1
|
Imam RA, Hassan FE, Ali IH, Alghamdi MA, Aboulhoda BE. Effect of Selenium nanoparticles on Paraquat-induced-neuroinflammation and oligodendocyte modulation: Implication of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Tissue Cell 2024; 89:102454. [PMID: 38905876 DOI: 10.1016/j.tice.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1β and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Ke H, Bai F, Li Z, Zhu Y, Zhang C, Li Y, Talifu Z, Pan Y, Liu W, Xu X, Gao F, Yang D, Du L, Yu Y, Li J. Inhibition of phospholipase D promotes neurological function recovery and reduces neuroinflammation after spinal cord injury in mice. Front Cell Neurosci 2024; 18:1352630. [PMID: 38572075 PMCID: PMC10987874 DOI: 10.3389/fncel.2024.1352630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Han Ke
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zihan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunjia Zhang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zuliyaer Talifu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yunzhu Pan
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Wubo Liu
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Xu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Feng Gao
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Degang Yang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Liangjie Du
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Yu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Jianjun Li
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhu L, Gao N, Zhu Z, Zhang S, Li X, Zhu J. Bioinformatics analysis of differentially expressed genes related to ischemia and hypoxia in spinal cord injury and construction of miRNA-mRNA or mRNA-transcription factor interaction network. Toxicol Mech Methods 2024; 34:300-318. [PMID: 37990533 DOI: 10.1080/15376516.2023.2286363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Previous studies show that spinal cord ischemia and hypoxia is an important cause of spinal cord necrosis and neurological loss. Therefore, the study aimed to identify genes related to ischemia and hypoxia after spinal cord injury (SCI) and analyze their functions, regulatory mechanism, and potential in regulating immune infiltration. METHODS The expression profiles of GSE5296, GSE47681, and GSE217797 were downloaded from the Gene Expression Omnibus database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to determine the function and pathway enrichment of ischemia- and hypoxia-related differentially expressed genes (IAHRDEGs) in SCI. LASSO model was constructed, and support vector machine analysis was used to identify key genes. The diagnostic values of key genes were evaluated using decision curve analysis and receiver operating characteristic curve analysis. The interaction networks of miRNAs-IAHRDEGs and IAHRDEGs-transcription factors were predicted and constructed with the ENCORI database and Cytoscape software. CIBERSORT algorithm was utilized to analyze the correlation between key gene expression and immune cell infiltration. RESULTS There were 27 IAHRDEGs identified to be significantly expressed in SCI at first. These genes were mostly significantly enriched in wound healing function and the pathway associated with lipid and atherosclerosis. Next, five key IAHRDEGs (Abca1, Casp1, Lpl, Procr, Tnfrsf1a) were identified and predicted to have diagnostic value. Moreover, the five key genes are closely related to immune cell infiltration. CONCLUSION Abca1, Casp1, Lpl, Procr, and Tnfrsf1a may promote the pathogenesis of ischemic or hypoxic SCI by regulating vascular damage, inflammation, and immune infiltration.
