1
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
2
|
Huang J, Hu X, Chen Z, Ouyang F, Li J, Hu Y, Zhao Y, Wang J, Yao F, Jing J, Cheng L. Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord. J Neuroinflammation 2024; 21:88. [PMID: 38600569 PMCID: PMC11005239 DOI: 10.1186/s12974-024-03089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jinxin Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xuyang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zeqiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yixue Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fei Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Li Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
3
|
Gholampour S. Feasibility of assessing non-invasive intracranial compliance using FSI simulation-based and MR elastography-based brain stiffness. Sci Rep 2024; 14:6493. [PMID: 38499758 PMCID: PMC10948846 DOI: 10.1038/s41598-024-57250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Intracranial compliance (ICC) refers to the change in intracranial volume per unit change in intracranial pressure (ICP). Magnetic resonance elastography (MRE) quantifies brain stiffness by measuring the shear modulus. Our objective is to investigate the relationship between ICC and brain stiffness through fluid-structure interaction (FSI) simulation, and to explore the feasibility of using MRE to assess ICC based on brain stiffness. This is invaluable due to the clinical importance of ICC, as well as the fast and non-invasive nature of the MRE procedure. We employed FSI simulation in hydrocephalus patients with aqueductal stenosis to non-invasively calculate ICP which is the basis of the calculation of ICC and FSI-based brain stiffness. The FSI simulated parameters used have been validated with experimental data. Our results showed that there is no relationship between FSI simulated-based brain stiffness and ICC in hydrocephalus patients. However, MRE-based brain stiffness may be sensitive to changes in intracranial fluid dynamic parameters such as cerebral perfusion pressure (CPP), cerebral blood flow (CBF), and ICP, as well as to mechano-vascular changes in the brain, which are determining parameters in ICC assessment. Although optimism has been found regarding the assessment of ICC using MRE-based brain stiffness, especially for acute-onset brain disorders, further studies are necessary to clarify their direct relationship.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Neurological Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, Bertalan G, Meyer T, Tzschätzsch H, Kühl AA, Boehm-Sturm P, Braun J, Scheel M, Paul F, Infante-Duarte C, Sack I. Cortical matrix remodeling as a hallmark of relapsing-remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathol 2024; 147:8. [PMID: 38175305 PMCID: PMC10766667 DOI: 10.1007/s00401-023-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.
Collapse
Affiliation(s)
- Rafaela V Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan P Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Clara S Batzdorf
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gergely Bertalan
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin Corporate, Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuroradiology, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Khair AM, McIlvain G, McGarry MDJ, Kandula V, Yue X, Kaur G, Averill LW, Choudhary AK, Johnson CL, Nikam RM. Clinical application of magnetic resonance elastography in pediatric neurological disorders. Pediatr Radiol 2023; 53:2712-2722. [PMID: 37794174 PMCID: PMC11086054 DOI: 10.1007/s00247-023-05779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Magnetic resonance elastography is a relatively new, rapidly evolving quantitative magnetic resonance imaging technique which can be used for mapping the viscoelastic mechanical properties of soft tissues. MR elastography measurements are akin to manual palpation but with the advantages of both being quantitative and being useful for regions which are not available for palpation, such as the human brain. MR elastography is noninvasive, well tolerated, and complements standard radiological and histopathological studies by providing in vivo measurements that reflect tissue microstructural integrity. While brain MR elastography studies in adults are becoming frequent, published studies on the utility of MR elastography in children are sparse. In this review, we have summarized the major scientific principles and recent clinical applications of brain MR elastography in diagnostic neuroscience and discuss avenues for impact in assessing the pediatric brain.
Collapse
Affiliation(s)
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | | | - Vinay Kandula
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Xuyi Yue
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Gurcharanjeet Kaur
- Department of Neurology, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren W Averill
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Rahul M Nikam
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA.
| |
Collapse
|
6
|
Sanjana F, Delgorio PL, DeConne TM, Hiscox LV, Pohlig RT, Johnson CL, Martens CR. Vascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespan. J Cereb Blood Flow Metab 2023; 43:1931-1941. [PMID: 37395479 PMCID: PMC10676145 DOI: 10.1177/0271678x231186571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Arterial stiffness and cerebrovascular pulsatility are non-traditional risk factors of Alzheimer's disease. However, there is a gap in understanding the earliest mechanisms that link these vascular determinants to brain aging. Changes to mechanical tissue properties of the hippocampus (HC), a brain structure essential for memory encoding, may reflect the impact of vascular dysfunction on brain aging. We tested the hypothesis that arterial stiffness and cerebrovascular pulsatility are related to HC tissue properties in healthy adults across the lifespan. Twenty-five adults underwent measurements of brachial blood pressure (BP), large elastic artery stiffness, middle cerebral artery pulsatility index (MCAv PI), and magnetic resonance elastography (MRE), a sensitive measure of HC viscoelasticity. Individuals with higher carotid pulse pressure (PP) exhibited lower HC stiffness (β = -0.39, r = -0.41, p = 0.05), independent of age and sex. Collectively, carotid PP and MCAv PI significantly explained a large portion of the total variance in HC stiffness (adjusted R2 = 0.41, p = 0.005) in the absence of associations with HC volumes. These cross-sectional findings suggest that the earliest reductions in HC tissue properties are associated with alterations in vascular function.
Collapse
Affiliation(s)
- Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Theodore M DeConne
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Lucy V Hiscox
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Ryan T Pohlig
- Department of Epidemiology, University of Delaware, Newark, DE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
7
|
Brain inflammation induces alterations in glycosaminoglycan metabolism and subsequent changes in CS-4S and hyaluronic acid. Int J Biol Macromol 2023; 230:123214. [PMID: 36634800 DOI: 10.1016/j.ijbiomac.2023.123214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
It remains uncertain how brain glycosaminoglycans (GAGs) contribute to the progression of inflammatory disorders like multiple sclerosis (MS). We investigated here neuroinflammation-mediated changes in GAG composition and metabolism using the mouse model of experimental autoimmune encephalomyelitis (EAE) and sham-immunized mice as controls. Cerebellum, mid- and forebrain at different EAE phases were investigated using gene expression analysis (microarray and RT-qPCR) as well as HPLC quantification of CS and hyaluronic acid (HA). The cerebellum was the most affected brain region showing a downregulation of Bcan, Cspg5, and an upregulation of Dse, Gusb, Hexb, Dcn and Has2 at peak EAE. Upregulation of genes involved in GAG degradation as well as synthesis of HA and decorin persisted from onset to peak, and diminished at remission, suggesting a severity-related decrease in CS and increments in HA. Relative disaccharide quantification confirmed a 3.6 % reduction of CS-4S at peak and a normalization during remission, while HA increased in both phases by 26.1 % and 17.6 %, respectively. Early inflammatory processes led to altered GAG metabolism in early EAE stages and subsequent partially reversible changes in CS-4S and in HA. Targeting early modifications in CS could potentially mitigate progression of EAE/MS.
Collapse
|
8
|
Delgorio PL, Hiscox LV, McIlvain G, Kramer MK, Diano AM, Twohy KE, Merritt AA, McGarry MDJ, Schwarb H, Daugherty AM, Ellison JM, Lanzi AM, Cohen ML, Martens CR, Johnson CL. Hippocampal subfield viscoelasticity in amnestic mild cognitive impairment evaluated with MR elastography. Neuroimage Clin 2023; 37:103327. [PMID: 36682312 PMCID: PMC9871742 DOI: 10.1016/j.nicl.2023.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Hippocampal subfields (HCsf) are brain regions important for memory function that are vulnerable to decline with amnestic mild cognitive impairment (aMCI), which is often a preclinical stage of Alzheimer's disease. Studies in aMCI patients often assess HCsf tissue integrity using measures of volume, which has little specificity to microstructure and pathology. We use magnetic resonance elastography (MRE) to examine the viscoelastic mechanical properties of HCsf tissue, which is related to structural integrity, and sensitively detect differences in older adults with aMCI compared to an age-matched control group. Group comparisons revealed HCsf viscoelasticity is differentially affected in aMCI, with CA1-CA2 and DG-CA3 exhibiting lower stiffness and CA1-CA2 exhibiting higher damping ratio, both indicating poorer tissue integrity in aMCI. Including HCsf stiffness in a logistic regression improves classification of aMCI beyond measures of volume alone. Additionally, lower DG-CA3 stiffness predicted aMCI status regardless of DG-CA3 volume. These findings showcase the benefit of using MRE in detecting subtle pathological tissue changes in individuals with aMCI via the HCsf particularly affected in the disease.
