
Collapse
|
4
|
Brockhoff L, Elias EA, Bruchmann M, Schindler S, Moeck R, Straube T. The effects of visual perceptual load on detection performance and event-related potentials to auditory stimuli. Neuroimage 2023; 273:120080. [PMID: 37011716 DOI: 10.1016/j.neuroimage.2023.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Load Theory states that perceptual load prevents, or at least reduces, the processing of task-unrelated stimuli. This study systematically examined the detection and neural processing of auditory stimuli unrelated to a visual foreground task. The visual task was designed to create continuous perceptual load, alternated between low and high load, and contained performance feedback to motivate participants to focus on the visual task instead of the auditory stimuli presented in the background. The auditory stimuli varied in intensity, and participants signaled their subjective perception of these stimuli without receiving feedback. Depending on stimulus intensity, we observed load effects on detection performance and P3 amplitudes of the event-related potential (ERP). N1 amplitudes were unaffected by perceptual load, as tested by Bayesian statistics. Findings suggest that visual perceptual load affects the processing of auditory stimuli in a late time window, which is associated with a lower probability of reported awareness of these stimuli.
Collapse
|
5
|
Brockhoff L, Vetter L, Bruchmann M, Schindler S, Moeck R, Straube T. The effects of visual working memory load on detection and neural processing of task-unrelated auditory stimuli. Sci Rep 2023; 13:4342. [PMID: 36927846 PMCID: PMC10020478 DOI: 10.1038/s41598-023-31132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
While perceptual load has been proposed to reduce the processing of task-unrelated stimuli, theoretical arguments and empirical findings for other forms of task load are inconclusive. Here, we systematically investigated the detection and neural processing of auditory stimuli varying in stimulus intensity during a stimuli-unrelated visual working memory task alternating between low and high load. We found, depending on stimulus strength, decreased stimulus detection and reduced P3, but unaffected N1 amplitudes of the event-related potential to auditory stimuli under high as compared to low load. In contrast, load independent awareness effects were observed during both early (N1) and late (P3) time windows. Findings suggest a late neural effect of visual working memory load on auditory stimuli leading to lower probability of reported awareness of these stimuli.
Collapse
Affiliation(s)
- Laura Brockhoff
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Münster, Germany.
| | - Laura Vetter
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Münster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Robert Moeck
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|
6
|
Alhamdan AA, Murphy MJ, Crewther SG. Age-related decrease in motor contribution to multisensory reaction times in primary school children. Front Hum Neurosci 2022; 16:967081. [PMID: 36158624 PMCID: PMC9493199 DOI: 10.3389/fnhum.2022.967081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional measurement of multisensory facilitation in tasks such as speeded motor reaction tasks (MRT) consistently show age-related improvement during early childhood. However, the extent to which motor function increases with age and hence contribute to multisensory motor reaction times in young children has seldom been examined. Thus, we aimed to investigate the contribution of motor development to measures of multisensory (auditory, visual, and audiovisual) and visuomotor processing tasks in three young school age groups of children (n = 69) aged (5-6, n = 21; 7-8, n = 25.; 9-10 n = 18 years). We also aimed to determine whether age-related sensory threshold times for purely visual inspection time (IT) tasks improved significantly with age. Bayesian results showed decisive evidence for age-group differences in multisensory MRT and visuo-motor processing tasks, though the evidence showed that threshold time for visual identification IT performance was only slower in the youngest age group children (5-6) compared to older groups. Bayesian correlations between performance on the multisensory MRT and visuo-motor processing tasks indicated moderate to decisive evidence in favor of the alternative hypothesis (BF10 = 4.71 to 91.346), though not with the threshold IT (BF10 < 1.35). This suggests that visual sensory system development in children older than 6 years makes a less significant contribution to the measure of multisensory facilitation, compared to motor development. In addition to this main finding, multisensory facilitation of MRT within race-model predictions was only found in the oldest group of children (9-10), supporting previous suggestions that multisensory integration is likely to continue into late childhood/early adolescence at least.