Collapse
Affiliation(s)
- Lijuan Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Na Gao
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhibo Zhu
- Medical Equipment Department, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Shiping Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xi Li
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jing Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
4
|
Calvo I, Montilla A, Huergo C, Martín-Saiz L, Martín-Allende J, Tepavcevic V, Domercq M, Fernández JA. Combining imaging mass spectrometry and immunohistochemistry to analyse the lipidome of spinal cord inflammation. Anal Bioanal Chem 2024; 416:1923-1933. [PMID: 38326664 PMCID: PMC10902057 DOI: 10.1007/s00216-024-05190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Inflammation is a complex process that accompanies many pathologies. Actually, dysregulation of the inflammatory process is behind many autoimmune diseases. Thus, treatment of such pathologies may benefit from in-depth knowledge of the metabolic changes associated with inflammation. Here, we developed a strategy to characterize the lipid fingerprint of inflammation in a mouse model of spinal cord injury. Using lipid imaging mass spectrometry (LIMS), we scanned spinal cord sections from nine animals injected with lysophosphatidylcholine, a chemical model of demyelination. The lesions were demonstrated to be highly heterogeneous, and therefore, comparison with immunofluorescence experiments carried out in the same section scanned by LIMS was required to accurately identify the morphology of the lesion. Following this protocol, three main areas were defined: the lesion core, the peri-lesion, which is the front of the lesion and is rich in infiltrating cells, and the uninvolved tissue. Segmentation of the LIMS experiments allowed us to isolate the lipid fingerprint of each area in a precise way, as demonstrated by the analysis using classification models. A clear difference in lipid signature was observed between the lesion front and the epicentre, where the damage was maximized. This study is a first step to unravel the changes in the lipidome associated with inflammation in the context of diverse pathologies, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ibai Calvo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Alejandro Montilla
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Javier Martín-Allende
- Department of Languages and Computer Systems, School of Engineering, University of the Basque Country (UPV/EHU), Paseo Rafael Moreno "Pitxitxi", n. 2/3, 48013, Bilbao, Spain
| | - Vanja Tepavcevic
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain.
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| |
Collapse
|
5
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
6
|
Ryan F, Francos-Quijorna I, Hernández-Mir G, Aquino C, Schlapbach R, Bradbury EJ, David S. Tlr4 Deletion Modulates Cytokine and Extracellular Matrix Expression in Chronic Spinal Cord Injury, Leading to Improved Secondary Damage and Functional Recovery. J Neurosci 2024; 44:e0778232023. [PMID: 38326029 PMCID: PMC10860514 DOI: 10.1523/jneurosci.0778-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 02/09/2024] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | - Isaac Francos-Quijorna
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Gerard Hernández-Mir
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Catharine Aquino
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Elizabeth J Bradbury
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
7
|
St-Pierre MK, González Ibáñez F, Kroner A, Tremblay MÈ. Microglia/macrophages are ultrastructurally altered by their proximity to spinal cord injury in adult female mice. J Neuroinflammation 2023; 20:273. [PMID: 37990235 PMCID: PMC10664529 DOI: 10.1186/s12974-023-02953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Traumatic spinal cord injury can cause immediate physical damage to the spinal cord and result in severe neurological deficits. The primary, mechanical tissue damage triggers a variety of secondary damage mechanisms at the injury site which significantly contribute to a larger lesion size and increased functional damage. Inflammatory mechanisms which directly involve both microglia (MG) and monocyte-derived macrophages (MDM) play important roles in the post-injury processes, including inflammation and debris clearing. In the current study, we investigated changes in the structure and function of MG/MDM in the injured spinal cord of adult female mice, 7 days after a thoracic contusion SCI. With the use of chip mapping scanning electron microscopy, which allows to image large samples at the nanoscale, we performed an ultrastructural comparison of MG/MDM located near the lesion vs adjacent regions to provide novel insights into the mechanisms at play post-injury. We found that MG/MDM located near the lesion had more mitochondria overall, including mitochondria with and without morphological alterations, and had a higher proportion of altered mitochondria. MG/MDM near the lesion also showed an increased number of phagosomes, including phagosomes containing myelin and partiallydigested materials. MG/MDM near the injury interacted differently with the spinal cord parenchyma, as shown by their reduced number of direct contacts with synaptic elements, axon terminals and dendritic spines. In this study, we characterized the ultrastructural changes of MG/MDM in response to spinal cord tissue damage in mice, uncovering changes in phagocytic activity, mitochondrial ultrastructure, and inter-cellular interactions within the spinal cord parenchyma.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Clement J. Zablocki Veterans Affairs Medical Center, 5000 W. National Ave, Milwaukee, WI, 53295, USA.