Collapse
Affiliation(s)
- Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Mary K Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexa M Diano
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Kyra E Twohy
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - Alexis A Merritt
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | | | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - James M Ellison
- Swank Memory Care and Geriatric Consultation, ChristianaCare, Wilmington, DE, United States; Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Alyssa M Lanzi
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Matthew L Cohen
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States; Department of Mechanical Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
9
|
Zhu T, Guo J, Wu Y, Lei T, Zhu J, Chen H, Kala S, Wong KF, Cheung CP, Huang X, Zhao X, Yang M, Sun L. The mechanosensitive ion channel Piezo1 modulates the migration and immune response of microglia. iScience 2023; 26:105993. [PMID: 36798430 PMCID: PMC9926228 DOI: 10.1016/j.isci.2023.105993] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Microglia are the brain's resident immune cells, performing surveillance to promote homeostasis and healthy functioning. While microglial chemical signaling is well-studied, mechanical cues regulating their function are less well-understood. Here, we investigate the role of the mechanosensitive ion channel Piezo1 in microglia migration, pro-inflammatory cytokine production, and stiffness sensing. In Piezo1 knockout transgenic mice, we demonstrated the functional expression of Piezo1 in microglia and identified genes whose expression was consequently affected. Functional assays revealed that Piezo1 deficiency in microglia enhanced migration toward amyloid β-protein, and decreased levels of pro-inflammatory cytokines produced upon stimulation by lipopolysaccharide, both in vitro and in vivo. The phenomenon could be mimicked or reversed chemically using a Piezo1-specific agonist or antagonist. Finally, we also showed that Piezo1 mediated the effect of substrate stiffness-induced migration and cytokine expression. Altogether, we show that Piezo1 is an important molecular mediator for microglia, its activation modulating microglial migration and immune responses.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jinghui Guo
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Yong Wu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Ting Lei
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jiejun Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Hui Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shashwati Kala
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Kin Fung Wong
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Chi Pong Cheung
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xiaohui Huang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xinyi Zhao
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Minyi Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Lei Sun
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China,Corresponding author
| |
Collapse
|
10
|
Yang K, He X, Wu Z, Yin Y, Pan H, Zhao X, Sun T. The emerging roles of piezo1 channels in animal models of multiple sclerosis. Front Immunol 2022; 13:976522. [PMID: 36177027 PMCID: PMC9513475 DOI: 10.3389/fimmu.2022.976522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease in the central nervous system (CNS). Its pathogenesis is quite complex: Accumulated evidence suggests that biochemical signals as well as mechanical stimuli play important roles in MS. In both patients and animal models of MS, brain viscoelasticity is reduced during disease progression. Piezo mechanosensitive channels are recently discovered, and their three-dimensional structure has been solved. Both the membrane dome mechanism and the membrane footprint hypothesis have been proposed to explain their mechanosensitivity. While membrane-mediated forces alone appear to be sufficient to induce Piezo gating, tethers attached to the membrane or to the channel itself also seem to play a role. Current research indicates that Piezo1 channels play a key role in multiple aspects of MS pathogenesis. Activation of Piezo1 channels in axon negatively regulates CNS myelination. in addition, the inhibition of Piezo1 in CD4+ T cells and/or T regulatory cells (Treg) attenuates experimental autoimmune encephalitis (EAE) symptoms. Although more work has to be done to clarify the roles of Piezo1 channels in MS, they might be a promising future drug target for MS treatment.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- *Correspondence: Kai Yang, ; Taolei Sun,
| | - Xueai He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Zhengqi Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yimeng Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Hanyu Pan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- *Correspondence: Kai Yang, ; Taolei Sun,
| |
Collapse
|
11
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
12
|
Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Front Neurosci 2022; 16:861613. [PMID: 35573316 PMCID: PMC9096357 DOI: 10.3389/fnins.2022.861613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are continuously exposed to physical forces and the central nervous system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the surrounding environment in response to forces. The importance of mechanotransduction in the CNS is illustrated by exploring its role in CNS pathology development and progression. The crosstalk between the biochemical and biophysical components of the extracellular matrix (ECM) are here described, considering the recent explosion of literature demonstrating the powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on cell behavior. This review aims at integrating mechanical properties into our understanding of the molecular basis of CNS disease. The mechanisms that mediate mechanotransduction events, like integrin, Rho/ROCK and matrix metalloproteinases signaling pathways are revised. Analysis of CNS pathologies in this context has revealed that a wide range of neurological diseases share as hallmarks alterations of the tissue mechanical properties. Therefore, it is our belief that the understanding of CNS mechanotransduction pathways may lead to the development of improved medical devices and diagnostic methods as well as new therapeutic targets and strategies for CNS repair.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eva Daniela Carvalho
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer's disease. Life Sci 2022; 297:120470. [DOI: 10.1016/j.lfs.2022.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022]
|
14
|
Chen S, Wu C, Zhou T, Wu K, Xin N, Liu X, Qiao Z, Wei D, Sun J, Luo H, Zhou L, Fan H. Aldehyde-methacrylate-hyaluronan profited hydrogel system integrating aligned and viscoelastic cues for neurogenesis. Carbohydr Polym 2022; 278:118961. [PMID: 34973776 DOI: 10.1016/j.carbpol.2021.118961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Either oriented architecture or viscoelasticity is pivotal to neurogenesis, thus, native neural extracellular matrix derived-hyaluronan hydrogels with nano-orientation and viscoelasticity recapitulated might be instructive for neurogenesis, however it is still unexploited. Herein, based on aldehyde-methacrylate difunctionalized hyaluronan, by integrating imine kinetic modulation and microfluidic biofabrication, we construct a hydrogel system with orthogonal viscoelasticity and nano-topography. We then find the positive synergy effects of matrix nano-orientation and viscoelasticity not only on neurites outgrowth and elongation of neural cells, but also on neuronal differentiation of stem cells. Moreover, by implanting viscoelastic and nano-aligned hydrogels into lesion sites, we demonstrate the enhanced repair of spinal cord injury, including ameliorated pathological microenvironment, facilitated endogenous neurogenesis and functional axons regeneration as well as motor function restoration. This work supplies universal platform for preparing neuronal inducing hyaluronan-based hydrogels which might serve as promising therapeutic strategies for nerve injury.
Collapse
Affiliation(s)
- Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
15
|
Carvalho E, Morais M, Ferreira H, Silva M, Guimarães S, Pêgo A. A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials 2022; 283:121427. [DOI: 10.1016/j.biomaterials.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
16
|
Batzdorf CS, Morr AS, Bertalan G, Sack I, Silva RV, Infante-Duarte C. Sexual Dimorphism in Extracellular Matrix Composition and Viscoelasticity of the Healthy and Inflamed Mouse Brain. BIOLOGY 2022; 11:biology11020230. [PMID: 35205095 PMCID: PMC8869215 DOI: 10.3390/biology11020230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary In multiple sclerosis (MS), an autoimmune disease of the central nervous system that primarily affects women, gender differences in disease course and in brain softening have been reported. It has been shown that the molecular network found between the cells of the tissue, the extracellular matrix (ECM), influences tissue stiffness. However, it is still unclear if sex influences ECM composition. Therefore, here we investigated how brain ECM and stiffness differ between sexes in the healthy mouse, and in an MS mouse model. We applied multifrequency magnetic resonance elastography and gene expression analysis for associating in vivo brain stiffness with ECM protein content in the brain, such as collagen and laminin. We found that the cortex was softer in males than in females in both healthy and sick mice. Softening was associated with sex differences in expression levels of collagen and laminin. Our findings underscore the importance of considering sex when studying the constitution of brain tissue in health and disease, particularly when investigating the processes underlying gender differences in MS. Abstract Magnetic resonance elastography (MRE) has revealed sexual dimorphism in brain stiffness in healthy individuals and multiple sclerosis (MS) patients. In an animal model of MS, named experimental autoimmune encephalomyelitis (EAE), we have previously shown that inflammation-induced brain softening was associated with alterations of the extracellular matrix (ECM). However, it remained unclear whether the brain ECM presents sex-specific properties that can be visualized by MRE. Therefore, here we aimed at quantifying sexual dimorphism in brain viscoelasticity in association with ECM changes in healthy and inflamed brains. Multifrequency MRE was applied to the midbrain of healthy and EAE mice of both sexes to quantitatively map regional stiffness. To define differences in brain ECM composition, the gene expression of the key basement membrane components laminin (Lama4, Lama5), collagen (Col4a1, Col1a1), and fibronectin (Fn1) were investigated by RT-qPCR. We showed that the healthy male cortex expressed less Lama4, Lama5, and Col4a1, but more Fn1 (all p < 0.05) than the healthy female cortex, which was associated with 9% softer properties (p = 0.044) in that region. At peak EAE cortical softening was similar in both sexes compared to healthy tissue, with an 8% difference remaining between males and females (p = 0.006). Cortical Lama4, Lama5 and Col4a1 expression increased 2 to 3-fold in EAE in both sexes while Fn1 decreased only in males (all p < 0.05). No significant sex differences in stiffness were detected in other brain regions. In conclusion, sexual dimorphism in the ECM composition of cortical tissue in the mouse brain is reflected by in vivo stiffness measured with MRE and should be considered in future studies by sex-specific reference values.
Collapse
Affiliation(s)
- Clara Sophie Batzdorf
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
| | - Anna Sophie Morr
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Gergely Bertalan
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Rafaela Vieira Silva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
- Correspondence:
| |
Collapse
|
17
|
Herthum H, Hetzer S, Scheel M, Shahryari M, Braun J, Paul F, Sack I. In vivo stiffness of multiple sclerosis lesions is similar to that of normal-appearing white matter. Acta Biomater 2022; 138:410-421. [PMID: 34757062 DOI: 10.1016/j.actbio.2021.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
In 1868, French neurologist Jean-Martin Charcot coined the term multiple sclerosis (MS) after his observation that numerous white matter (WM) glial scars felt like sclerotic tissue. Nowadays, magnetic resonance elastography (MRE) can generate images with contrast of stiffness (CS) in soft in vivo tissues and may therefore be sensitive to MS lesions, provided that sclerosis is indeed a mechanical signature of this disease. We analyzed CS in a total of 147 lesions in patients with relapsing-remitting MS, compared with control regions in contralateral brain regions, and phantom data as well as performed numerical simulations to determine the delineation limits of multifrequency MRE (20 - 40 Hz) in MS. MRE analysis of simulated waves revealed a delineation limit of approximately 10% CS for detecting 9-mm lesions (mean size in our patient population). Due to inversion bias, this limit is reached when true CS is -11% for soft and 35% for stiff lesions. In vivo MRE identified 35 stiffer lesions and 17 softer lesions compared with surrounding WM (mean stiffness: 934±82 Pa). However, a similar pattern was found in the contralateral brain, suggesting that the range of stiffness changes in WM lesions due to MS is within the normal range of WM variability and normal heterogeneity-related CS. Consequently, Charcot's original intuition that MS is a focal sclerotic disease can neither be dismissed nor confirmed by in vivo MRE. However, the observation that MS lesions do not markedly differ in stiffness from surrounding brain tissue suggests that marked tissue sclerosis is not a mechanical signature of MS. STATEMENT OF SIGNIFICANCE: Multiple sclerosis (MS) was named by J.M. Charcot after the sclerotic changes in brain tissue he found in post-mortem autopsies. Since then, nothing has been revealed about the actual stiffening of MS lesions in vivo. Studying the viscoelastic properties of plaques in their natural environment is a major challenge that can only be overcome by MR elastography (MRE). Therefore, we used multifrequency MRE to answer the question whether MS lesions in patients with a relapsing-remitting disease course are mechanically different than surrounding tissue. Our findings suggest that the range of stiffness changes in white matter lesions due to MS is within the normal range of white matter variability and in vivo tissue sclerosis might not be a mechanical signature of MS.