Collapse
Affiliation(s)
- Areej A. Alhamdan
- Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia
- Department of Psychology, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Melanie J. Murphy
- Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia
| | - Sheila G. Crewther
- Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Ren Y, Li S, Zhao N, Hou Y, Wang T, Ren Y, Yang W. Auditory attentional load attenuates age-related audiovisual integration: An EEG study. Neuropsychologia 2022; 174:108346. [PMID: 35973479 DOI: 10.1016/j.neuropsychologia.2022.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 12/07/2021] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Studies have revealed that visual attentional load modulated audiovisual integration (AVI) greatly; however, auditory and visual attentional resources are separate to some degree, and task-irrelevant auditory information could arouse much faster and larger attentional alerting effects than visible information. Here, we aimed to explore how auditory attentional load influences AVI and how aging could have an effect. Thirty older and 30 younger adults participated in an AV discrimination task with an additional auditory distractor competing for attentional resources. The race model analysis revealed highest AVI in the low auditory attentional load condition (low > no > medium > high, pairwise comparison, all p ≤ 0.047) for younger adults and a higher AVI under the no auditory attentional-load condition (p = 0.008), but there was a lower AVI under the low (p = 0.019), medium (p < 0.001), and high (p = 0.021) auditory attentional-load conditions for older adults than for younger adults. The time-frequency analysis revealed higher theta- and alpha-band AVI oscillation under no and low auditory attentional-load conditions than under medium and high auditory attentional-load conditions for both older (all p ≤ 0.011) and younger (all p ≤ 0.024) adults. Additionally, Weighted Phase lag index (WPLI) analysis revealed higher theta-band and lower alpha-band global functional connectivity for older adults during AV stimuli processing (all p ≤ 0.031). These results suggested that the AVI was higher in the low attentional-load condition than in the no attentional-load condition but decreased inversely with increasing of attentional load and that there was a significant aging effect in older adults. In addition, the strengthened theta-band global functional connectivity in older adults during AV stimuli processing might be an adaptive phenomenon for age-related perceptual decline.
Collapse
Affiliation(s)
- Yanna Ren
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shengnan Li
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, 430062, China
| | - Nengwu Zhao
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yawei Hou
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tao Wang
- Department of Light and Chemical Engineering, Guizhou Light Industry Technical College, Guiyang, 550025, China
| | - Yanling Ren
- Department of Light and Chemical Engineering, Guizhou Light Industry Technical College, Guiyang, 550025, China
| | - Weiping Yang
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
Self-prioritization with unisensory and multisensory stimuli in a matching task. Atten Percept Psychophys 2022; 84:1666-1688. [PMID: 35538291 PMCID: PMC9232425 DOI: 10.3758/s13414-022-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
A shape-label matching task is commonly used to examine the self-advantage in motor reaction-time responses (the Self-Prioritization Effect; SPE). In the present study, auditory labels were introduced, and, for the first time, responses to unisensory auditory, unisensory visual, and multisensory object-label stimuli were compared across block-type (i.e., trials blocked by sensory modality type, and intermixed trials of unisensory and multisensory stimuli). Auditory stimulus intensity was presented at either 50 dB (Group 1) or 70 dB (Group 2). The participants in Group 2 also completed a multisensory detection task, making simple speeded motor responses to the shape and sound stimuli and their multisensory combinations. In the matching task, the SPE was diminished in intermixed trials, and in responses to the unisensory auditory stimuli as compared with the multisensory (visual shape+auditory label) stimuli. In contrast, the SPE did not differ in responses to the unisensory visual and multisensory (auditory object+visual label) stimuli. The matching task was associated with multisensory ‘costs’ rather than gains, but response times to self- versus stranger-associated stimuli were differentially affected by the type of multisensory stimulus (auditory object+visual label or visual shape+auditory label). The SPE was thus modulated both by block-type and the combination of object and label stimulus modalities. There was no SPE in the detection task. Taken together, these findings suggest that the SPE with unisensory and multisensory stimuli is modulated by both stimulus- and task-related parameters within the matching task. The SPE does not transfer to a significant motor speed gain when the self-associations are not task-relevant.