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
8
|
Pathak Z, Jadav T, Roy A, Chopra M, Singh N, Sengupta P, Kumar H. Maresin-1 prevents blood-spinal cord barrier disruption associated with TRPV4 elevation in the experimental model of spinal cord injury. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159395. [PMID: 37729963 DOI: 10.1016/j.bbalip.2023.159395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Recently, we reported the TRPV4 ion channel activation and its association with secondary damage after spinal cord injury (SCI). TRPV4 activation is linked with blood-spinal cord barrier (BSCB) disruption, endothelial damage, and inflammation after SCI. Specialized pro-resolving mediators (SPM) are endogenous lipid mediators released for inflammation resolution. Studies suggest that SPM could act as an endogenous antagonist of ion channels directly or indirectly at the plasma membrane. Herein, we studied the effect of maresin-1, a docosahexaenoic acid (DHA)-derived SPM, in SCI-induced TRPV4 expression and subsequent associated damage. First, employing a particular agonist (4αPDD) in endothelial and neuronal cell lines, we examined the potential of maresin-1 to block TRPV4 activation. Then we quantify the DHA levels in plasma and epicenter of the spinal cord in sham and at 1, 3, 7, 14, 21, and 28-days post-injury (DPI) using LC-MS. Then, we exogenously administered maresin-1 using two dosing regimens i.e., single-dose (1 μg) and multiple-dose (1 μg/day for seven days), to confirm its role in the TRPV4 inhibition and its linked damage. After SCI, DHA levels decrease in the spinal cord epicenter area as well as in the plasma. Treatment with maresin-1 attenuates TRPV4 expression, inflammatory cytokines, and chemokines and impedes neutrophil infiltration. Furthermore, treatment with maresin-1 prevents BSCB disruption, alleviates glial scar formation, and improves functional recovery. Thus, our results suggest that maresin-1 could modulate TRPV4 expression and could be a safe and promising approach to target inflammation and BSCB damage after SCI.
Collapse
Affiliation(s)
- Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Manjeet Chopra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
9
|
Chen SY, Yang RL, Wu XC, Zhao DZ, Fu SP, Lin FQ, Li LY, Yu LM, Zhang Q, Zhang T. Mesenchymal Stem Cell Transplantation: Neuroprotection and Nerve Regeneration After Spinal Cord Injury. J Inflamm Res 2023; 16:4763-4776. [PMID: 37881652 PMCID: PMC10595983 DOI: 10.2147/jir.s428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.
Collapse
Affiliation(s)
- Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Sheng-Ping Fu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Feng-Qin Lin
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Lin-Yan Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
10
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
11
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Mech D, Korgol K, Kurowska A, Adamski B, Miazga M, Biala G, Kruk-Slomka M. Promising Advances in Pharmacotherapy for Patients with Spinal Cord Injury-A Review of Studies Performed In Vivo with Modern Drugs. J Clin Med 2022; 11:jcm11226685. [PMID: 36431161 PMCID: PMC9698573 DOI: 10.3390/jcm11226685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is a pathological neurological condition that leads to significant motor dysfunction. It is a condition that occurs as a result of tragic accidents, violent acts, or as a consequence of chronic diseases or degenerative changes. The current treatments for patients with SCI have moderate efficacy. They improve the quality of life of patients, but they are still doomed to long-term disability. In response to the modern directions of research on possible therapeutic methods that allow for the recovery of patients with SCI, a scientific review publication is needed to summarize the recent developments in this topic. The following review is focused on the available pharmacological treatments for SCIs and the problems that patients face depending on the location of the injury. In the following review, the research team describes problems related to spasticity and neuropathic pain; possible therapeutic pathways are also described for neuroprotection and the improvement of neurotransmission within the injured spinal cord, and the review focuses on issues related to oxidative stress.
