1
|
Liu X, Wei Z, Ting L, Liu X, Shu Y, Ling H, Li L, Liu Y, Xia G, Peng D, Li H. Microstructural Changes in the Cerebral White Matter After 12 Months of CPAP Treatment for Moderate to Severe Obstructive Sleep Apnoea: A TBSS Study. Nat Sci Sleep 2024; 16:531-542. [PMID: 38827391 PMCID: PMC11141711 DOI: 10.2147/nss.s460919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Continuous positive airway pressure (CPAP) therapy improves clinical symptoms in patients with obstructive sleep apnea (OSA); however, the mechanism of this clinical improvement and how it may be associated with the restoration of white matter (WM) structures in the brain is unclear. Therefore, this study investigated the relationship between the structural recovery of brain WM and improvements in cognitive function and emotion after long-term (12 months) CPAP treatment in patients with OSA. Methods We collected data from 17 patients with OSA before and 12 months after CPAP treatment, including sleep monitoring, clinical assessment, and diffusion tensor imaging (DTI) magnetic resonance imaging. Results We observed a partial reversible recovery of brain WM (mean and radial diffusion coefficients) after treatment. This recovery involved the commissural fibers (cingulum, body of corpus callosum), projection fibers (retrolenticular part of the internal capsule, posterior thalamic radiation, posterior limb of the internal capsule, superior corona radiata, posterior corona radiata), association fibers (external capsule, superior longitudinal fasciculus, inferior longitudinal fasciculus), and other regions. In addition, the improvements in WM fibers in one part of the brain significantly were correlated with the Hamilton Anxiety Scale and Hamilton Depression Scale scores. Discussion Our results suggest that reversible recovery of reduced brain WM integrity due to OSA may require longer CPAP treatment. Moreover, changes in the integrity of the commissural fibers were associated with emotion regulation. These restored WM areas may explain the cognitive and mood improvements observed after OSA treatment.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Zhipeng Wei
- Department of Radiology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Long Ting
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Xuming Liu
- Department of Radiology, Wenzhou People’s Hospital, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Yongqiang Shu
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Huang Ling
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Lifeng Li
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Yumeng Liu
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Guojin Xia
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Dechang Peng
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Haijun Li
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| |
Collapse
|
2
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Devinney MJ, VanDusen KW, Kfouri JM, Avasarala P, Spector AR, Mathew JP, Berger M. The potential link between obstructive sleep apnea and postoperative neurocognitive disorders: current knowledge and possible mechanisms. Can J Anaesth 2022; 69:1272-1287. [PMID: 35982354 PMCID: PMC9924301 DOI: 10.1007/s12630-022-02302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
PURPOSE This narrative review examines the current evidence on whether obstructive sleep apnea (OSA) is associated with postoperative delirium (POD) and postoperative cognitive dysfunction (POCD). The mechanisms that could predispose OSA patients to these disorders are also explored. SOURCE Relevant literature was identified by searching for pertinent terms in Medline®, Pubmed, ScopusTM, and Google scholar databases. Case reports, abstracts, review articles, original research articles, and meta-analyses were reviewed. The bibliographies of retrieved sources were also searched to identify relevant papers. PRINCIPAL FINDINGS Seven studies have investigated the association between OSA and POD, with mixed results. No studies have examined the potential link between OSA and POCD. If these relationships exist, they could be mediated by several mechanisms, including increased neuroinflammation, blood-brain barrier breakdown, cerebrovascular disease, Alzheimer's disease neuropathology, disrupted cerebral autoregulation, sleep disruption, sympathovagal imbalance, and/or disrupted brain bioenergetics. CONCLUSION There is very limited evidence that OSA plays a role in postoperative neurocognitive disorders because few studies have been conducted in the perioperative setting. Additional perioperative prospective observational cohort studies and randomized controlled trials of sleep apnea treatment are needed. These investigations should also assess potential underlying mechanisms that could predispose patients with OSA to postoperative neurocognitive disorders. This review highlights the need for more research to improve postoperative neurocognitive outcomes for patients with OSA.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Duke Hospital South, 3094 MS 01, 40 Medicine Circle, Rm 4324, Orange Zone, Durham, NC, 27710, USA.
