1
|
Thompson CK, Walenski M. Measurement matters for assessing the role of chronically altered perfusion in post-stroke aphasia. Brain Commun 2023; 6:fcad341. [PMID: 38162903 PMCID: PMC10757447 DOI: 10.1093/braincomms/fcad341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
This scientific commentary refers to 'Cerebral perfusion in post-stroke aphasia and its relationship to residual language abilities', by Ivanova et al. (https://doi.org/10.1093/braincomms/fcad252).
Collapse
Affiliation(s)
- Cynthia K Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University, Evanston, IL, USA
| | - Matthew Walenski
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| |
Collapse
|
2
|
Hyperbaric oxygen therapy in acute stroke: is it time for Justitia to open her eyes? Neurol Sci 2020; 41:1381-1390. [PMID: 31925614 DOI: 10.1007/s10072-020-04241-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/06/2020] [Indexed: 01/27/2023]
Abstract
Hypoxia is a critical component of neuronal death in patients with stroke. Therefore increasing oxygenation of brain tissue seems to be a logical therapy against cerebral ischemia. Oxygen therapy exists in two modalities: normobaric hyperoxia therapy and hyperbaric oxygen therapy (HBO). HBO is a therapeutic procedure in which pure (100%) oxygen is administered at greater than atmospheric pressure in HBO therapy chambers. In this review article, we aimed to summarize the current knowledge regarding the therapeutic use of HBO in acute stroke patients. Literature review and electronic search were performed using PubMed, Medscape, and UpToDate with the keywords stroke, acute stroke, hyperbaric oxygen therapy, and hyperoxia. According to the reviewed literature, the use of HBO as routine stroke therapy cannot be justified in acute stage of stroke. More randomized, controlled studies are needed regarding safety and especially effectives of HBO in stroke patients. Also, standardized definitionof HBO should be proposed and used in all future studies.
Collapse
|
3
|
Mišir M, Renić M, Novak S, Mihalj M, Ćosić A, Vesel M, Drenjančević I. Hyperbaric oxygenation and 20-hydroxyeicosatetreanoic acid inhibition reduce stroke volume in female diabetic Sprague-Dawley rats. Exp Physiol 2017; 102:1596-1606. [PMID: 28940693 DOI: 10.1113/ep086402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is there a beneficial effect and what are the mechanisms of acute and multiple hyperbaric oxygenation (HBO2 ) exposures on the outcome of cerebral tissue injury induced by a transient middle cerebral artery occlusion model in diabetic female rats? Are 20-hydroxyeicosatetreanoic acid and epoxyeicosatrienoic acids involved? What is the main finding and its importance? Equal reduction of cortical and total infarct size in rats treated with HBO2 and HET0016 (20-hydroxyeicosatetreanoic acid production inhibitor) and significant mRNA upregulation of epoxyeicosatrienoic acid-producing enzymes (Cyp2J3 and Cyp2C11) in treated groups suggest that HBO2 and HET0016 are highly effective stroke treatments and that cytochrome P450 metabolites are involved in this therapeutic effect. We evaluated the effects of acute and repetitive hyperbaric oxygenation (HBO2 ), 20-hydroxyeicosatetreanoic acid (20-HETE) inhibition by N-hydroxy-N'-(4-butyl-2methylphenyl)-formamidine (HET0016) and their combination on experimental stroke outcomes. Streptozotocin-induced type 1 diabetic Sprague-Dawley female rats (n = 42; n = 7 per group), were subjected to 30 min of transient middle cerebral artery occlusion (t-MCAO)-reperfusion and divided into the following groups: (1) control group, without treatment; and groups exposed to: (2) HBO2 ; (3) multiple HBO2 (HBO2 immediately and second exposure 12 h after t-MCAO); (4) HET0016 pretreatment (1 mg kg-1 , 3 days before t-MCAO) combined with HBO2 after t-MCAO; (5) HET0016 treatment (1 h before, during and for 6 h after t-MCAO); and (6) HET0016 treatment followed by HBO2 after t-MCAO. Messenger RNA expression of CYP2J3, CYP2C11, CYP4A1, endothelial nitric oxide synthase and epoxide hydrolase 2 was determined by real-time qPCR. Cortical infarct size and total infarct size were equally and significantly reduced in HBO2 - and HET0016-treated rats. Combined treatment with HET0016 and HBO2 provided no significant additive effect compared with HET0016 treatment only. Messenger RNA of Cyp2J3 was significantly increased in all study groups, and mRNA of Cyp2C11 was significantly increased in the multiple HBO2 group and the HET0016 treatment followed by HBO2 group, compared with the control group. Expression of endothelial nitric oxide synthase was significantly increased after HBO2 treatments, and expression of epoxide hydrolase 2 was increased in all groups compared with the control group. In diabetic female Sprague-Dawley rats, HBO2 and HET0016 are highly effective stroke treatments, suggesting the involvement of cytochrome P450 metabolites and the NO pathway in this therapeutic effect.