Collapse
Affiliation(s)
- Dominika Mech
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Katarzyna Korgol
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Antonina Kurowska
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Malgorzata Miazga
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1448-7258; Fax: +48-8-1448-7252
| |
Collapse
|
13
|
Zan C, Li J, Lin F, Wang Z. Potential value of differentially expressed circular RNAs derived from circulating exosomes in the pathogenesis of rat spinal cord injury. Front Neurosci 2022; 16:1003628. [PMID: 36440268 PMCID: PMC9691962 DOI: 10.3389/fnins.2022.1003628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) remains one kind of devastating neurological damage, and specific molecular mechanisms involved need to be understood deeply. Currently, circular RNAs (circRNAs), as a newly discovered type of non-coding RNAs (ncRNAs), have been under active investigation. Through functional interactions with disease-associated microRNAs (miRNAs), exosome-derived circRNAs have been extensively implicated in various organ pathogenesis. Nevertheless, the functional involvement of circulating circRNAs in SCI onset, progression as well as repair remains poorly explored until now. Of note, there still lacks clinical and experimental evidence in this regard. To obtain some relevant knowledge in this field, this study was originally designed to have a general overview of differentially expressed circRNAs derived from circulating exosomes in SCI rats in comparison with the control rats. It turned out that 709 types of downregulated circRNAs and 346 kinds of upregulated circRNAs were preliminarily screened out. Functional enrichment analyses including kyoto encyclopedia of genes and genomes (KEGG) pathway and gene ontology (GO) were performed to evaluate the possible biological functions of upregulated as well as downregulated circRNAs involved in SCI. Furthermore, five types of upregulated circulating circRNAs including chr4:208359914–208362182+, chr15:20088296–20092102+, chr1:175098934– 175134845–, chr1:175099657– 175128203–, and chr1:175104454– 175134845–, and plus five kinds of downregulated circulating circRNAs including chr11:74154652– 74159524–, chr12:45412398– 45412635–, chr7:137630261– 137648924–, chr6:6280974–6281188+, and chr4:225251864–225254087+, were verified through reverse transcription-polymerase chain reaction (RT-PCR). At last, taking these differentially expressed circRNAs in the center, the circRNA-miRNA-mRNA gene interaction network was constructed to predict the possible functionalities of circRNAs in SCI through anticipating specific interactive miRNAs, giving new insights into how circRNAs contribute to this pathological process. Taken together, these findings suggest the possible involvement and functional significance of circRNAs in SCI.
Collapse
Affiliation(s)
- Chunfang Zan
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
- *Correspondence: Chunfang Zan, ,
| | - Jianan Li
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Fengsong Lin
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Zengliang Wang
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
- Zengliang Wang,
| |
Collapse
|
14
|
Tong T, Duan W, Xu Y, Hong H, Xu J, Fu G, Wang X, Yang L, Deng P, Zhang J, He H, Mao G, Lu Y, Lin X, Yu Z, Pi H, Cheng Y, Xu S, Zhou Z. Paraquat exposure induces Parkinsonism by altering lipid profile and evoking neuroinflammation in the midbrain. ENVIRONMENT INTERNATIONAL 2022; 169:107512. [PMID: 36108500 DOI: 10.1016/j.envint.2022.107512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in the world and a well-known potent neurotoxin for humans. PQ exposure has been linked to increase the risk of Parkinson's disease (PD). However, the mechanism underlying its neurotoxic effects in PD pathogenesis is unclear. In our present study, C57BL/6J mice treated with PQ manifested severe motor deficits indicated by the significant reductions in suspension score, latency to fall from rotarod, and grip strength at 8 weeks after PQ exposure. Pathological hallmarks of Parkinsonism in the midbrain such as dopaminergic neuron loss, increased α-synuclein protein, and dysregulated PD-related genes were observed. Non-targeted lipidome analysis demonstrated that PQ exposure alters lipid profile and abundance, increases pro-inflammatory lipids.27 significantly altered subclasses of lipids belonged to 6 different lipid categories. Glycerophospholipids, sphingolipids, and glycerides were the most abundant lipids. Abundance of pro-inflammatory lipids such as Cer, LPC, LPS, and LPI was significantly increased in the midbrain. mRNA expressions of genes regulating ceramide biosynthesis in the midbrain were markedly up-regulated. Moreover, PQ exposure increased serum pro-inflammatory cytokines and provoked neuroinflammation in the midbrain. Pro-inflammatory lipids and cytokines in the midbrain were positively correlated with motor deficits. PQ poisoning in humans significantly also elevated serum pro-inflammatory cytokines and induced an intense systemic inflammation. In summary, we presented initial investigations of PQ induced molecular events related to the PD pathogenesis, capturing aspects of disturbed lipid metabolism, neuroinflammation, impairment of dopaminergic neurons in the midbrain, and an intense systemic inflammation. These neurotoxic effects of PQ exposure may mechanistically contribute to the pathogenesis of PQ induced Parkinsonism. Results of this study also strongly support the hypothesis that ever-increasing prevalence of Parkinson's disease is etiologically linked to the health risk of exposure to neurotoxic environmental pollutants.