Collapse
|
9
|
Crosse MJ, Foxe JJ, Tarrit K, Freedman EG, Molholm S. Resolution of impaired multisensory processing in autism and the cost of switching sensory modality. Commun Biol 2022; 5:601. [PMID: 35773473 PMCID: PMC9246932 DOI: 10.1038/s42003-022-03519-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Children with autism spectrum disorders (ASD) exhibit alterations in multisensory processing, which may contribute to the prevalence of social and communicative deficits in this population. Resolution of multisensory deficits has been observed in teenagers with ASD for complex, social speech stimuli; however, whether this resolution extends to more basic multisensory processing deficits remains unclear. Here, in a cohort of 364 participants we show using simple, non-social audiovisual stimuli that deficits in multisensory processing observed in high-functioning children and teenagers with ASD are not evident in adults with the disorder. Computational modelling indicated that multisensory processing transitions from a default state of competition to one of facilitation, and that this transition is delayed in ASD. Further analysis revealed group differences in how sensory channels are weighted, and how this is impacted by preceding cross-sensory inputs. Our findings indicate that there is a complex and dynamic interplay among the sensory systems that differs considerably in individuals with ASD. Crosse et al. study a cohort of 364 participants with autism spectrum disorders (ASD) and matched controls, and show that deficits in multisensory processing observed in high-functioning children and teenagers with ASD are not evident in adults with the disorder. Using computational modelling they go on to demonstrate that there is a delayed transition of multisensory processing from a default state of competition to one of facilitation in ASD, as well as differences in sensory weighting and the ability to switch between sensory modalities, which sheds light on the interplay among sensory systems that differ in ASD individuals.
Collapse
Affiliation(s)
- Michael J Crosse
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Trinity Centre for Biomedical Engineering, Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Katy Tarrit
- The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
10
|
Chua SFA, Liu Y, Harris JM, Otto TU. No selective integration required: A race model explains responses to audiovisual motion-in-depth. Cognition 2022; 227:105204. [PMID: 35753178 DOI: 10.1016/j.cognition.2022.105204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Looming motion is an ecologically salient signal that often signifies danger. In both audition and vision, humans show behavioral biases in response to perceiving looming motion, which is suggested to indicate an adaptation for survival. However, it is an open question whether such biases occur also in the combined processing of multisensory signals. Towards this aim, Cappe, Thut, Romei, and Murraya (2009) found that responses to audiovisual signals were faster for congruent looming motion compared to receding motion or incongruent combinations. They considered this as evidence for selective integration of multisensory looming signals. To test this proposal, here, we successfully replicate the behavioral results by Cappe et al. (2009). We then show that the redundant signals effect (RSE - a speedup of multisensory compared to unisensory responses) is not distinct for congruent looming motion. Instead, as predicted by a simple probability summation rule, the RSE is primarily modulated by the looming bias in audition, which suggests that multisensory processing inherits a unisensory effect. Finally, we compare a large set of so-called race models that implement probability summation, but that allow for interference between auditory and visual processing. The best-fitting model, selected by the Akaike Information Criterion (AIC), virtually perfectly explained the RSE across conditions with interference parameters that were either constant or varied only with auditory motion. In the absence of effects jointly caused by auditory and visual motion, we conclude that selective integration is not required to explain the behavioral benefits that occur with audiovisual looming motion.
Collapse
Affiliation(s)
- S F Andrew Chua
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom.
| | - Yue Liu
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom
| | - Julie M Harris
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom
| | - Thomas U Otto
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom.