Collapse
Affiliation(s)
- Mihael Mišir
- Clinical Hospital Center Osijek, Neurology Clinic, Osijek, Croatia.,University Josip Juraj Strossmayer Osijek, Faculty of Medicine Osijek, Department of Physiology and Immunology, Laboratory for Circulatory Physiology, Osijek, Croatia
| | - Marija Renić
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Sanja Novak
- University Josip Juraj Strossmayer Osijek, Faculty of Medicine Osijek, Department of Physiology and Immunology, Laboratory for Circulatory Physiology, Osijek, Croatia
| | - Martina Mihalj
- University Josip Juraj Strossmayer Osijek, Faculty of Medicine Osijek, Department of Physiology and Immunology, Laboratory for Circulatory Physiology, Osijek, Croatia
| | - Anita Ćosić
- University Josip Juraj Strossmayer Osijek, Faculty of Medicine Osijek, Department of Physiology and Immunology, Laboratory for Circulatory Physiology, Osijek, Croatia
| | - Monika Vesel
- University Josip Juraj Strossmayer Osijek, Faculty of Medicine Osijek, Department of Physiology and Immunology, Laboratory for Circulatory Physiology, Osijek, Croatia
| | - Ines Drenjančević
- University Josip Juraj Strossmayer Osijek, Faculty of Medicine Osijek, Department of Physiology and Immunology, Laboratory for Circulatory Physiology, Osijek, Croatia
| |
Collapse
|
4
|
Thompson CK, Walenski M, Chen Y, Caplan D, Kiran S, Rapp B, Grunewald K, Nunez M, Zinbarg R, Parrish TB. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia. Neural Plast 2017; 2017:2361691. [PMID: 28357141 PMCID: PMC5357554 DOI: 10.1155/2017/2361691] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 01/12/2023] Open
Abstract
Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere), no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI) analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0-6 mm), with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function.
Collapse
Affiliation(s)
- Cynthia K. Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - YuFen Chen
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Speech, Language, and Hearing, College of Health & Rehabilitation, Boston University, Boston, MA, USA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin Grunewald
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Mia Nunez
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Richard Zinbarg
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Todd B. Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 2014; 115:246-69. [PMID: 24407111 PMCID: PMC3969942 DOI: 10.1016/j.pneurobio.2013.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Stroke is deemed a worldwide leading cause of neurological disability and death, however, there is currently no promising pharmacotherapy for acute ischemic stroke aside from intravenous or intra-arterial thrombolysis. Yet because of the narrow therapeutic time window involved, thrombolytic application is very restricted in clinical settings. Accumulating data suggest that non-pharmaceutical therapies for stroke might provide new opportunities for stroke treatment. Here we review recent research progress in the mechanisms and clinical implications of non-pharmaceutical therapies, mainly including neuroprotective approaches such as hypothermia, ischemic/hypoxic conditioning, acupuncture, medical gases and transcranial laser therapy. In addition, we briefly summarize mechanical endovascular recanalization devices and recovery devices for the treatment of the chronic phase of stroke and discuss the relative merits of these devices.