Collapse
Affiliation(s)
- Tong Tong
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Yudong Xu
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Hong
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Xue Wang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaofeng Mao
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Xiqin Lin
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yong Cheng
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China.
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China.
| | - Zhou Zhou
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
15
|
Khiar-Fernández N, Zian D, Vázquez-Villa H, Martínez RF, Escobar-Peña A, Foronda-Sainz R, Ray M, Puigdomenech-Poch M, Cincilla G, Sánchez-Martínez M, Kihara Y, Chun J, López-Vales R, López-Rodríguez ML, Ortega-Gutiérrez S. Novel Antagonist of the Type 2 Lysophosphatidic Acid Receptor (LPA 2), UCM-14216, Ameliorates Spinal Cord Injury in Mice. J Med Chem 2022; 65:10956-10974. [PMID: 35948083 PMCID: PMC9421655 DOI: 10.1021/acs.jmedchem.2c00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Spinal cord injuries (SCIs) irreversibly disrupt spinal
connectivity,
leading to permanent neurological disabilities. Current medical treatments
for reducing the secondary damage that follows the initial injury
are limited to surgical decompression and anti-inflammatory drugs,
so there is a pressing need for new therapeutic strategies. Inhibition
of the type 2 lysophosphatidic acid receptor (LPA2) has
recently emerged as a new potential pharmacological approach to decrease
SCI-associated damage. Toward validating this receptor as a target
in SCI, we have developed a new series of LPA2 antagonists,
among which compound 54 (UCM-14216) stands out as a potent
and selective LPA2 receptor antagonist (Emax = 90%, IC50 = 1.9 μM, KD = 1.3 nM; inactive at LPA1,3–6 receptors).
This compound shows efficacy in an in vivo mouse model of SCI in an
LPA2-dependent manner, confirming the potential of LPA2 inhibition for providing a new alternative for treating SCI.
Collapse
Affiliation(s)
- Nora Khiar-Fernández
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Debora Zian
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - R Fernando Martínez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Andrea Escobar-Peña
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Román Foronda-Sainz
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Manisha Ray
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Maria Puigdomenech-Poch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, BarcelonaE-08193, Spain
| | - Giovanni Cincilla
- Molomics, Barcelona Science Park, Baldiri i Reixac 4-8, Barcelona E-08028, Spain
| | - Melchor Sánchez-Martínez
- Molomics, Barcelona Science Park, Baldiri i Reixac 4-8, Barcelona E-08028, Spain.,Burua Scientific, Sant Pere de Ribes E-08810, Spain
| | - Yasuyuki Kihara
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, BarcelonaE-08193, Spain
| | - María L López-Rodríguez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| |
Collapse
|
16
|
He B, Gai Q, Fan T. Bone Marrow Mesenchymal Stem Cells (BMSCs) Expressing Netrin-1 Alleviates Spinal Cord Injury (SCI)-Induced Inflammation. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spinal cord injury (SCI) is a common central nervous system (CNS) injury. Bone marrow mesenchymal stem cells (BMSCs) transplantation is a potential treatment for traumatic SCI. However, the role and mechanism of BMSCs with high expression of Netrin-1 on the repair and inflammation of
spinal cord injury cells remains unclear. Our study intends to assess the effect of BMSCs with high Netrin-1 level on the repair of SCI cells. BMSCs or Netrin-1 transfected BMSCs were co-cultured with mechanically injured nerve cells followed by analysis of the differentiation of BMSCs by
light microscope, apoptosis activity, expression of TLR-4 and NF-κB, and the TNF-α and IL-1β content in cell supernatant by ELISA. BMSCs with high Netrin-1 expression promoted the proliferation of BMSCs, inhibited apoptosis, and promoted the differentiation
of nerve cells along with increased ALK activity, and the expression of GFAP and BDNF. Co-culture with BMSCs or BMSCs with high Netrin-1 expression increased mechanically damaged nerve cell proliferation, decreased apoptosis, downregulated TLR-4 and NF-κB (P < 0.05)
with more significant changes after co-culture with BMSCs with high Netrin-1 expression. In conclusion, Netrin-1 can promote BMSCs proliferation and differentiation, and inhibit apoptosis. By inhibiting inflammation, it can promote damaged nerve cell proliferation and repair.