| | - Keith W VanDusen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jad M Kfouri
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Pallavi Avasarala
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Andrew R Spector
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
Dissanayake HU, Bin YS, Sutherland K, Ucak S, de Chazal P, Cistulli PA. The effect of obstructive sleep apnea therapy on cardiovascular autonomic function: a systematic review and meta-analysis. Sleep 2022; 45:6700716. [PMID: 36107126 PMCID: PMC9742902 DOI: 10.1093/sleep/zsac210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES Autonomic function is impaired in obstructive sleep apnea (OSA) and may mediate the association between OSA and cardiovascular risk. We investigated the effect of OSA therapy on autonomic function through a systematic review and meta-analysis of intervention studies. METHODS A systematic search using three databases (Medline, Embase, and Scopus) was performed up to December 9, 2020. Studies of OSA patients ≥ 18 years with autonomic function assessed before and after treatment with positive airway pressure, oral appliance, positional therapy, weight loss, or surgical intervention were included for review. Random effects meta-analysis was carried out for five groups of autonomic function indices. Risk of bias was assessed using the Cochrane Collaboration tool. RESULTS Forty-three eligible studies were reviewed with 39 included in the meta-analysis. OSA treatment led to large decreases in muscle sympathetic nerve activity (Hedges' g = -1.08; 95% CI -1.50, -0.65, n = 8) and moderate decreases in catecholamines (-0.60; -0.94, -0.27, n = 3) and radio nucleotide imaging (-0.61; -0.99, -0.24, n = 2). OSA therapy had no significant effect on baroreflex function (Hedges' g = 0.15; 95% CI -0.09, 0.39, n = 6) or heart rate variability (0.02; -0.32, 0.36, n = 14). There was a significant risk of bias due to studies being primarily non-randomized trials. CONCLUSIONS OSA therapy selectively improves autonomic function measures. The strongest evidence for the effect of OSA therapy on autonomic function was seen in reduced sympathetic activity as assessed by microneurography, but without increased improvement in parasympathetic function. OSA therapy may reduce the risk of cardiovascular disease in OSA through reduced sympathetic activity.
Collapse
Affiliation(s)
- Hasthi U Dissanayake
- Corresponding author. Hasthi Dissanayake, 3E67 Sleep Research Group, D17 Charles Perkins Centre, University of Sydney NSW 2006, Australia.
| | - Yu Sun Bin
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Kate Sutherland
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia,Centre for Sleep Health and Research, Department of Respiratory Medicine, Royal North Shore Hospital, Australia
| | - Seren Ucak
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Philip de Chazal
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia,School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter A Cistulli
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia,Centre for Sleep Health and Research, Department of Respiratory Medicine, Royal North Shore Hospital, Australia
| |
Collapse
|
5
|
Maier LE, Matenchuk BA, Vucenovic A, Sivak A, Davenport MH, Steinback CD. Influence of Obstructive Sleep Apnea Severity on Muscle Sympathetic Nerve Activity and Blood Pressure: a Systematic Review and Meta-Analysis. Hypertension 2022; 79:2091-2104. [PMID: 35766054 DOI: 10.1161/hypertensionaha.122.19288] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We conducted meta-analyses to identify relationships between obstructive sleep apnea (OSA) severity, muscle sympathetic nerve activity (MSNA), and blood pressure (BP). We quantified the effect of OSA treatment on MSNA. METHODS Structured searches of electronic databases were performed until June 2021. All observational designs (except reviews) were included: population (individuals with OSA); exposures (OSA diagnosis and direct measures of MSNA); comparator (individuals without OSA or different severity of OSA); outcomes (MSNA, BP, and heart rate). RESULTS Fifty-six studies (N=1872) were included. MSNA burst frequency was higher in OSA (27 studies; n=542) versus controls (n=488; mean differences [MDs], +15.95 bursts/min [95% CI, 12.6-17.6 bursts/min]; I2=86%). As was burst incidence (20 studies; n=357 OSA, n=312 Controls; MD, +22.23 bursts/100 hbs [95% CI, 18.49-25.97 bursts/100 hbs]; I2=67%). Meta-regressions indicated relationships between MSNA and OSA severity (burst frequency, R2=0.489; P<0.001; burst incidence, R2=0.573; P<0.001). MSNA burst frequency was related to systolic pressure (R2=0.308; P=0.016). OSA treatment with continuous positive airway pressure reduced MSNA burst frequency (MD, 11.91 bursts/min [95% CI, 9.36-14.47 bursts/min] I2=15%) and systolic (n=49; MD, 10.3 mm Hg [95% CI, 3.5-17.2 mm Hg]; I2=42%) and diastolic (MD, 6.9 mm Hg [95% CI, 2.3-11.6 mm Hg]; I2=37%) BP. CONCLUSIONS MSNA is higher in individuals with OSA and related to severity. This sympathoexcitation is also related to BP in patients with OSA. Treatment effectively reduces MSNA and BP, but limited data prevents an assessment of the link between these reductions. These data are clinically important for understanding cardiovascular disease risk in patients with OSA. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: CRD42021285159.