Collapse
|
18
|
Decreased tissue stiffness in glioblastoma by MR elastography is associated with increased cerebral blood flow. Eur J Radiol 2021; 147:110136. [PMID: 35007982 DOI: 10.1016/j.ejrad.2021.110136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Understanding how mechanical properties relate to functional changes in glioblastomas may help explain different treatment response between patients. The aim of this study was to map differences in biomechanical and functional properties between tumor and healthy tissue, to assess any relationship between them and to study their spatial distribution. METHODS Ten patients with glioblastoma and 17 healthy subjects were scanned using MR Elastography, perfusion and diffusion MRI. Stiffness and viscosity measurements G' and G'', cerebral blood flow (CBF), apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in patients' contrast-enhancing tumor, necrosis, edema, and gray and white matter, and in gray and white matter for healthy subjects. A regression analysis was used to predict CBF as a function of ADC, FA, G' and G''. RESULTS Median G' and G'' in contrast-enhancing tumor were 13% and 37% lower than in normal-appearing white matter (P < 0.01), and 8% and 6% lower in necrosis than in contrast-enhancing tumor, respectively (P < 0.05). Tumors showed both inter-patient and intra-patient heterogeneity. Measurements approached values in normal-appearing tissue when moving outward from the tumor core, but abnormal tissue properties were still present in regions of normal-appearing tissue. Using both a linear and a random-forest model, prediction of CBF was improved by adding MRE measurements to the model (P < 0.01). CONCLUSIONS The inclusion of MRE measurements in statistical models helped predict perfusion, with stiffer tissue associated with lower perfusion values.
Collapse
|
19
|
Silva RV, Morr AS, Mueller S, Koch SP, Boehm-Sturm P, Rodriguez-Sillke Y, Kunkel D, Tzschätzsch H, Kühl AA, Schnorr J, Taupitz M, Sack I, Infante-Duarte C. Contribution of Tissue Inflammation and Blood-Brain Barrier Disruption to Brain Softening in a Mouse Model of Multiple Sclerosis. Front Neurosci 2021; 15:701308. [PMID: 34497486 PMCID: PMC8419310 DOI: 10.3389/fnins.2021.701308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammatory processes occurring during multiple sclerosis cause disseminated softening of brain tissue, as quantified by in vivo magnetic resonance elastography (MRE). However, inflammation-mediated tissue alterations underlying the mechanical integrity of the brain remain unclear. We previously showed that blood-brain barrier (BBB) disruption visualized by MRI using gadolinium-based contrast agent (GBCA) does not correlate with tissue softening in active experimental autoimmune encephalomyelitis (EAE). However, it is unknown how confined BBB changes and other inflammatory processes may determine local elasticity changes. Therefore, we aim to elucidate which inflammatory hallmarks are determinant for local viscoelastic changes observed in EAE brains. Hence, novel multifrequency MRE was applied in combination with GBCA-based MRI or very small superparamagnetic iron oxide particles (VSOPs) in female SJL mice with induced adoptive transfer EAE (n = 21). VSOPs were doped with europium (Eu-VSOPs) to facilitate the post-mortem analysis. Accumulation of Eu-VSOPs, which was previously demonstrated to be sensitive to immune cell infiltration and ECM remodeling, was also found to be independent of GBCA enhancement. Following registration to a reference brain atlas, viscoelastic properties of the whole brain and areas visualized by either Gd or VSOP were quantified. MRE revealed marked disseminated softening across the whole brain in mice with established EAE (baseline: 3.1 ± 0.1 m/s vs. EAE: 2.9 ± 0.2 m/s, p < 0.0001). A similar degree of softening was observed in sites of GBCA enhancement i.e., mainly within cerebral cortex and brain stem (baseline: 3.3 ± 0.4 m/s vs. EAE: 3.0 ± 0.5 m/s, p = 0.018). However, locations in which only Eu-VSOP accumulated, mainly in fiber tracts (baseline: 3.0 ± 0.4 m/s vs. EAE: 2.6 ± 0.5 m/s, p = 0.023), softening was more pronounced when compared to non-hypointense areas (percent change of stiffness for Eu-VSOP accumulation: -16.81 ± 16.49% vs. for non-hypointense regions: -5.85 ± 3.81%, p = 0.048). Our findings suggest that multifrequency MRE is sensitive to differentiate between local inflammatory processes with a strong immune cell infiltrate that lead to VSOP accumulation, from disseminated inflammation and BBB leakage visualized by GBCA. These pathological events visualized by Eu-VSOP MRI and MRE may include gliosis, macrophage infiltration, alterations of endothelial matrix components, and/or extracellular matrix remodeling. MRE may therefore represent a promising imaging tool for non-invasive clinical assessment of different pathological aspects of neuroinflammation.
Collapse
Affiliation(s)
- Rafaela Vieira Silva
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Stefan Paul Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Yasmina Rodriguez-Sillke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Schnorr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Matthias Taupitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
20
|
Antonovaite N, Hulshof LA, Huffels CFM, Hol EM, Wadman WJ, Iannuzzi D. Mechanical alterations of the hippocampus in the APP/PS1 Alzheimer's disease mouse model. J Mech Behav Biomed Mater 2021; 122:104697. [PMID: 34271406 DOI: 10.1016/j.jmbbm.2021.104697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 01/22/2023]
Abstract
There is increasing evidence of altered tissue mechanics in neurodegeneration. However, due to difficulties in mechanical testing procedures and the complexity of the brain, there is still little consensus on the role of mechanics in the onset and progression of neurodegenerative diseases. In the case of Alzheimer's disease (AD), magnetic resonance elastography (MRE) studies have indicated viscoelastic differences in the brain tissue of AD patients and healthy controls. However, there is a lack of viscoelastic data from contact mechanical testing at higher spatial resolution. Therefore, we report viscoelastic maps of the hippocampus obtained by a dynamic indentation on brain slices from the APP/PS1 mouse model where individual brain regions are resolved. A comparison of viscoelastic parameters shows that regions in the hippocampus of the APP/PS1 mice are significantly stiffer than wild-type (WT) mice and have increased viscous dissipation. Furthermore, indentation mapping at the cellular scale directly on the plaques and their surroundings did not show local alterations in stiffness although overall mechanical heterogeneity of the tissue was high (SD∼40%).
Collapse
Affiliation(s)
- Nelda Antonovaite
- Department of Physics and Astronomy and LaserLaB, VU Amsterdam, The Netherlands.
| | - Lianne A Hulshof
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Wytse J Wadman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Davide Iannuzzi
- Department of Physics and Astronomy and LaserLaB, VU Amsterdam, The Netherlands
| |
Collapse
|
21
|
Sanjana F, Delgorio PL, Hiscox LV, DeConne TM, Hobson JC, Cohen ML, Johnson CL, Martens CR. Blood lipid markers are associated with hippocampal viscoelastic properties and memory in humans. J Cereb Blood Flow Metab 2021; 41:1417-1427. [PMID: 33103936 PMCID: PMC8142125 DOI: 10.1177/0271678x20968032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Age-related memory loss shares similar risk factors as cardiometabolic diseases including elevated serum triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C) and reduced high-density lipoprotein cholesterol (HDL-C). The mechanisms linking these aberrant blood lipids to memory loss are not completely understood but may be partially mediated by reduced integrity of the hippocampus (HC), the primary brain structure for encoding and recalling memories. In this study, we tested the hypothesis that blood lipid markers are independently associated with memory performance and HC viscoelasticity-a noninvasive measure of brain tissue microstructural integrity assessed by high-resolution magnetic resonance elastography (MRE). Twenty-six individuals across the adult lifespan were recruited (14 M/12 F; mean age: 42 ± 15 y; age range: 22-78 y) and serum lipid profiles were related to episodic memory and HC viscoelasticity. All subjects were generally healthy without clinically abnormal blood lipids or memory loss. Episodic memory was negatively associated with the TG/HDL-C ratio. HC viscoelasticity was negatively associated with serum TGs and the TG/HDL-C ratio, independent of age and in the absence of associations with HC volume. These data, although cross-sectional, suggest that subtle differences in blood lipid profiles in healthy adults may contribute to a reduction in memory function and HC tissue integrity.
Collapse
Affiliation(s)
- Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Theodore M DeConne
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Matthew L Cohen
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
22
|
Chen S, Liu A, Wu C, Chen Y, Liu C, Zhang Y, Wu K, Wei D, Sun J, Zhou L, Fan H. Static-Dynamic Profited Viscoelastic Hydrogels for Motor-Clutch-Regulated Neurogenesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24463-24476. [PMID: 34024102 DOI: 10.1021/acsami.1c03821] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viscoelasticity, a time-scale mechanical feature of the native extracellular matrix (ECM), is reported to play crucial roles in plentiful cellular behaviors, whereas its effects on neuronal behavior and the underlying molecular mechanism still remain obscure. Challenges are faced in the biocompatible synthesis of neural ECM-mimicked scaffolds solely controlled with viscoelasticity and due to the lack of suitable models for neurons-viscoelastic matrix interaction. Herein, we report difunctional hyaluronan-collagen hydrogels prepared by a static-dynamic strategy. The hydrogels show aldehyde concentration-dependent viscoelasticity and similar initial elastic modulus, fibrillar morphology, swelling as well as degradability. Utilizing the resulting hydrogels, for the first time, we demonstrate matrix viscoelasticity-dependent neuronal responses, including neurite elongation and expression of neurogenic proteins. Then, a motor-clutch model modified with a tension dissipation component is developed to account for the molecular mechanism for viscoelasticity-sensitive neuronal responses. Moreover, we prove enhanced recovery of rat spinal cord injury by implanting cell-free viscoelastic grafts. As a pioneer finding on neurons-viscoelastic matrix interaction both in vitro and in vivo, this work provides intriguing insights not only into nerve repair but also into neuroscience and tissue engineering.