Collapse
Affiliation(s)
- Baohua He
- Sanbo Brain Hospital, Capital Medical University, Beijng, 100091, China
| | - Qifei Gai
- Sanbo Brain Hospital, Capital Medical University, Beijng, 100091, China
| | - Tao Fan
- Sanbo Brain Hospital, Capital Medical University, Beijng, 100091, China
| |
Collapse
|
17
|
Licero J, Illan MS, Descorbeth M, Cordero K, Figueroa JD, De Leon M. Fatty acid-binding protein 4 (FABP4) inhibition promotes locomotor and autonomic recovery in rats following spinal cord injury. J Neurotrauma 2022; 39:1099-1112. [PMID: 35297679 PMCID: PMC9347423 DOI: 10.1089/neu.2021.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response associated with traumatic spinal cord injury (SCI) contributes to locomotor and sensory impairments. Pro-inflammatory (M1) macrophages/microglia (MφMG) are the major cellular players in this response as they promote chronic inflammation resulting in injury expansion and tissue damage. Fatty Acid-Binding Protein 4 (FABP4) promotes M1 MφMG differentiation; however, it is unknown if FABP4 also plays a role in the etiology of SCI. The present study investigates whether FABP4's gene expression influences functional recovery following SCI. Analysis of qPCR data shows a robust induction of FABP4 mRNA (>100 fold) in rats subjected to a T9-T10 contusion injury compared to control. Western blot experiments reveal significant upregulation of FABP4 protein at the injury epicenter, and immunofluorescence analysis identifies this upregulation occurs in CD11b+ MφMG. Furthermore, upregulation of FABP4 gene expression correlates with PPARγ downregulation, inactivation of Iκβα, and the activation of the NF-κB pathway. Analysis of locomotor recovery using the Basso-Beattie-Bresnahan's (BBB) locomotor scale and the CatWalk gait analysis system shows that injured rats treated with FABP4 inhibitor BMS309403 have significant improvements in locomotion compared to vehicle controls. Additionally, inhibitor-treated rats exhibit enhanced autonomic bladder reflex recovery. Immunofluorescence experiments also show the administration of the FABP4 inhibitor increases the number of CD163+ and Liver Arginase+ M2 MφMG within the epicenter and penumbra of the injured spinal cord 28 dpi. These findings show that FABP4 may significantly exacerbate locomotor and sensory impairments during SCI by modulating macrophage/microglial activity.