| |
Collapse
|
11
|
Michail G, Senkowski D, Holtkamp M, Wächter B, Keil J. Early beta oscillations in multisensory association areas underlie crossmodal performance enhancement. Neuroimage 2022; 257:119307. [PMID: 35577024 DOI: 10.1016/j.neuroimage.2022.119307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of signals from different sensory modalities can enhance perception and facilitate behavioral responses. While previous research described crossmodal influences in a wide range of tasks, it remains unclear how such influences drive performance enhancements. In particular, the neural mechanisms underlying performance-relevant crossmodal influences, as well as the latency and spatial profile of such influences are not well understood. Here, we examined data from high-density electroencephalography (N = 30) recordings to characterize the oscillatory signatures of crossmodal facilitation of response speed, as manifested in the speeding of visual responses by concurrent task-irrelevant auditory information. Using a data-driven analysis approach, we found that individual gains in response speed correlated with larger beta power difference (13-25 Hz) between the audiovisual and the visual condition, starting within 80 ms after stimulus onset in the secondary visual cortex and in multisensory association areas in the parietal cortex. In addition, we examined data from electrocorticography (ECoG) recordings in four epileptic patients in a comparable paradigm. These ECoG data revealed reduced beta power in audiovisual compared with visual trials in the superior temporal gyrus (STG). Collectively, our data suggest that the crossmodal facilitation of response speed is associated with reduced early beta power in multisensory association and secondary visual areas. The reduced early beta power may reflect an auditory-driven feedback signal to improve visual processing through attentional gating. These findings improve our understanding of the neural mechanisms underlying crossmodal response speed facilitation and highlight the critical role of beta oscillations in mediating behaviorally relevant multisensory processing.
Collapse
Affiliation(s)
- Georgios Michail
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany.
| | - Daniel Senkowski
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin 10365, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Mitte (CCM), Charitéplatz 1, Berlin 10117, Germany
| | - Bettina Wächter
- Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin 10365, Germany
| | - Julian Keil
- Biological Psychology, Christian-Albrechts-University Kiel, Kiel 24118, Germany
| |
Collapse
|
12
|
The Role of the Interaction between the Inferior Parietal Lobule and Superior Temporal Gyrus in the Multisensory Go/No-go Task. Neuroimage 2022; 254:119140. [PMID: 35342002 DOI: 10.1016/j.neuroimage.2022.119140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Information from multiple sensory modalities interacts. Using functional magnetic resonance imaging (fMRI), we aimed to identify the neural structures correlated with how cooccurring sound modulates the visual motor response execution. The reaction time (RT) to audiovisual stimuli was significantly faster than the RT to visual stimuli. Signal detection analyses showed no significant difference in the perceptual sensitivity (d') between audiovisual and visual stimuli, while the response criteria (β or c) of the audiovisual stimuli was decreased compared to the visual stimuli. The functional connectivity between the left inferior parietal lobule (IPL) and bilateral superior temporal gyrus (STG) was enhanced in Go processing compared with No-go processing of audiovisual stimuli. Furthermore, the left precentral gyrus (PreCG) showed enhanced functional connectivity with the bilateral STG and other areas of the ventral stream in Go processing compared with No-go processing of audiovisual stimuli. These results revealed that the neuronal network correlated with modulations of the motor response execution after the presentation of both visual stimuli along with cooccurring sound in a multisensory Go/Nogo task, including the left IPL, left PreCG, bilateral STG and some areas of the ventral stream. The role of the interaction between the IPL and STG in transforming audiovisual information into motor behavior is discussed. The current study provides a new perspective for exploring potential brain mechanisms underlying how humans execute appropriate behaviors on the basis of multisensory information.
Collapse
|
13
|
Fabio RA, Ingrassia M, Massa M. Transient and Long-Term Improvements in Cognitive Processes following Video Games: An Italian Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:78. [PMID: 35010337 PMCID: PMC8751166 DOI: 10.3390/ijerph19010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
The aim of the present study is to compare the short- and long-term effects of video-gaming by using the same measurements. More precisely, habitual and occasional video-gamers were compared so as to analyze the long-term effects. An ABABABA design was used to analyze the short-term effects. The first A refers to baseline measurements: Visual RT, Auditory RT, Aim trainer RT, Go/No-Go RT and N-Back RT. The first B refers to 30 min of gaming, the second A refers to the measurements used in the baseline, the second B refers to 60 min of a video game, the third A refers to the same measurements used in the baseline, the third B refers to a 30-min rest, and finally, the fourth A refers to the measurements used in the baseline. Seventy participants, twenty-nine habitual video-gamers and forty-one occasional video-gamers, participated in the study. The results showed a temporary improvement of cognitive functions (Visual RT, Auditory RT, Aim trainer RT, Go/No-Go RT and N-Back RT) in the short term and a strong enhancement of cognitive functions in the long term. The results are discussed in light of Flow Theory and the automatization process. Contribution of the study: The contribution of this research is to highlight that despite there being a transient enhancement of executive and cognitive functions through the use of mobile video games in the short-term period, with a decrease of performance after a 30-min rest, there is a strong increase of cognitive performance in the long-term period. Flow Theory and the automatization process together can explain this apparent inconsistency between the positive increase of long-term performance and the transient increase of short-term performance. One limitation of the present research is that it is not possible to distinguish whether the long-term enhancements can be attributed either to continued practice in the use of video games compared to non-gamers, or to the possibility that gamers are already predisposed to video game playing. Future research should address this issue.