Collapse
Affiliation(s)
- Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Amin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| |
Collapse
|
23
|
Schregel K, Baufeld C, Palotai M, Meroni R, Fiorina P, Wuerfel J, Sinkus R, Zhang YZ, McDannold N, White PJ, Guttmann CRG. Targeted Blood Brain Barrier Opening With Focused Ultrasound Induces Focal Macrophage/Microglial Activation in Experimental Autoimmune Encephalomyelitis. Front Neurosci 2021; 15:665722. [PMID: 34054415 PMCID: PMC8149750 DOI: 10.3389/fnins.2021.665722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a model of multiple sclerosis (MS). EAE reflects important histopathological hallmarks, dissemination, and diversity of the disease, but has only moderate reproducibility of clinical and histopathological features. Focal lesions are less frequently observed in EAE than in MS, and can neither be constrained to specific locations nor timed to occur at a pre-specified moment. This renders difficult any experimental assessment of the pathogenesis of lesion evolution, including its inflammatory, degenerative (demyelination and axonal degeneration), and reparatory (remyelination, axonal sprouting, gliosis) component processes. We sought to develop a controlled model of inflammatory, focal brain lesions in EAE using focused ultrasound (FUS). We hypothesized that FUS induced focal blood brain barrier disruption (BBBD) will increase the likelihood of transmigration of effector cells and subsequent lesion occurrence at the sonicated location. Lesion development was monitored with conventional magnetic resonance imaging (MRI) as well as with magnetic resonance elastography (MRE) and further analyzed by histopathological means. EAE was induced in 12 6-8 weeks old female C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide. FUS-induced BBBD was performed 6, 7, and 9 days after immunization in subgroups of four animals and in an additional control group. MRI and MRE were performed on a 7T horizontal bore small animal MRI scanner. Imaging was conducted longitudinally 2 and 3 weeks after disease induction and 1 week after sonication in control animals, respectively. The scan protocol comprised contrast-enhanced T1-weighted and T2-weighted sequences as well as MRE with a vibration frequency of 1 kHz. Animals were sacrificed for histopathology after the last imaging time point. The overall clinical course of EAE was mild. A total of seven EAE animals presented with focal T2w hyperintense signal alterations in the sonicated hemisphere. These were most frequent in the group of animals sonicated 9 days after immunization. Histopathology revealed foci of activated microglia/macrophages in the sonicated right hemisphere of seven EAE animals. Larger cellular infiltrates or apparent demyelination were not seen. Control animals showed no abnormalities on MRI and did not have clusters of activated microglia/macrophages at the sites targeted with FUS. None of the animals had hemorrhages or gross tissue damage as potential side effects of FUS. EAE-animals tended to have lower values of viscoelasticity and elasticity in the sonicated compared to the contralateral parenchyma. This trend was significant when comparing the right sonicated to the left normal hemisphere and specifically the right sonicated compared to the left normal cortex in animals that underwent FUS-BBBD 9 days after immunization (right vs. left hemisphere: mean viscoelasticity 6.1 vs. 7.2 kPa; p = 0.003 and mean elasticity 4.9 vs. 5.7 kPa, p = 0.024; right vs. left cortex: mean viscoelasticity 5.8 vs. 7.5 kPa; p = 0.004 and mean elasticity 5 vs. 6.5 kPa; p = 0.008). A direct comparison of the biomechanical properties of focal T2w hyperintensities with normal appearing brain tissue did not yield significant results. Control animals showed no differences in viscoelasticity between sonicated and contralateral brain parenchyma. We here provide first evidence for a controlled lesion induction model in EAE using FUS-induced BBBD. The observed lesions in EAE are consistent with foci of activated microglia that may be interpreted as targeted initial inflammatory activity and which have been described as pre-active lesions in MS. Such foci can be identified and monitored with MRI. Moreover, the increased inflammatory activity in the sonicated brain parenchyma seems to have an effect on overall tissue matrix structure as reflected by changes of biomechanical parameters.
Collapse
Affiliation(s)
- Katharina Schregel
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Caroline Baufeld
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Miklos Palotai
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Roberta Meroni
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Jens Wuerfel
- MIAC AG and Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Ralph Sinkus
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom.,INSERM UMR S1148 - Laboratory for Vascular Translational Science, University Paris, Paris, France
| | - Yong-Zhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - P Jason White
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Charles R G Guttmann
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Herthum H, Shahryari M, Tzschätzsch H, Schrank F, Warmuth C, Görner S, Hetzer S, Neubauer H, Pfeuffer J, Braun J, Sack I. Real-Time Multifrequency MR Elastography of the Human Brain Reveals Rapid Changes in Viscoelasticity in Response to the Valsalva Maneuver. Front Bioeng Biotechnol 2021; 9:666456. [PMID: 34026743 PMCID: PMC8131519 DOI: 10.3389/fbioe.2021.666456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Modulation of cerebral blood flow and vascular compliance plays an important role in the regulation of intracranial pressure (ICP) and also influences the viscoelastic properties of brain tissue. Therefore, magnetic resonance elastography (MRE), the gold standard for measuring in vivo viscoelasticity of brain tissue, is potentially sensitive to cerebral autoregulation. In this study, we developed a multifrequency MMRE technique that provides serial maps of viscoelasticity at a frame rate of nearly 6 Hz without gating, i.e., in quasi-real time (rt-MMRE). This novel method was used to monitor rapid changes in the viscoelastic properties of the brains of 17 volunteers performing the Valsalva maneuver (VM). rt-MMRE continuously sampled externally induced vibrations comprising three frequencies of 30.03, 30.91, and 31.8 Hz were over 90 s using a steady-state, spiral-readout gradient-echo sequence. Data were processed by multifrequency dual elasto-visco (MDEV) inversion to generate maps of magnitude shear modulus | G∗| (stiffness) and loss angle φ at a frame rate of 5.4 Hz. As controls, the volunteers were examined to study the effects of breath-hold following deep inspiration and breath-hold following expiration. We observed that | G∗| increased while φ decreased due to VM and, less markedly, due to breath-hold in inspiration. Group mean VM values showed an early overshoot of | G∗| 2.4 ± 1.2 s after the onset of the maneuver with peak values of 6.7 ± 4.1% above baseline, followed by a continuous increase in stiffness during VM. A second overshoot of | G∗| occurred 5.5 ± 2.0 s after the end of VM with peak values of 7.4 ± 2.8% above baseline, followed by 25-s sustained recovery until the end of image acquisition. φ was constantly reduced by approximately 2% during the entire VM without noticeable peak values. This is the first report of viscoelasticity changes in brain tissue induced by physiological maneuvers known to alter ICP and detected by clinically applicable rt-MMRE. Our results show that apnea and VM slightly alter brain properties toward a more rigid-solid behavior. Overshooting stiffening reactions seconds after onset and end of VM reveal rapid autoregulatory processes of brain tissue viscoelasticity.
Collapse
Affiliation(s)
- Helge Herthum
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Schrank
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Warmuth
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Görner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging (BCAN), Berlin, Germany
| | - Hennes Neubauer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Daugherty AM. Hypertension-related risk for dementia: A summary review with future directions. Semin Cell Dev Biol 2021; 116:82-89. [PMID: 33722505 DOI: 10.1016/j.semcdb.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic hypertension, or high blood pressure, is the most prevalent vascular risk factor that accelerates cognitive aging and increases risk for Alzheimer's disease and related dementia. Decades of observational and clinical trials have demonstrated that midlife hypertension is associated with greater gray matter atrophy, white matter damage commiserate with demyelination, and functional deficits as compared to normotension over the adult lifespan. Critically, hypertension is a modifiable dementia risk factor: successful blood pressure control with antihypertensive treatment improves outcomes as compared to uncontrolled hypertension, but does not completely negate the risk for dementia. This suggests that hypertension-related risk for neural and cognitive decline in aging cannot be due to elevations in blood pressure alone. This summary review describes three putative pathways for hypertension-related dementia risk: oxidative damage and metabolic dysfunction; systemic inflammation; and autonomic control of heart rate variability. The same processes contribute to pre-clinical hypertension, and therefore hypertension may be an early symptom of an aging nervous system that then exacerbates cumulative and progressive neurodegeneration. Current evidence is reviewed and future directions for research are outlined, including blood biomarkers and novel neuroimaging methods that may be sensitive to test the specific hypotheses.