Collapse
Affiliation(s)
- Fan Chen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Yuming Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Taylor Hinchliffe
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridian, Shanghai 201203, China
| | - Ying Xia
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China.
| |
Collapse
|
6
|
Qi Z, Liu W, Luo Y, Ji X, Liu KJ. Normobaric hyperoxia-based neuroprotective therapies in ischemic stroke. Med Gas Res 2013; 3:2. [PMID: 23298701 PMCID: PMC3552719 DOI: 10.1186/2045-9912-3-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/07/2013] [Indexed: 01/11/2023] Open
Abstract
Stroke is a leading cause of death and disability due to disturbance of blood supply to the brain. As brain is highly sensitive to hypoxia, insufficient oxygen supply is a critical event contributing to ischemic brain injury. Normobaric hyperoxia (NBO) that aims to enhance oxygen delivery to hypoxic tissues has long been considered as a logical neuroprotective therapy for ischemic stroke. To date, many possible mechanisms have been reported to elucidate NBO’s neuroprotection, such as improving tissue oxygenation, increasing cerebral blood flow, reducing oxidative stress and protecting the blood brain barrier. As ischemic stroke triggers a battery of damaging events, combining NBO with other agents or treatments that target multiple mechanisms of injury may achieve better outcome than individual treatment alone. More importantly, time loss is brain loss in acute cerebral ischemia. NBO can be a rapid therapy to attenuate or slow down the evolution of ischemic tissues towards necrosis and therefore “buy time” for reperfusion therapies. This article summarizes the current literatures on NBO as a simple, widely accessible, and potentially cost-effective therapeutic strategy for treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, No,45 Changchun Street, Beijing, 100053, China.
| | | | | | | | | |
Collapse
|
7
|
Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:114-37. [PMID: 21521171 DOI: 10.2174/187152411796011349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxiainducible factor 1(HIF1) transcription factors, in stroke.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone St., Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
8
|
Kennedy DN, Haselgrove C, Makris N, Goldin DM, Lev MH, Caplan D, Caviness VS. WebParc: a tool for analysis of the topography and volume of stroke from MRI. Med Biol Eng Comput 2011; 48:215-28. [PMID: 20077026 DOI: 10.1007/s11517-009-0571-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
The quantitative assessment of the anatomic consequences of cerebral infarction is critical in the study of the etiology and therapeutic response in patients with stroke. We present here an overview of the operation of "WebParc," a computational system that provides measures of stroke lesion volume and location with respect to canonical forebrain neural systems nomenclature. Using a web-based interface, clinical imaging data can be registered to a template brain that contains a comprehensive set of anatomic structures. Upon delineation of the lesion, we can express the size and localization of the lesion in terms of the regions that are intersected within the template. We demonstrate the application of the system using MRI-based diffusion-weighted imaging and document measures of the validity and reliability of its uses. Intra- and inter-rater reliability is demonstrated, and characterized relative to the various classes of anatomic regions that can be assessed. The WebParc system has been developed to meet criteria of both efficiency and intuitive operator use in the real time analysis of stroke anatomy, so as to be useful in support of clinical care and clinical research studies. This article is an overview of its base-line operation with quantitative anatomic characterization of lesion size and location in terms of stroke distribution within the separate gray and white matter compartments of the brain.
Collapse
Affiliation(s)
- David N Kennedy
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Although there is a continual improvement in the understanding of the pathophysiology of brain ischaemia and reperfusion, the pharmacological approach of treating or preventing brain ischaemic injury has had limited clinical impact so far. The great majority of clinical trials testing neuroprotectants for the treatment of acute ischaemic stroke have failed to demonstrate any benefit on any major outcome endpoint. Several strategies combining physiologic (oxygen, hypothermia), pharmacologic (erythopoietin derivatives) and thrombolytic therapies may, however, be promising in future, provided a more rigorous design of the clinical trials is achieved. The place of anaesthetics as clinical effective neuroprotectants in the perioperative period remains to be established.