Collapse
Affiliation(s)
- Rosa Angela Fabio
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy; (M.I.); (M.M.)
| | | | | |
Collapse
|
14
|
Hülsdünker T, Riedel D, Käsbauer H, Ruhnow D, Mierau A. Auditory Information Accelerates the Visuomotor Reaction Speed of Elite Badminton Players in Multisensory Environments. Front Hum Neurosci 2021; 15:779343. [PMID: 34899221 PMCID: PMC8657147 DOI: 10.3389/fnhum.2021.779343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Although vision is the dominating sensory system in sports, many situations require multisensory integration. Faster processing of auditory information in the brain may facilitate time-critical abilities such as reaction speed however previous research was limited by generic auditory and visual stimuli that did not consider audio-visual characteristics in ecologically valid environments. This study investigated the reaction speed in response to sport-specific monosensory (visual and auditory) and multisensory (audio-visual) stimulation. Neurophysiological analyses identified the neural processes contributing to differences in reaction speed. Nineteen elite badminton players participated in this study. In a first recording phase, the sound profile and shuttle speed of smash and drop strokes were identified on a badminton court using high-speed video cameras and binaural recordings. The speed and sound characteristics were transferred into auditory and visual stimuli and presented in a lab-based experiment, where participants reacted in response to sport-specific monosensory or multisensory stimulation. Auditory signal presentation was delayed by 26 ms to account for realistic audio-visual signal interaction on the court. N1 and N2 event-related potentials as indicators of auditory and visual information perception/processing, respectively were identified using a 64-channel EEG. Despite the 26 ms delay, auditory reactions were significantly faster than visual reactions (236.6 ms vs. 287.7 ms, p < 0.001) but still slower when compared to multisensory stimulation (224.4 ms, p = 0.002). Across conditions response times to smashes were faster when compared to drops (233.2 ms, 265.9 ms, p < 0.001). Faster reactions were paralleled by a lower latency and higher amplitude of the auditory N1 and visual N2 potentials. The results emphasize the potential of auditory information to accelerate the reaction time in sport-specific multisensory situations. This highlights auditory processes as a promising target for training interventions in racquet sports.
Collapse
Affiliation(s)
- Thorben Hülsdünker
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg.,Luxembourg Health & Sport Sciences Research Institute A.s.b.l., Differdange, Luxembourg
| | - David Riedel
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | | | - Diemo Ruhnow
- German Badminton Association, Mülheim an der Ruhr, Germany
| | - Andreas Mierau
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg.,Luxembourg Health & Sport Sciences Research Institute A.s.b.l., Differdange, Luxembourg.,Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
15
|
Multisensory stimuli shift perceptual priors to facilitate rapid behavior. Sci Rep 2021; 11:23052. [PMID: 34845325 PMCID: PMC8629992 DOI: 10.1038/s41598-021-02566-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022] Open
Abstract
Multisensory stimuli speed behavioral responses, but the mechanisms subserving these effects remain disputed. Historically, the observation that multisensory reaction times (RTs) outpace models assuming independent sensory channels has been taken as evidence for multisensory integration (the "redundant target effect"; RTE). However, this interpretation has been challenged by alternative explanations based on stimulus sequence effects, RT variability, and/or negative correlations in unisensory processing. To clarify the mechanisms subserving the RTE, we collected RTs from 78 undergraduates in a multisensory simple RT task. Based on previous neurophysiological findings, we hypothesized that the RTE was unlikely to reflect these alternative mechanisms, and more likely reflected pre-potentiation of sensory responses through crossmodal phase-resetting. Contrary to accounts based on stimulus sequence effects, we found that preceding stimuli explained only 3-9% of the variance in apparent RTEs. Comparing three plausible evidence accumulator models, we found that multisensory RT distributions were best explained by increased sensory evidence at stimulus onset. Because crossmodal phase-resetting increases cortical excitability before sensory input arrives, these results are consistent with a mechanism based on pre-potentiation through phase-resetting. Mathematically, this model entails increasing the prior log-odds of stimulus presence, providing a potential link between neurophysiological, behavioral, and computational accounts of multisensory interactions.