Collapse
Affiliation(s)
- Ana M Daugherty
- Department of Psychology, Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, 5057 Woodward Ave., Detroit, MI, USA.
| |
Collapse
|
26
|
Majumdar S, Klatt D. Longitudinal study of sub-regional cerebral viscoelastic properties of 5XFAD Alzheimer's disease mice using multifrequency MR elastography. Magn Reson Med 2021; 86:405-414. [PMID: 33604900 DOI: 10.1002/mrm.28709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To study sub-regional, longitudinal changes occurring inside brains of 5XFAD mice, an Alzheimer's disease (AD) model, based on viscoelastic parameters derived using MR elastography and their spatial variation. METHODS Female 5XFAD and non-transgenic B6SJLF1/J mice as controls (n = 9 for both groups) were used for the study. Scans were performed inside a 9.4T preclinical MRI scanner using SampLe Interval Modulation-magnetic resonance elastography (SLIM-MRE). Experiments were performed at ages 2, 4, and 6 mo, and by using three actuation frequencies: 900, 1000, and 1100 Hz. Multifrequency dual elasto-visco (MDEV) reconstruction was used to combine 3D multifrequency MRE data and calculate magnitude G ∗ , and phase angle φ, of the complex shear modulus G ∗ . Mean values were measured for the overall brain and sub-regions associated with the early onset of AD, to check for the effect of aging and mouse model. Spatial coefficient of variation (CV) of both parameters across different age-groups were analyzed. RESULTS G ∗ and φ values reduced with age for overall brain in 5XFAD mice with significant difference in mean G ∗ between 5XFAD and control mice at 6 mo (P = .029). Analyzing values from the hippocampal region highlighted drop in mean G ∗ and φ values. The CV of G ∗ inside hippocampus enabled differentiation at 4 mo with it being significantly lower in 5XFAD mice (P = .0007). CONCLUSION Multifrequency 3D MRE revealed longitudinal viscoelastic changes in 5XFAD mice and the CV of G ∗ in brain sub-regions may qualify as biomarker for early diagnosis of AD.
Collapse
Affiliation(s)
- Shreyan Majumdar
- Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois, USA
| | - Dieter Klatt
- Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
27
|
MR Elastography demonstrates reduced white matter shear stiffness in early-onset hydrocephalus. NEUROIMAGE-CLINICAL 2021; 30:102579. [PMID: 33631603 PMCID: PMC7905205 DOI: 10.1016/j.nicl.2021.102579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Hydrocephalus that develops early in life is often accompanied by developmental delays, headaches and other neurological deficits, which may be associated with changes in brain shear stiffness. However, noninvasive approaches to measuring stiffness are limited. Magnetic Resonance Elastography (MRE) of the brain is a relatively new noninvasive imaging method that provides quantitative measures of brain tissue stiffness. Herein, we aimed to use MRE to assess brain stiffness in hydrocephalus patients compared to healthy controls, and to assess its associations with ventricular size, as well as demographic, shunt-related and clinical outcome measures. METHODS MRE was collected at two imaging sites in 39 hydrocephalus patients and 33 healthy controls, along with demographic, shunt-related, and clinical outcome measures including headache and quality of life indices. Brain stiffness was quantified for whole brain, global white matter (WM), and lobar WM stiffness. Group differences in brain stiffness between patients and controls were compared using two-sample t-tests and multivariable linear regression to adjust for age, sex, and ventricular volume. Among patients, multivariable linear or logistic regression was used to assess which factors (age, sex, ventricular volume, age at first shunt, number of shunt revisions) were associated with brain stiffness and whether brain stiffness predicts clinical outcomes (quality of life, headache and depression). RESULTS Brain stiffness was significantly reduced in patients compared to controls, both unadjusted (p ≤ 0.002) and adjusted (p ≤ 0.03) for covariates. Among hydrocephalic patients, lower stiffness was associated with older age in temporal and parietal WM and whole brain (WB) (beta (SE): -7.6 (2.5), p = 0.004; -9.5 (2.2), p = 0.0002; -3.7 (1.8), p = 0.046), being female in global and frontal WM and WB (beta (SE): -75.6 (25.5), p = 0.01; -66.0 (32.4), p = 0.05; -73.2 (25.3), p = 0.01), larger ventricular volume in global, and occipital WM (beta (SE): -11.5 (3.4), p = 0.002; -18.9 (5.4), p = 0.0014). Lower brain stiffness also predicted worse quality of life and a higher likelihood of depression, controlling for all other factors. CONCLUSIONS Brain stiffness is reduced in hydrocephalus patients compared to healthy controls, and is associated with clinically-relevant functional outcome measures. MRE may emerge as a clinically-relevant biomarker to assess the neuropathological effects of hydrocephalus and shunting, and may be useful in evaluating the effects of therapeutic alternatives, or as a supplement, of shunting.
Collapse
|
28
|
Antonovaite N, Hulshof LA, Hol EM, Wadman WJ, Iannuzzi D. Viscoelastic mapping of mouse brain tissue: Relation to structure and age. J Mech Behav Biomed Mater 2020; 113:104159. [PMID: 33137655 DOI: 10.1016/j.jmbbm.2020.104159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 02/04/2023]
Abstract
There is growing evidence that mechanical factors affect brain functioning. However, brain components responsible for regulating the physiological mechanical environment are not completely understood. To determine the relationship between structure and stiffness of brain tissue, we performed high-resolution viscoelastic mapping by dynamic indentation of the hippocampus and the cerebellum of juvenile mice brains, and quantified relative area covered by neurons (NeuN-staining), axons (neurofilament NN18-staining), astrocytes (GFAP-staining), myelin (MBP-staining) and nuclei (Hoechst-staining) of juvenile and adult mouse brain slices. Results show that brain subregions have distinct viscoelastic parameters. In gray matter (GM) regions, the storage modulus correlates negatively with the relative area of nuclei and neurons, and positively with astrocytes. The storage modulus also correlates negatively with the relative area of myelin and axons (high cell density regions are excluded). Furthermore, adult brain regions are ∼ 20%-150% stiffer than the comparable juvenile regions which coincide with increase in astrocyte GFAP-staining. Several linear regression models are examined to predict the mechanical properties of the brain tissue based on (immuno)histochemical stainings.
Collapse
Affiliation(s)
- Nelda Antonovaite
- Department of Physics and Astronomy and LaserLaB, VU Amsterdam, The Netherlands.
| | - Lianne A Hulshof
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Wytse J Wadman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Davide Iannuzzi
- Department of Physics and Astronomy and LaserLaB, VU Amsterdam, The Netherlands
| |
Collapse
|
29
|
Hiscox LV, McGarry MDJ, Schwarb H, Van Houten EEW, Pohlig RT, Roberts N, Huesmann GR, Burzynska AZ, Sutton BP, Hillman CH, Kramer AF, Cohen NJ, Barbey AK, Paulsen KD, Johnson CL. Standard-space atlas of the viscoelastic properties of the human brain. Hum Brain Mapp 2020; 41:5282-5300. [PMID: 32931076 PMCID: PMC7670638 DOI: 10.1002/hbm.25192] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons.
Collapse
Affiliation(s)
- Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elijah E W Van Houten
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ryan T Pohlig
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Graham R Huesmann
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Agnieszka Z Burzynska
- Department of Human Development and Family Studies and Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA.,Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | - Neal J Cohen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aron K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
30
|
MR elastography frequency-dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjects. Eur Radiol 2020; 30:6614-6623. [PMID: 32683552 DOI: 10.1007/s00330-020-07054-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/10/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To analyze the mechanical properties in different regions of the brain in healthy adults in a wide age range: 26 to 76 years old. METHODS We used a multifrequency magnetic resonance elastography (MRE) protocol to analyze the effect of age on frequency-dependent (storage and loss moduli, G' and G″, respectively) and frequency-independent parameters (μ1, μ2, and η, as determined by a standard linear solid model) of the cerebral parenchyma, cortical gray matter (GM), white matter (WM), and subcortical GM structures of 46 healthy male and female subjects. The multifrequency behavior of the brain and frequency-independent parameters were analyzed across different age groups. RESULTS The annual change rate ranged from - 0.32 to - 0.36% for G' and - 0.43 to - 0.55% for G″ for the cerebral parenchyma, cortical GM, and WM. For the subcortical GM, changes in G' ranged from - 0.18 to - 0.23%, and G″ changed - 0.43%. Interestingly, males exhibited decreased elasticity, while females exhibited decreased viscosity with respect to age in some regions of subcortical GM. Significantly decreased values were also found in subjects over 60 years old. CONCLUSION Values of G' and G″ at 60 Hz and the frequency-independent μ2 of the caudate, putamen, and thalamus may serve as parameters that characterize the aging effect on the brain. The decrease in brain stiffness accelerates in elderly subjects. KEY POINTS • We used a multifrequency MRE protocol to assess changes in the mechanical properties of the brain with age. • Frequency-dependent (storage moduli G' and loss moduli G″) and frequency-independent (μ1, μ2, and η) parameters can bequantitatively measured by our protocol. • The decreased value of viscoelastic properties due to aging varies in different regions of subcortical GM in males and females, and the decrease in brain stiffness is accelerated in elderly subjects over 60 years old.
Collapse
|
31
|
Daugherty AM, Schwarb HD, McGarry MDJ, Johnson CL, Cohen NJ. Magnetic Resonance Elastography of Human Hippocampal Subfields: CA3-Dentate Gyrus Viscoelasticity Predicts Relational Memory Accuracy. J Cogn Neurosci 2020; 32:1704-1713. [PMID: 32379003 DOI: 10.1162/jocn_a_01574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is necessary for binding and reconstituting information in relational memory. These essential memory functions are supported by the distinct cytoarchitecture of the hippocampal subfields. Magnetic resonance elastography is an emerging tool that provides sensitive estimates of microstructure vis-à-vis tissue mechanical properties. Here, we report the first in vivo study of human hippocampal subfield viscoelastic stiffness and damping ratio. Stiffness describes resistance of a viscoelastic tissue to a stress and is thought to reflect the relative composition of tissue at the microscale; damping ratio describes relative viscous-to-elastic behavior and is thought to generally reflect microstructural organization. Measures from the subiculum (combined with presubiculum and parasubiculum), cornu ammonis (CA) 1-2, and CA3-dentate gyrus (CA3-DG) were collected in a sample of healthy, cognitively normal men (n = 20, age = 18-33 years). In line with known cytoarchitecture, the subiculum demonstrated the lowest damping ratio, followed by CA3-DG and then combined CA1-CA2. Moreover, damping ratio of the CA3-DG-potentially reflective of number of cells and their connections-predicted relational memory accuracy and alone replicated most of the variance in performance that was explained by the whole hippocampus. Stiffness did not differentiate the hippocampal subfields and was unrelated to task performance in this sample. Viscoelasticity measured with magnetic resonance elastography appears to be sensitive to microstructural properties relevant to specific memory function, even in healthy younger adults, and is a promising tool for future studies of hippocampal structure in aging and related diseases.
