1
|
Sommer G, Rodríguez López C, Hirschkorn A, Calimano G, Marques-Lopes J, Milner TA, Glass MJ. Estrogen Receptor Beta Agonist Influences Presynaptic NMDA Receptor Distribution in the Paraventricular Hypothalamic Nucleus Following Hypertension in a Mouse Model of Perimenopause. BIOLOGY 2024; 13:819. [PMID: 39452127 PMCID: PMC11505520 DOI: 10.3390/biology13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in the paraventricular hypothalamic nucleus (PVN), a brain area critical for blood pressure regulation. However, recent evidence indicates that presynaptic NMDA receptors also play a role in neural plasticity. Here, using immuno-electron microscopy, we examine the influence of peri-AOF hypertension on the subcellular distribution of the essential NMDA GluN1 receptor subunit in PVN axon terminals in peri-AOF and in male mice. Hypertension was produced by 14-day slow-pressor angiotensin II (AngII) infusion. The involvement of estrogen signaling was investigated by co-administering an estrogen receptor beta (ERß) agonist. Although AngII induced hypertension in both peri-AOF and male mice, peri-AOF females showed higher cytoplasmic GluN1 levels. In peri-AOF females, activation of ERß blocked hypertension and increased plasmalemmal GluN1 in axon terminals. In contrast, stimulation of ERß did not inhibit hypertension or influence presynaptic GluN1 localization in males. These results indicate that sex-dependent recruitment of presynaptic NMDA receptors in the PVN is influenced by ERß signaling in mice during early ovarian failure.
Collapse
Affiliation(s)
- Garrett Sommer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Claudia Rodríguez López
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Adi Hirschkorn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Gianna Calimano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-HEALTH), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| |
Collapse
|
2
|
Luteolin Attenuates Hypertension via Inhibiting NF-κB-Mediated Inflammation and PI3K/Akt Signaling Pathway in the Hypothalamic Paraventricular Nucleus. Nutrients 2023; 15:nu15030502. [PMID: 36771206 PMCID: PMC9921115 DOI: 10.3390/nu15030502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Luteolin is widely distributed among a number of vegetal species worldwide. The pharmacological effects of luteolin are diverse and amongst antioxidant, free radical scavenging, and anti-inflammatory activities. Preliminary study showed that luteolin can ameliorate hypertension. However, the precise mechanism needs further investigation. There is no evidence that luteolin affects the paraventricular nucleus of the hypothalamus (PVN), a brain nucleus associated with a critical neural regulator of blood pressure. Our main aim was to explore the effect of luteolin on the PI3K/Akt/NF-κB signaling pathway within the PVN of hypertensive rats. METHODS spontaneously hypertensive rats (SHRs) and corresponding normotensive control rats, the Wistar Kyoto (WKY) rats were divided into four groups and subsequently treated for 4 weeks with bilateral PVN injections of either luteolin (20 µg/0.11 µL, volume: 0.11 µL/h) or vehicle (artificial cerebrospinal fluid). RESULTS luteolin infusion to the PVN significantly decreased some hemodynamic parameters including the mean arterial pressure (MAP), heart rate (HR), circulating plasma norepinephrine (NE) and epinephrine (EPI). Additionally, there was a decrease in the expressions of the phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT), levels of reactive oxygen species (ROS), NAD(P)H oxidase subunit (NOX2, NOX4) in the PVN of SHRs. Meanwhile, the expression of inflammatory cytokines and the activity of nuclear factor κB (NF-κB) p65 in the PVN of SHRs were lowered. Furthermore, immunofluorescence results showed that injection of luteolin in the PVN reduced the expression of tyrosine hydroxylase (TH), and increased that of superoxide dismutase (SOD1) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN of SHRs. CONCLUSION Our novel findings revealed that luteolin lowered hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the PVN.
Collapse
|
3
|
Oliveira V, Reho JJ, Balapattabi K, Ritter ML, Mathieu NM, Opichka MA, Lu KT, Grobe CC, Silva SD, Wackman KK, Nakagawa P, Segar JL, Sigmund CD, Grobe JL. Chronic intracerebroventricular infusion of angiotensin II causes dose- and sex-dependent effects on intake behaviors and energy homeostasis in C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2022; 323:R410-R421. [PMID: 35816717 PMCID: PMC9512112 DOI: 10.1152/ajpregu.00091.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The renin-angiotensin system (RAS) within the brain is implicated in the control of fluid and electrolyte balance, autonomic functions, blood pressure, and energy expenditure. Mouse models are increasingly used to explore these mechanisms; however, sex and dose dependencies of effects elicited by chronic intracerebroventricular (ICV) angiotensin II (ANG II) infusion have not been carefully established in this species. To examine the interactions among sex, body mass, and ICV ANG II on ingestive behaviors and energy balance, young adult C57BL/6J mice of both sexes were studied in a multiplexed metabolic phenotyping system (Promethion) during chronic infusion of ANG II (0, 5, 20, or 50 ng/h). At these infusion rates, ANG II caused accelerating dose-dependent increases in drinking and total energy expenditure in male mice, but female mice exhibited a complex biphasic response with maximum responses at 5 ng/h. Body mass differences did not account for sex-dependent differences in drinking behavior or total energy expenditure. In contrast, resting metabolic rate was similarly increased by ICV ANG II in a dose-dependent manner in both sexes after correction for body mass. We conclude that chronic ICV ANG II stimulates water intake, resting, and total energy expenditure in male C57BL/6J mice following straightforward accelerating dose-dependent kinetics, but female C57BL/6J mice exhibit complex biphasic responses to ICV ANG II. Furthermore, control of resting metabolic rate by ANG II is dissociable from mechanisms controlling fluid intake and total energy expenditure. Future studies of the sex dependency of ANG II within the brain of mice must be designed to carefully consider the biphasic responses that occur in females.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Megan A Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sebastião D Silva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|