Collapse
|
16
|
Barutchu A, Spence C. Top-down task-specific determinants of multisensory motor reaction time enhancements and sensory switch costs. Exp Brain Res 2021; 239:1021-1034. [PMID: 33515085 PMCID: PMC7943519 DOI: 10.1007/s00221-020-06014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
This study was designed to investigate the complex interplay between multisensory processing, top–down processes related to the task relevance of sensory signals, and sensory switching. Thirty-five adults completed either a speeded detection or a discrimination task using the same auditory and visual stimuli and experimental setup. The stimuli consisted of unisensory and multisensory presentations of the letters ‘b’ and ‘d’. The multisensory stimuli were either congruent (e.g., the grapheme ‘b’ with the phoneme /b/) or incongruent (e.g., the grapheme ‘b’ with the phoneme /d/). In the detection task, the participants had to respond to all of the stimuli as rapidly as possible while, in the discrimination task, they only responded on those trials where one prespecified letter (either ‘b’ or ‘d’) was present. Incongruent multisensory stimuli resulted in faster responses as compared to unisensory stimuli in the detection task. In the discrimination task, only the dual-target congruent stimuli resulted in faster RTs, while the incongruent multisensory stimuli led to slower RTs than to unisensory stimuli; RTs were the slowest when the visual (rather than the auditory) signal was irrelevant, thus suggesting visual dominance. Switch costs were also observed when switching between unisensory target stimuli, while dual-target multisensory stimuli were less likely to be affected by sensory switching. Taken together, these findings suggest that multisensory motor enhancements and sensory switch costs are influenced by top–down modulations determined by task instructions, which can override the influence of prior learnt associations.
Collapse
Affiliation(s)
- Ayla Barutchu
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
| | - Charles Spence
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| |
Collapse
|
17
|
Barutchu A, Spence C. An Experimenter's Influence on Motor Enhancements: The Effects of Letter Congruency and Sensory Switch-Costs on Multisensory Integration. Front Psychol 2020; 11:588343. [PMID: 33335500 PMCID: PMC7736551 DOI: 10.3389/fpsyg.2020.588343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Multisensory integration can alter information processing, and previous research has shown that such processes are modulated by sensory switch costs and prior experience (e.g., semantic or letter congruence). Here we report an incidental finding demonstrating, for the first time, the interplay between these processes and experimental factors, specifically the presence (vs. absence) of the experimenter in the testing room. Experiment 1 demonstrates that multisensory motor facilitation in response to audiovisual stimuli (circle and tone with no prior learnt associations) is higher in those trials in which the sensory modality switches than when it repeats. Those participants who completed the study while alone exhibited increased RT variability. Experiment 2 replicated these findings using the letters “b” and “d” presented as unisensory stimuli or congruent and incongruent multisensory stimuli (i.e., grapheme-phoneme pairs). Multisensory enhancements were inflated following a sensory switch; that is, congruent and incongruent multisensory stimuli resulted in significant gains following a sensory switch in the monitored condition. However, when the participants were left alone, multisensory enhancements were only observed for repeating incongruent multisensory stimuli. These incidental findings therefore suggest that the effects of letter congruence and sensory switching on multisensory integration are partly modulated by the presence of an experimenter.