Collapse
|
32
|
Cooper JG, Sicard D, Sharma S, Van Gulden S, McGuire TL, Cajiao MP, Tschumperlin DJ, Kessler JA. Spinal Cord Injury Results in Chronic Mechanical Stiffening. J Neurotrauma 2020; 37:494-506. [PMID: 31516087 PMCID: PMC6978780 DOI: 10.1089/neu.2019.6540] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gliosis and fibrosis after spinal cord injury (SCI) lead to formation of a scar that is thought to present both molecular and mechanical barriers to neuronal regeneration. The scar consists of a meshwork of reactive glia and deposited, cross-linked, extracellular matrix (ECM) that has long been assumed to present a mechanically "stiff" blockade. However, remarkably little quantitative information is available about the rheological properties of chronically injured spinal tissue. In this study we utilize atomic force microscopy microindentation to provide quantitative evidence of chronic mechanical stiffening after SCI. Using the results of this tissue characterization, we assessed the sensitivity of both mouse and human astrocytes in vitro and determined that they are exquisitely mechanosensitive within the relevant range of substrate stiffness observed in the injured/uninjured spinal cord. We then utilized a novel immune modifying nanoparticle (IMP) treatment as a tool to reveal fibrotic scarring as one of the key drivers of mechanical stiffening after SCI in vivo. We also demonstrate that glial scar-forming astrocytes form a highly aligned, anisotropic network of glial fibers after SCI, and that IMP treatment mitigates this pathological alignment. Taken together, our results identify chronic mechanical stiffening as a critically important aspect of the complex lesion milieu after SCI that must be considered when assessing and developing potential clinical interventions for SCI.
Collapse
Affiliation(s)
- John G. Cooper
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota
| | - Sripadh Sharma
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephanie Van Gulden
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tammy L. McGuire
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Miguel Pareja Cajiao
- Department of Anesthesiology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota
| | - John A. Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
33
|
Wang S, Millward JM, Hanke-Vela L, Malla B, Pilch K, Gil-Infante A, Waiczies S, Mueller S, Boehm-Sturm P, Guo J, Sack I, Infante-Duarte C. MR Elastography-Based Assessment of Matrix Remodeling at Lesion Sites Associated With Clinical Severity in a Model of Multiple Sclerosis. Front Neurol 2020; 10:1382. [PMID: 31998225 PMCID: PMC6970413 DOI: 10.3389/fneur.2019.01382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) with gadolinium based contrast agents (GBCA) is routinely used in the clinic to visualize lesions in multiple sclerosis (MS). Although GBCA reveal endothelial permeability, they fail to expose other aspects of lesion formation such as the magnitude of inflammation or tissue changes occurring at sites of blood-brain barrier (BBB) disruption. Moreover, evidence pointing to potential side effects of GBCA has been increasing. Thus, there is an urgent need to develop GBCA-independent imaging tools to monitor pathology in MS. Using MR-elastography (MRE), we previously demonstrated in both MS and the animal model experimental autoimmune encephalomyelitis (EAE) that inflammation was associated with a reduction of brain stiffness. Now, using the relapsing-remitting EAE model, we show that the cerebellum—a region with predominant inflammation in this model—is especially prone to loss of stiffness. We also demonstrate that, contrary to GBCA-MRI, reduction of brain stiffness correlates with clinical disability and is associated with enhanced expression of the extracellular matrix protein fibronectin (FN). Further, we show that FN is largely expressed by activated astrocytes at acute lesions, and reflects the magnitude of tissue remodeling at sites of BBB breakdown. Therefore, MRE could emerge as a safe tool suitable to monitor disease activity in MS.
Collapse
Affiliation(s)
- Shuangqing Wang
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Jason M Millward
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Laura Hanke-Vela
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Bimala Malla
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Kjara Pilch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Ana Gil-Infante
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| |
Collapse
|
34
|
Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography. Brain Imaging Behav 2020; 14:175-185. [PMID: 30382528 PMCID: PMC7007890 DOI: 10.1007/s11682-018-9988-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Episodic memory is particularly sensitive to normative aging; however, studies investigating the structure-function relationships that support episodic memory have primarily been limited to gross volumetric measures of brain tissue health. Magnetic resonance elastography (MRE) is an emerging non-invasive, high-resolution imaging technique that uniquely quantifies brain viscoelasticity, and as such, provides a more specific measure of neural microstructural integrity. Recently, a significant double dissociation between orbitofrontal cortex-fluid intelligence and hippocampal-relational memory structure-function relationships was observed in young adults, highlighting the potential of sensitive MRE measures for studying brain health and its relation to cognitive function. However, the structure-function relationship observed by MRE has not yet been explored in healthy older adults. In this study, we examined the relationship between hippocampal (HC) viscoelasticity and episodic memory in cognitively healthy adults aged 66-73 years (N = 11), as measured with the verbal-paired associates (VPA) subtest from the Wechsler Memory Scale (WMS-R). Given the particular dependence of verbal memory tasks on the left HC, unilateral HC MRE measurements were considered for the first time. A significant negative correlation was found between left HC damping ratio, ξ and VPA recall score (rs = -0.77, p = 0.009), which is consistent with previous findings of a relationship between HC ξ and memory performance in young adults. Conversely, correlations between right HC ξ with VPA recall score were not significant. These results highlight the utility of MRE to study cognitive decline and brain aging and suggest its possible use as a sensitive imaging biomarker for memory-related impairments.
Collapse
|
35
|
Hiscox LV, Johnson CL, McGarry MDJ, Marshall H, Ritchie CW, van Beek EJR, Roberts N, Starr JM. Mechanical property alterations across the cerebral cortex due to Alzheimer's disease. Brain Commun 2019; 2:fcz049. [PMID: 31998866 PMCID: PMC6976617 DOI: 10.1093/braincomms/fcz049] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease is a personally devastating neurodegenerative disorder and a major public health concern. There is an urgent need for medical imaging techniques that better characterize the early stages and monitor the progression of the disease. Magnetic resonance elastography (MRE) is a relatively new and highly sensitive MRI technique that can non-invasively assess tissue microstructural integrity via measurement of brain viscoelastic mechanical properties. For the first time, we use high-resolution MRE methods to conduct a voxel-wise MRE investigation and state-of-the-art post hoc region of interest analysis of the viscoelastic properties of the cerebral cortex in patients with Alzheimer's disease (N = 11) compared with cognitively healthy older adults (N = 12). We replicated previous findings that have reported significant volume and stiffness reductions at the whole-brain level. Significant reductions in volume were also observed in Alzheimer's disease when white matter, cortical grey matter and subcortical grey matter compartments were considered separately; lower stiffness was also observed in white matter and cortical grey matter, but not in subcortical grey matter. Voxel-based morphometry of both cortical and subcortical grey matter revealed localized reductions in volume due to Alzheimer's disease in the hippocampus, fusiform, middle, superior temporal gyri and precuneus. Similarly, voxel-based MRE identified lower stiffness in the middle and superior temporal gyri and precuneus, although the spatial distribution of these effects was not identical to the pattern of volume reduction. Notably, MRE additionally identified stiffness deficits in the operculum and precentral gyrus located within the frontal lobe; regions that did not undergo volume loss identified through voxel-based morphometry. Voxel-based-morphometry and voxel-based MRE results were confirmed by a complementary post hoc region-of-interest approach in native space where the viscoelastic changes remained significant even after statistically controlling for regional volumes. The pattern of reduction in cortical stiffness observed in Alzheimer's disease patients raises the possibility that MRE may provide unique insights regarding the neural mechanisms which underlie the development and progression of the disease. The measured mechanical property changes that we have observed warrant further exploration to investigate the diagnostic usefulness of MRE in cases of Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Lucy V Hiscox
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | | | - Helen Marshall
- Edinburgh Imaging Facility, School of Clinical Sciences, The Queen’s Medical Research Institute (QMRI), University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention at Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Edwin J R van Beek
- Edinburgh Imaging Facility, School of Clinical Sciences, The Queen’s Medical Research Institute (QMRI), University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil Roberts
- Edinburgh Imaging Facility, School of Clinical Sciences, The Queen’s Medical Research Institute (QMRI), University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
36
|
Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett 2019; 717:134673. [PMID: 31838017 DOI: 10.1016/j.neulet.2019.134673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
Collapse
Affiliation(s)
- Ekta P Makhija
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore
| | - Daniela Espinosa-Hoyos
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Anna Jagielska
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
37
|
Pyka-Fościak G, Zemła J, Lis GJ, Litwin JA, Lekka M. Changes in spinal cord stiffness in the course of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Arch Biochem Biophys 2019; 680:108221. [PMID: 31816310 DOI: 10.1016/j.abb.2019.108221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a commonly used mouse model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination leading to brain and spinal cord malfunctions. We postulate that not only biological but also biomechanical properties play an important role in impairements of CNS function. Atomic force microscopy (AFM) was applied to investigate mechanical properties of spinal cords collected from EAE mice in preonset, onset, peak, and chronic disease phases. Biomechanical changes were compared with histopathological alterations observed in the successive phases. The deformability of gray matter did not change, while rigidity of white matter increased during the onset phase, remained at the same level in the peak phase and decreased in the chronic phase. Inflammatory infiltration and laminin content accompanied the tissue rigidity increase, whereas demyelination and axonal damage showed an opposite effect. The increase in white matter rigidity can be regarded as an early signature of EAE.