Collapse
Affiliation(s)
- Jenniffer Licero
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| | - Miguel S Illan
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| | - Magda Descorbeth
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Kathia Cordero
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Johnny D Figueroa
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Marino De Leon
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| |
Collapse
|
18
|
Salvador AFM, Kipnis J. Immune response after central nervous system injury. Semin Immunol 2022; 59:101629. [PMID: 35753867 DOI: 10.1016/j.smim.2022.101629] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Traumatic injuries of the central nervous system (CNS) affect millions of people worldwide, and they can lead to severely damaging consequences such as permanent disability and paralysis. Multiple factors can obstruct recovery after CNS injury. One of the most significant is the progressive neuronal death that follows the initial mechanical impact, leading to the loss of undamaged cells via a process termed secondary neurodegeneration. Efforts to define treatments that limit the spread of damage, while important, have been largely ineffectual owing to gaps in the mechanistic understanding that underlies the persisting neuronal cell death. Inflammation, with its influx of immune cells that occurs shortly after injury, has been associated with secondary neurodegeneration. However, the role of the immune system after CNS injury is far more complex. Studies have indicated that the immune response after CNS injury is detrimental, owing to immune cell-produced factors (e.g., pro-inflammatory cytokines, free radicals, neurotoxic glutamate) that worsen tissue damage. Our lab and others have also demonstrated the beneficial immune response that occurs after CNS injury, with the release of growth factors such as brain-derived growth factor (BDNF) and interleukin (IL-10) and the clearance of apoptotic and myelin debris by immune cells1-4. In this review, we first discuss the multifaceted roles of the immune system after CNS injury. We then speculate on how advancements in single-cell RNA technologies can dramatically change our understanding of the immune response, how the spinal cord meninges serve as an important site for hosting immunological processes critical for recovery, and how the origin of peripherally recruited immune cells impacts their function in the injured CNS.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|
20
|
Jogia T, Kopp MA, Schwab JM, Ruitenberg MJ. Peripheral white blood cell responses as emerging biomarkers for patient stratification and prognosis in acute spinal cord injury. Curr Opin Neurol 2021; 34:796-803. [PMID: 34608075 PMCID: PMC8631147 DOI: 10.1097/wco.0000000000000995] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To date, prognostication of patients after acute traumatic spinal cord injury (SCI) mostly relies on the neurological assessment of residual function attributed to lesion characteristics. With emerging treatment candidates awaiting to be tested in early clinical trials, there is a need for wholistic high-yield prognostic biomarkers that integrate both neurogenic and nonneurogenic SCI pathophysiology as well as premorbid patient characteristics. RECENT FINDINGS It is becoming clearer that effective prognostication after acute SCI would benefit from integrating an assessment of pathophysiological changes on a systemic level, and with that, extend from a lesion-centric approach. Immunological markers mirror tissue injury as well as host immune function and are easily accessible through routine blood sampling. New studies have highlighted the value of circulating white blood cells, neutrophils and lymphocytes in particular, as prognostic systemic indicators of SCI severity and outcomes. SUMMARY We survey recent advances in methods and approaches that may allow for a more refined diagnosis and better prognostication after acute SCI, discuss how these may help deepen our understanding of SCI pathophysiology, and be of use in clinical trials.
Collapse
Affiliation(s)
- Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Marcel A. Kopp
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan M. Schwab
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Belford Center for Spinal Cord Injury, Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Scott KF, Mann TJ, Fatima S, Sajinovic M, Razdan A, Kim RR, Cooper A, Roohullah A, Bryant KJ, Gamage KK, Harman DG, Vafaee F, Graham GG, Church WB, Russell PJ, Dong Q, de Souza P. Human Group IIA Phospholipase A 2-Three Decades on from Its Discovery. Molecules 2021; 26:molecules26237267. [PMID: 34885848 PMCID: PMC8658914 DOI: 10.3390/molecules26237267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.