Collapse
Affiliation(s)
- Ayla Barutchu
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Charles Spence
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Zumer JM, White TP, Noppeney U. The neural mechanisms of audiotactile binding depend on asynchrony. Eur J Neurosci 2020; 52:4709-4731. [PMID: 32725895 DOI: 10.1111/ejn.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022]
Abstract
Asynchrony is a critical cue informing the brain whether sensory signals are caused by a common source and should be integrated or segregated. This psychophysics-electroencephalography (EEG) study investigated the influence of asynchrony on how the brain binds audiotactile (AT) signals to enable faster responses in a redundant target paradigm. Human participants actively responded (psychophysics) or passively attended (EEG) to noise bursts, "taps-to-the-face" and their AT combinations at seven AT asynchronies: 0, ±20, ±70 and ±500 ms. Behaviourally, observers were faster at detecting AT than unisensory stimuli within a temporal integration window: the redundant target effect was maximal for synchronous stimuli and declined within a ≤70 ms AT asynchrony. EEG revealed a cascade of AT interactions that relied on different neural mechanisms depending on AT asynchrony. At small (≤20 ms) asynchronies, AT interactions arose for evoked response potentials (ERPs) at 110 ms and ~400 ms post-stimulus. Selectively at ±70 ms asynchronies, AT interactions were observed for the P200 ERP, theta-band inter-trial coherence (ITC) and power at ~200 ms post-stimulus. In conclusion, AT binding was mediated by distinct neural mechanisms depending on the asynchrony of the AT signals. Early AT interactions in ERPs and theta-band ITC and power were critical for the behavioural response facilitation within a ≤±70 ms temporal integration window.
Collapse
Affiliation(s)
- Johanna M Zumer
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Thomas P White
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK
| | - Uta Noppeney
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Foxe JJ, Del Bene VA, Ross LA, Ridgway EM, Francisco AA, Molholm S. Multisensory Audiovisual Processing in Children With a Sensory Processing Disorder (II): Speech Integration Under Noisy Environmental Conditions. Front Integr Neurosci 2020; 14:39. [PMID: 32765229 PMCID: PMC7381232 DOI: 10.3389/fnint.2020.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Background: There exists a cohort of children and adults who exhibit an inordinately high degree of discomfort when experiencing what would be considered moderate and manageable levels of sensory input. That is, they show over-responsivity in the face of entirely typical sound, light, touch, taste, or smell inputs, and this occurs to such an extent that it interferes with their daily functioning and reaches clinical levels of dysfunction. What marks these individuals apart is that this sensory processing disorder (SPD) is observed in the absence of other symptom clusters that would result in a diagnosis of Autism, ADHD, or other neurodevelopmental disorders more typically associated with sensory processing difficulties. One major theory forwarded to account for these SPDs posits a deficit in multisensory integration, such that the various sensory inputs are not appropriately integrated into the central nervous system, leading to an overwhelming sensory-perceptual environment, and in turn to the sensory-defensive phenotype observed in these individuals. Methods: We tested whether children (6-16 years) with an over-responsive SPD phenotype (N = 12) integrated multisensory speech differently from age-matched typically-developing controls (TD: N = 12). Participants identified monosyllabic words while background noise level and sensory modality (auditory-alone, visual-alone, audiovisual) were varied in pseudorandom order. Improved word identification when speech was both seen and heard compared to when it was simply heard served to index multisensory speech integration. Results: School-aged children with an SPD show a deficit in the ability to benefit from the combination of both seen and heard speech inputs under noisy environmental conditions, suggesting that these children do not benefit from multisensory integrative processing to the same extent as their typically developing peers. In contrast, auditory-alone performance did not differ between the groups, signifying that this multisensory deficit is not simply due to impaired processing of auditory speech. Conclusions: Children with an over-responsive SPD show a substantial reduction in their ability to benefit from complementary audiovisual speech, to enhance speech perception in a noisy environment. This has clear implications for performance in the classroom and other learning environments. Impaired multisensory integration may contribute to sensory over-reactivity that is the definitional of SPD.
Collapse
Affiliation(s)
- John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.,The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,The Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Victor A Del Bene
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Lars A Ross
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Elizabeth M Ridgway
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.,The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,The Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|