Collapse
Affiliation(s)
- G Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland.
| | - J Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - G J Lis
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - J A Litwin
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - M Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| |
Collapse
|
38
|
Guo J, Bertalan G, Meierhofer D, Klein C, Schreyer S, Steiner B, Wang S, Vieira da Silva R, Infante-Duarte C, Koch S, Boehm-Sturm P, Braun J, Sack I. Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomater 2019; 99:433-442. [PMID: 31449927 DOI: 10.1016/j.actbio.2019.08.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Biomechanical cues guide proliferation, growth and maturation of neurons. Yet the molecules that shape the brain's biomechanical properties are unidentified and the relationship between neural development and viscoelasticity of brain tissue remains elusive. Here we combined novel in-vivo tomoelastography and ex-vivo proteomics to investigate whether viscoelasticity of the mouse brain correlates with protein alterations within the critical phase of brain maturation. For the first time, high-resolution atlases of viscoelasticity of the mouse brain were generated, revealing that (i) brain stiffness increased alongside progressive accumulation of microtubular structures, myelination, cytoskeleton linkage and cell-matrix attachment, and that (ii) viscosity-related tissue fluidity decreased alongside downregulated actin crosslinking and axonal organization. Taken together, our results show that brain maturation is associated with a shift of brain mechanical properties towards a more solid-rigid behavior consistent with reduced tissue fluidity. This shift appears to be driven by several molecular processes associated with myelination, cytoskeletal crosslinking and axonal organization. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of brain tissue shape the environment in which neurons proliferate, grow, and mature. In the present study, novel tomoelastography was used to spatially map tissue mechanical properties of the in-vivo mouse brain during maturation. In vivo tomoelastography was also combined with ex vivo mass spectrometry proteomic analysis to identify the molecules which shape the biomechanical properties of brain tissue. With the combined technique, we observed that brain maturation is associated with a shift of brain mechanical properties towards a more solid-rigid behavior consistent with reduced tissue fluidity which is driven by multiple molecular processes. We believe that this shift of brain mechanical properties discovered in our study reflects a fundamental biophysical signature of brain maturation.
Collapse
|
39
|
Increased Retention of Gadolinium in the Inflamed Brain After Repeated Administration of Gadopentetate Dimeglumine. Invest Radiol 2019; 54:617-626. [DOI: 10.1097/rli.0000000000000571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Bertalan G, Boehm-Sturm P, Schreyer S, Morr AS, Steiner B, Tzschätzsch H, Braun J, Guo J, Sack I. The influence of body temperature on tissue stiffness, blood perfusion, and water diffusion in the mouse brain. Acta Biomater 2019; 96:412-420. [PMID: 31247381 DOI: 10.1016/j.actbio.2019.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
While hypothermia of the brain is used to reduce neuronal damage in patients with conditions such as traumatic brain injury or stroke, little is known about how temperature affects the biophysical properties of in vivo brain tissue. Therefore, we measured shear wave speed (SWS), apparent diffusion coefficient (ADC), and cerebral blood flow (CBF) in the mouse brain at different body temperatures to investigate the relationship between temperature and tissue stiffness, water diffusion, and blood perfusion in the living brain. Multifrequency magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), and arterial spin labeling (ASL) were performed in seven mice while increasing and recording body temperature from hypothermia (28-30 °C) to normothermia (36-38 °C). SWS, ADC, and CBF were analyzed in regions of whole brain, cortex, hippocampus, and diencephalon. Our results show that SWS decreases while ADC and CBF increase from hypothermia to normothermia (whole brain SWS: -6.2%, ADC: +34.0%, CBF: +80.2%; cortex SWS: -10.1%, ADC: +30.9%, CBF: +82.4%; all p > 0.05). We found a significant inverse correlation between SWS and both ADC and CBF in all analyzed regions except diencephalon (whole brain SWS-ADC: r = -0.8, p < 0.005; SWS-CBF: r = -0.84, p < 0.005; cortex SWS-ADC: r = -0.74, p < 0.05; SWS-CBF: r = -0.65, p < 0.05). These results show that in vivo brain stiffness is inversely correlated with temperature, extracellular water mobility, and microvascular blood flow. Regional differences indicate that cortical areas are more markedly affected by hypothermia than central regions such as diencephalon. Temperature should be considered as a confounder in elastographic measurements, especially in preclinical settings. STATEMENT OF SIGNIFICANCE: Hibernating mammals lower their body temperature and metabolic activity. A hypothermic state can also be induced for medical purposes to reduce the risk of neural damage in patients with neurological disease or injury. However, little is known how physical soft-tissue properties of the in-vivo brain such as water diffusion, blood perfusion or mechanical parameters correlate with each other when temperature changes. Our study demonstrates for the first time that those quantitative imaging markers are tightly linked to changes in body temperature. While water diffusion and blood perfusion are reduced during hypothermia, brain stiffness significantly increases, suggesting that multiparametric quantitative MRI should be used for the noninvasive assessment of brain metabolic activity.
Collapse
|
41
|
Barnhill E, Nikolova M, Ariyurek C, Dittmann F, Braun J, Sack I. Fast Robust Dejitter and Interslice Discontinuity Removal in MRI Phase Acquisitions: Application to Magnetic Resonance Elastography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1578-1587. [PMID: 30703013 DOI: 10.1109/tmi.2019.2893369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MRI phase contrast imaging methods that assemble slice-wise acquisitions into volumes can contain interslice phase discontinuities (IPDs) over the course of the scan from sources, including unavoidable physiological activity. In magnetic resonance elastography (MRE), this can alter wavelength and tissue stiffness estimates, invalidating the analysis. We first model this behavior as jitter along the z-axis of the phase of 3D complex-valued wave volumes. A two-step image processing pipeline is then proposed that removes IPDs. First, constant slicewise phase shift is removed with a novel, non-convex dejittering algorithm. Then, regional physiological noise artifacts are removed with novel filtering of 3D wavelet coefficients. Calibration of two pipeline coefficients, the dejitter parameter α and the wavelet band high-pass coefficient ωc , was first performed on a finite-element method brain phantom. A comparative investigation was then performed, on a cohort of 48 brain acquisitions, of four approaches to IPDs: 1) the proposed method; 2) a "control" condition of neglect of IPDs; 3) an anisotropic wavelet-based method; and 4) a method of in-plane (2D) processing. The present method showed medians of [Formula: see text] Pa for a multifrequency wave inversion centered at 40 Hz which was within 6% of methods 3) and 4), while neglect produced [Formula: see text] estimates a mean of 17% lower. The proposed method reduced the value range of the cohort against methods 3) and 4) by 29% and 31%, respectively. Such reduction in variance enhances the ability of brain MRE to predict subtler physiological changes. Our theoretical approach further enables more powerful applications of fundamental findings in noise and denoising to MRE.
Collapse
|
42
|
Millward JM, Ariza de Schellenberger A, Berndt D, Hanke-Vela L, Schellenberger E, Waiczies S, Taupitz M, Kobayashi Y, Wagner S, Infante-Duarte C. Application of Europium-Doped Very Small Iron Oxide Nanoparticles to Visualize Neuroinflammation with MRI and Fluorescence Microscopy. Neuroscience 2019; 403:136-144. [DOI: 10.1016/j.neuroscience.2017.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
|
43
|
Huang X, Chafi H, Matthews KL, Carmichael O, Li T, Miao Q, Wang S, Jia G. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver. Magn Reson Imaging 2019; 59:68-76. [PMID: 30858002 DOI: 10.1016/j.mri.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/12/2023]
Abstract
Magnetic resonance elastography (MRE) can be used to noninvasively resolve the displacement pattern of induced mechanical waves propagating in tissue. The goal of this study is to establish an ergonomically flexible passive-driver design for brain MRE, to evaluate the reproducibility of MRE tissue-stiffness measurements, and to investigate the relationship between tissue-stiffness measurements and driver frequencies. An ergonomically flexible passive pillow-like driver was designed to induce mechanical waves in the brain. Two-dimensional finite-element simulation was used to evaluate mechanical wave propagation patterns in brain tissues. MRE scans were performed on 10 healthy volunteers at mechanical frequencies of 60, 50, and 40 Hz. An axial mid-brain slice was acquired using an echo-planar imaging sequence to map the displacement pattern with the motion-encoding gradient along the through-plane (z) direction. All subjects were scanned and rescanned within 1 h. The Wilcoxon signed-rank test was used to test for differences between white matter and gray matter shear-stiffness values. One-way analysis of variance (ANOVA) was used to test for differences between shear-stiffness measurements made at different frequencies. Scan-rescan reproducibility was evaluated by calculating the within-subject coefficient of variation (CV) for each subject. The finite-element simulation showed that a pillow-like passive driver is capable of efficient shear-wave propagation through brain tissue. No subjects complained about discomfort during MRE acquisitions using the ergonomically designed driver. The white-matter elastic modulus (mean ± standard deviation) across all subjects was 3.85 ± 0.12 kPa, 3.78 ± 0.15 kPa, and 3.36 ± 0.11 kPa at frequencies of 60, 50, and 40 Hz, respectively. The gray-matter elastic modulus across all subjects was 3.33 ± 0.14 kPa, 2.82 ± 0.16 kPa, and 2.24 ± 0.14 kPa at frequencies of 60, 50, and 40 Hz, respectively. The Wilcoxon signed-rank test confirmed that the shear stiffness was significantly higher in white matter than gray matter at all three frequencies. The ranges of within-subject coefficients of variation for white matter, gray matter, and whole-brain shear-stiffness measurements for the three frequencies were 1.8-3.5% (60 Hz), 4.7-6.0% (50 Hz), and 3.7-4.1% (40 Hz). An ergonomic pneumatic pillow-like driver is feasible for highly reproducible in vivo evaluation of brain-tissue shear stiffness. Brain-tissue shear-stiffness values were frequency-dependent, thus emphasizing the importance of standardizing MRE acquisition protocols in multi-center studies.