Collapse
|
10
|
Fujiwara N, Murata Y, Arai K, Egi Y, Lu J, Wu O, Singhal AB, Lo EH. Combination therapy with normobaric oxygen (NBO) plus thrombolysis in experimental ischemic stroke. BMC Neurosci 2009; 10:79. [PMID: 19604385 PMCID: PMC2714858 DOI: 10.1186/1471-2202-10-79] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 07/15/2009] [Indexed: 11/17/2022] Open
Abstract
Background The widespread use of tissue plasminogen activator (tPA), the only FDA-approved acute stroke treatment, remains limited by its narrow therapeutic time window and related risks of brain hemorrhage. Normobaric oxygen therapy (NBO) may be a useful physiological strategy that slows down the process of cerebral infarction, thus potentially allowing for delayed or more effective thrombolysis. In this study we investigated the effects of NBO started simultaneously with intravenous tPA, in spontaneously hypertensive rats subjected to embolic middle cerebral artery (MCA) stroke. After homologous clot injection, animals were randomized into different treatment groups: saline injected at 1 hour; tPA at 1 hour; saline at 1 hour plus NBO; tPA at 1 hour plus NBO. NBO was maintained for 3 hours. Infarct volume, brain swelling and hemorrhagic transformation were quantified at 24 hours. Outcome assessments were blinded to therapy. Results Upon clot injection, cerebral perfusion in the MCA territory dropped below 20% of pre-ischemic baselines. Both tPA-treated groups showed effective thrombolysis (perfusion restored to nearly 100%) and smaller infarct volumes (379 ± 57 mm3 saline controls; 309 ± 58 mm3 NBO; 201 ± 78 mm3 tPA; 138 ± 30 mm3 tPA plus NBO), showing that tPA-induced reperfusion salvages ischemic tissue and that NBO does not significantly alter this neuroprotective effect. NBO had no significant effect on hemorrhagic conversion, brain swelling, or mortality. Conclusion NBO can be safely co-administered with tPA. The efficacy of tPA thrombolysis is not affected and there is no induction of brain hemorrhage or edema. These experimental results require clinical confirmation.
Collapse
Affiliation(s)
- Norio Fujiwara
- Neuroprotection Research Laboratory, Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Wendy R Galpern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
12
|
Abstract
Oxygen is frequently administered to patients with suspected stroke. However, the role of oxygen therapy in ischemic stroke remains controversial in light of the failure of three clinical trials of hyperbaric oxygen therapy to show efficacy, and the fear of exacerbating oxygen free radical injury. The previous trials had several shortcomings, perhaps because they were designed on basis of anecdotal case reports and little preclinical data. Most animal studies concerning oxygen therapy in stroke have been conducted over the last 6 years. Emerging data suggests that hyperbaric and even normobaric oxygen therapy can be effective if used appropriately, and raises the tantalizing possibility that hyperoxia can be used to extend the narrow therapeutic time window for stroke thrombolysis. This article reviews the history, rationale, mechanisms of action and adverse effects of hyperoxia, the key results of previous hyperoxia studies, and the potential role of oxygen therapy in contemporary stroke treatment.