Collapse
Affiliation(s)
- Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Correspondence: ; Tel.: +61-2-8738-9026
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Anshuli Razdan
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Adam Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Aflah Roohullah
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Katherine J. Bryant
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Kasuni K. Gamage
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - David G. Harman
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
- UNSW Data Science Hub, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—QUT, Brisbane, QLD 4102, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Wang Y, Xu Y, Xu S, Yang J, Wang K, Zhan X. Bacillus subtilis DSM29784 Alleviates Negative Effects on Growth Performance in Broilers by Improving the Intestinal Health Under Necrotic Enteritis Challenge. Front Microbiol 2021; 12:723187. [PMID: 34603247 PMCID: PMC8481782 DOI: 10.3389/fmicb.2021.723187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Along with banning antibiotics, necrotic enteritis (NE), especially subclinical enteritis (SNE), poses a significant threat to the chicken industry; however, probiotics are a potentially promising intervention. We aimed to investigate the beneficial effects of Bacillus subtilis DSM29784 (BS) on the treatment of Clostridium perfringens (CP)-induced SNE in broilers. A total of 360 1-day-old broiler chicks were divided into three treatment groups, namely control (Ctr), SNE, and BS treatment (BST) groups, all of which were fed with a basal died for 21days, and then from day 22 onward, only the BST group had a BS supplemented diet (1×109 colony-forming units BS/kg). On day 15, all chicks, except the Ctr group, were challenged with a 20-fold dose coccidiosis vaccine and 1ml CP (2×108) on days 18–21 for SNE induction. Beneficial effects were observed on growth performance in BST compared to SNE broilers. BST treatment alleviated intestinal lesions and increased the villus height/crypt depth ratio. Further, BST broilers showed increased maltase activity in the duodenum compared with SNE chicks, and a significantly decreased caspase-3 protein expression in the jejunum mucosa. Moreover, an increased abundance of Ruminococcaceae and Bifidobacterium beneficial gut bacteria and an altered gut metabolome were observed. Taken together, we demonstrate that the manipulation of microbial gut composition using probiotics may be a promising prevention strategy for SNE by improving the composition and metabolism of the intestinal microbiota, intestinal structure, and reducing inflammation and apoptosis. Hence, BS potentially has active ingredients that may be used as antibiotic substitutes and effectively reduces the economic losses caused by SNE. The findings of this study provide a scientific foundation for BS application in broiler feed in the future.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shengliang Xu
- Haiyan Animal Husbandry and Veterinary Bureau, Haiyan, China
| | - Jinyong Yang
- Zhejiang Animal Husbandry Technology Extension and Livestock and Poultry Monitoring Station, Hangzhou, China
| | - Kaiying Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiuan Zhan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Hughes FM, Harper SN, Nosé BD, Allkanjari A, Zheng MT, Jin H, Purves JT. Specialized Pro-resolution Mediators in the bladder; Annexin-A1 normalizes inflammation and bladder dysfunction during bladder outlet obstruction. Am J Physiol Renal Physiol 2021; 321:F443-F454. [PMID: 34396790 DOI: 10.1152/ajprenal.00205.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bladder Outlet Obstruction (BOO) is ultimately experienced by ≈90% of men, most commonly secondary to benign prostatic hyperplasia. Inflammation is a critical driver of BOO pathology in the bladder and can be divided into two critical steps; initiation and resolution. While great strides have been made toward understanding initiation of inflammation in the bladder (through the NLRP3 inflammasome), no studies have examined resolution. Resolution is controlled by 5 classes of compounds known as Specialized Pro-resolving Mediators (SPMs), all of which bind to one or more of 7 different receptors. Using immunocytochemistry, we show the presence of 6 of the known SPM receptors in the bladder of control and BOO rats; the 7th has no rodent homolog. The expression was predominantly localized to the urothelia, often with some expression in the smooth muscle, but little to none in the interstitial cells. We next examined the therapeutic potential of the Annexin-A1 resolution system, also present in control and BOO bladders. Using the peptide mimetic Ac2-26, we blocked inflammation-initiating pathways (NLRP3 activation), diminished BOO-induced inflammation (Evans blue dye extravasation), and normalized bladder dysfunction (urodynamics). Excitingly, Ac2-26 also promoted faster and more complete functional recovery after surgical de-obstruction. Together, the results demonstrate that the bladder expresses a wide variety of potential pro-resolving pathways and that modulation of just one of these pathways can alleviate many detrimental aspects of BOO and speed recovery after de-obstruction. This work establishes a precedent for future studies evaluating SPM effectiveness in resolving the many conditions associated with bladder inflammation.
Collapse
Affiliation(s)
- Francis M Hughes
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Shelby N Harper
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brent D Nosé
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Armand Allkanjari
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Michael T Zheng
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Huixia Jin
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - J Todd Purves
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|