Collapse
Affiliation(s)
- Xunan Huang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Hatim Chafi
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kenneth L Matthews
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Tanping Li
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
| | - Qiguang Miao
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Shuzhen Wang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| | - Guang Jia
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
44
|
Bigot M, Chauveau F, Beuf O, Lambert SA. Magnetic Resonance Elastography of Rodent Brain. Front Neurol 2018; 9:1010. [PMID: 30538670 PMCID: PMC6277573 DOI: 10.3389/fneur.2018.01010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance elastography (MRE) is a non-invasive imaging technique, using the propagation of mechanical waves as a probe to palpate biological tissues. It consists in three main steps: production of shear waves within the tissue; encoding subsequent tissue displacement in magnetic resonance images; and extraction of mechanical parameters based on dedicated reconstruction methods. These three steps require an acoustic-frequency mechanical actuator, magnetic resonance imaging acquisition, and a post-processing tool for which no turnkey technology is available. The aim of the present review is to outline the state of the art of reported set-ups to investigate rodent brain mechanical properties. The impact of experimental conditions in dimensioning the set-up (wavelength and amplitude of the propagated wave, spatial resolution, and signal-to-noise ratio of the acquisition) on the accuracy and precision of the extracted parameters is discussed, as well as the influence of different imaging sequences, scanners, electromagnetic coils, and reconstruction algorithms. Finally, the performance of MRE in demonstrating viscoelastic differences between structures constituting the physiological rodent brain, and the changes in brain parameters under pathological conditions, are summarized. The recently established link between biomechanical properties of the brain as obtained on MRE and structural factors assessed by histology is also studied. This review intends to give an accessible outline on how to conduct an elastography experiment, and on the potential of the technique in providing valuable information for neuroscientists.
Collapse
Affiliation(s)
- Mathilde Bigot
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Fabien Chauveau
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Univ. Lyon 1, Lyon, France
| | - Olivier Beuf
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Simon A Lambert
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| |
Collapse
|
45
|
Bertalan G, Guo J, Tzschätzsch H, Klein C, Barnhill E, Sack I, Braun J. Fast tomoelastography of the mouse brain by multifrequency single‐shot MR elastography. Magn Reson Med 2018; 81:2676-2687. [DOI: 10.1002/mrm.27586] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Bertalan
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Jing Guo
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Heiko Tzschätzsch
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Charlotte Klein
- Department of Neurology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Eric Barnhill
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Ingolf Sack
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics Charité–Universitätsmedizin Berlin, Campus Benjamin FranklinBerlin Germany
| |
Collapse
|
46
|
Qing B, Canovic EP, Mijailovic AS, Jagielska A, Whitfield MJ, Lowe AL, Kelly EH, Turner D, Sahin M, Van Vliet K. PROBING MECHANICAL PROPERTIES OF BRAIN IN A TUBEROUS SCLEROSIS MODEL OF AUTISM. J Biomech Eng 2018; 141:2709743. [PMID: 30347048 DOI: 10.1115/1.4040945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 01/03/2023]
Abstract
Causes of Autism Spectrum Disorders (ASD) are understood poorly, making diagnosis and treatment challenging. While many studies have investigated the biochemical and genetic aspects of ASD, whether and how mechanical characteristics of the autistic brain can modulate neuronal connectivity and cognition in ASD are unknown. Previously, it has been shown that ASD brains are characterized by abnormal white matter and disorganized neuronal connectivity; we hypothesized that these significant cellular-level structural changes may translate to changes in the mechanical properties of the autistic brain or regions therein. Here, we focused on tuberous sclerosis complex (TSC), a genetic disorder with a high penetrance of ASD. We investigated mechanical differences between murine brains obtained from control and TSC cohorts at various deformation length- and time-scales. At the microscale, we conducted creep-compliance and stress relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we conducted impact indentation using a pendulum-based instrumented indenter to extract mechanical energy dissipation metrics. At the macroscale, we used oscillatory shear rheology to quantify the frequency-dependent shear moduli. Despite significant changes in the cellular organization of TSC brain tissue, we found no corresponding changes in the quantified mechanical properties at every length- and time-scale explored. This investigation of the mechanical characteristics of the brain has broadened our understanding of causes and markers of TSC/ASD, while raising questions about whether any mechanical differences can be detected in other animal models of ASD or other disease models that also feature abnormal brain structure.
Collapse
Affiliation(s)
- Bo Qing
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | | | - Anna Jagielska
- Department of Materials Science and Engineering, MIT, Cambridge, MA, USA
| | | | - Alexis L Lowe
- Department of Neuroscience, Wellesley College, Wellesley, MA, USA
| | - Elyza H Kelly
- The F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daria Turner
- The F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- The F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Krystyn Van Vliet
- Department of Biological Engineering, MIT, Cambridge, MA, USA; Department of Materials Science and Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
47
|
Canadas RF, Ren T, Tocchio A, Marques AP, Oliveira JM, Reis RL, Demirci U. Tunable anisotropic networks for 3-D oriented neural tissue models. Biomaterials 2018; 181:402-414. [DOI: 10.1016/j.biomaterials.2018.07.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/06/2023]
|
48
|
Yin Z, Romano AJ, Manduca A, Ehman RL, Huston J. Stiffness and Beyond: What MR Elastography Can Tell Us About Brain Structure and Function Under Physiologic and Pathologic Conditions. Top Magn Reson Imaging 2018; 27:305-318. [PMID: 30289827 PMCID: PMC6176744 DOI: 10.1097/rmr.0000000000000178] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain magnetic resonance elastography (MRE) was developed on the basis of a desire to "palpate by imaging" and is becoming a powerful tool in the investigation of neurophysiological and neuropathological states. Measurements are acquired with a specialized MR phase-contrast pulse sequence that can detect tissue motion in response to an applied external or internal excitation. The tissue viscoelasticity is then reconstructed from the measured displacement. Quantitative characterization of brain viscoelastic behaviors provides us an insight into the brain structure and function by assessing the mechanical rigidity, viscosity, friction, and connectivity of brain tissues. Changes in these features are associated with inflammation, demyelination, and neurodegeneration that contribute to brain disease onset and progression. Here, we review the basic principles and limitations of brain MRE and summarize its current neuroanatomical studies and clinical applications to the most common neurosurgical and neurodegenerative disorders, including intracranial tumors, dementia, multiple sclerosis, amyotrophic lateral sclerosis, and traumatic brain injury. Going forward, further improvement in acquisition techniques, stable inverse reconstruction algorithms, and advanced numerical, physical, and preclinical validation models is needed to increase the utility of brain MRE in both research and clinical applications.
Collapse
Affiliation(s)
- Ziying Yin
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| | | | - Armando Manduca
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| | - John Huston
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
49
|
Fovargue D, Nordsletten D, Sinkus R. Stiffness reconstruction methods for MR elastography. NMR IN BIOMEDICINE 2018; 31:e3935. [PMID: 29774974 PMCID: PMC6175248 DOI: 10.1002/nbm.3935] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Assessment of tissue stiffness is desirable for clinicians and researchers, as it is well established that pathophysiological mechanisms often alter the structural properties of tissue. Magnetic resonance elastography (MRE) provides an avenue for measuring tissue stiffness and has a long history of clinical application, including staging liver fibrosis and stratifying breast cancer malignancy. A vital component of MRE consists of the reconstruction algorithms used to derive stiffness from wave-motion images by solving inverse problems. A large range of reconstruction methods have been presented in the literature, with differing computational expense, required user input, underlying physical assumptions, and techniques for numerical evaluation. These differences, in turn, have led to varying accuracy, robustness, and ease of use. While most reconstruction techniques have been validated against in silico or in vitro phantoms, performance with real data is often more challenging, stressing the robustness and assumptions of these algorithms. This article reviews many current MRE reconstruction methods and discusses the aforementioned differences. The material assumptions underlying the methods are developed and various approaches for noise reduction, regularization, and numerical discretization are discussed. Reconstruction methods are categorized by inversion type, underlying assumptions, and their use in human and animal studies. Future directions, such as alternative material assumptions, are also discussed.
Collapse
Affiliation(s)
- Daniel Fovargue
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - David Nordsletten
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Ralph Sinkus
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Inserm U1148, LVTSUniversity Paris Diderot, University Paris 13Paris75018France
| |
Collapse
|
50
|
Kolipaka A, Wassenaar PA, Cha S, Marashdeh WM, Mo X, Kalra P, Gans B, Raterman B, Bourekas E. Magnetic resonance elastography to estimate brain stiffness: Measurement reproducibility and its estimate in pseudotumor cerebri patients. Clin Imaging 2018; 51:114-122. [PMID: 29459315 PMCID: PMC6087505 DOI: 10.1016/j.clinimag.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/08/2018] [Accepted: 02/02/2018] [Indexed: 01/01/2023]
Abstract
This study determines the reproducibility of magnetic resonance elastography (MRE) derived brain stiffness in normal volunteers and compares it against pseudotumor patients before and after lumbar puncture (LP). MRE was performed on 10 normal volunteers for reproducibility and 14 pseudotumor patients before and after LP. During LP, opening and closing cerebrospinal fluid (CSF) pressures were recorded before and after removal of CSF and correlated to brain stiffness. Stiffness reproducibility was observed (r > 0.78; p < 0.008). Whole brain opening LP stiffness was significantly (p = 0.04) higher than normals, but no significant difference (p = 0.11) in closing LP measurements. No significant correlation was observed between opening and closing pressure and brain stiffness.
Collapse
Affiliation(s)
- Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Peter A Wassenaar
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sangmin Cha
- Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
| | - Wael M Marashdeh
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Prateek Kalra
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bradley Gans
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eric Bourekas
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|