Collapse
Affiliation(s)
- Aneesh B Singhal
- Massachusetts General Hospital, Stroke Research Center, 175 Cambridge Street, Suite 300, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Górecki DC, Beresewicz M, Zabłocka B. Neuroprotective effects of short peptides derived from the Insulin-like growth factor 1. Neurochem Int 2007; 51:451-8. [PMID: 17582656 DOI: 10.1016/j.neuint.2007.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 04/03/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor I (IGF-1) is a peptide synthesized in response to growth hormone stimulation. While most of the circulating IGF-1 comes from the liver, it can also be produced in other tissues and both its expression and processing undergo tissue-specific regulation. The predominant form, IGF-1Ea is a circulating factor while two others, IGF-1Eb and IGF-1Ec (MGF), are mostly expressed in different tissues or in response to various stimuli and show some preferences with respect to the signal transduction pathways they activate. In skeletal muscle specific forms of IGF-1 play a role in development and growth and in addition to these physiological roles IGF-1 functions in the damaged muscle. IGF-1 is also important for the developing and adult brain and can reduce neuronal death caused by different types of injuries. Like many other peptide hormones IGF-1 originates from a precursor pro-hormone that undergoes extensive post-translational modifications. Processing liberates the mature peptide, which acts via the specific IGF-1 receptor but additional short peptides can arise from both N- and C-termini of various IGF-1 isoforms. These derivatives function as autonomous biologically active peptides and extremely potent neuroprotective agents. Their biological effects are independent of the activation of the IGF-1 receptor. Unfortunately, little is known about their mechanism(s) of action. Likewise, the existence of the endogenous production and wider biological effects of these short peptides are uncertain. However, considering the difference in the modes of action it might be possible to dissociate the unwanted and potentially dangerous mitogenic activity of the full-length IGF-1 exerted via its receptor from the neuroprotective effects of short derivatives mediated through different pathways. Such small molecules show good penetration through the blood brain barrier, can be inexpensively manufactured and modified to increase their stability. Therefore, they are good candidates for development into a neuroprotective therapeutic modality.
Collapse
Affiliation(s)
- Dariusz C Górecki
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, Portsmouth, England, United Kingdom
| | | | | |
Collapse
|
14
|
Pathophysiology of ischaemic stroke: insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol 2007; 153 Suppl 1:S44-54. [PMID: 18037922 DOI: 10.1038/sj.bjp.0707530] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Preventing death and limiting handicap from ischaemic stroke are major goals that can be achieved only if the pathophysiology of infarct expansion is properly understood. Primate studies showed that following occlusion of the middle cerebral artery (MCA)--the most frequent and prototypical stroke, local tissue fate depends on the severity of hypoperfusion and duration of occlusion, with a fraction of the MCA territory being initially in a 'penumbral' state. Physiological quantitative PET imaging has translated this knowledge in man and revealed the presence of considerable pathophysiological heterogeneity from patient to patient, largely unpredictable from elapsed time since onset or clinical deficit. While these observations underpinned key trials of thrombolysis, they also indicate that only patients who are likely to benefit should be exposed to its risks. Accordingly, imaging-based diagnosis is rapidly becoming an essential component of stroke assessment, replacing the clock by individually customized management. Diffusion- and perfusion-weighted MR (DWI-PWI) and CT-based perfusion imaging are increasingly being used to implement this, and are undergoing formal validation against PET. Beyond thrombolysis per se, knowledge of the individual pathophysiology also guides management of variables like blood pressure, blood glucose and oxygen saturation, which can otherwise precipitate the penumbra into the core, and the oligaemic tissue into the penumbra. We propose that future therapeutic trials use physiological imaging to select the patient category that best matches the drug's presumed mode of action, rather than lumping together patients with entirely different pathophysiological patterns in so-called 'large trials', which have all failed so far.
Collapse
|
15
|
Abstract
Gene therapy is a promising approach for treatment of stroke and other cerebrovascular diseases, although it may take many years to realize. Gene therapy could occur prior to a stroke (eg, to stabilize atherosclerotic plaques) and/or following a stroke (eg, to prevent vasospasm after subarachnoid hemorrhage or reduce injury to neurons by ischemic insult). We have transferred the gene coding for vasoactive calcitonin gene-related peptide via cerebrospinal fluid, and demonstrated attenuation of vasospasm after SAH. Transfer of neuroprotective genes or small interfering RNA for neurotoxic genes has good potential for ischemic stroke. In this brief report, we review recent developments in experimental gene therapy for stroke. Fundamental advances, including development of safer, more specific gene transfer vectors, are discussed.
Collapse
Affiliation(s)
- Yi Chu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|