Collapse
Affiliation(s)
- Lauren E Maier
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation (L.E.M., A.V., C.D.S.), University of Alberta, Edmonton, Canada
| | - Brittany A Matenchuk
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation (B.A.M., M.H.D.), University of Alberta, Edmonton, Canada
| | - Ana Vucenovic
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation (L.E.M., A.V., C.D.S.), University of Alberta, Edmonton, Canada
| | - Allison Sivak
- H.T. Coutts Education and Physical Education Library (A.S.), University of Alberta, Edmonton, Canada
| | - Margie H Davenport
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation (B.A.M., M.H.D.), University of Alberta, Edmonton, Canada
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation (L.E.M., A.V., C.D.S.), University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Pal A, Martinez F, Chatterjee R, Aysola RS, Harper RM, Macefield VG, Henderson LA, Macey PM. Baroreflex sensitivity during rest and pressor challenges in obstructive sleep apnea patients with and without CPAP. Sleep Med 2022; 97:73-81. [PMID: 35728308 PMCID: PMC11600971 DOI: 10.1016/j.sleep.2022.05.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) increases sympathetic vasoconstrictor drive and reduces baroreflex sensitivity (BRS), the degree to which blood pressure changes modify cardiac output. Whether nighttime continuous positive airway pressure (CPAP) corrects BRS in the awake state in OSA remains unclear. We assessed spontaneous BRS using non-invasive continuous BP and ECG recordings at rest and during handgrip and Valsalva challenges, maneuvers that increase vasoconstrictor drive with progressively higher BP, in untreated OSA (unOSA), CPAP-treated OSA (cpOSA) and healthy (CON) participants. METHODS In a cross-sectional study of 104 participants, 34 unOSA (age mean±std, 50.6±14.1years; Respiratory Event Index [REI] 21.0±15.3 events/hour; 22male), 31 cpOSA (49.6±14.5years; REI 23.0±14.2 events/hour; 22male; self-report 4+hours/night,5+days/week,6months), and 39 CON (42.2±15.0years; 17male), we calculated BRS at rest and during handgrip and Valsalva. Additionally, we correlated BP variability (BPV) with BRS during these protocols. RESULTS BRS in unOSA, cpOSA and CON was, respectively (mean±sdv in ms/mmHg), at rest: 14.8±11.8, 15.8±17.0, 16.1±11.3; during handgrip 13.3±7.6, 12.7±8.4, 16.4±8.7; and during Valsalva 12.7±8.0, 11.5±6.6, 15.1±8.9. BRS was lower in cpOSA than CON for handgrip (p=0.04) and Valsalva (p=0.03). BRS was negatively correlated with BPV in unOSA during Valsalva and handgrip for cpOSA, both R=-0.4 (p=0.02). BRS was negatively correlated with OSA severity (levels: none, mild, moderate, severe) at R=-0.2 (p=0.04,n=104). CONCLUSIONS As expected, BRS was lower and BPV higher in OSA during the pressor challenges, and disease severity negatively correlated with BRS. In this cross-sectional study, both CPAP-treated (self-reported) and untreated OSA showed reduced BRS, leaving open whether within-person CPAP improves BRS.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Fernando Martinez
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Roopsha Chatterjee
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Ravi S Aysola
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Ronald M Harper
- Neurobiology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, and Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, USA
| | - Luke A Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul M Macey
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Commun 2022; 3:tgac017. [PMID: 35559424 PMCID: PMC9086585 DOI: 10.1093/texcom/tgac017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Muscle sympathetic nerve activity (MSNA) controls the diameter of arterioles in skeletalmuscle, contributing importantly to the beat-to-beat regulation of blood pressure (BP). Although brain imaging studies have shown that bursts of MSNA originate in the rostral ventrolateral medulla, other subcortical and cortical structures-including the dorsolateral prefrontal cortex (dlPFC)-contribute. Hypothesis We tested the hypothesis that MSNA and BP could be modulated by stimulating the dlPFC. Method dlPFC. In 22 individuals MSNA was recorded via microelectrodes inserted into the common peroneal nerve, together with continuous BP, electrocardiographic, and respiration.Stimulation of the right (n=22) or left dlPFC (n=10) was achieved using transcranial alternating current (tcACS; +2 to -2mA, 0.08 Hz,100 cycles), applied between the nasion and electrodes over the F3 or F4 EEG sites on the scalp. Results Sinusoidal stimulation of either dlPFC caused cyclicmodulation of MSNA, BP and heart rate, and a significant increase in BP. Conclusion We have shown, for the first time, that tcACS of the dlPFC in awake humans causes partial entrainment of MSNA, heart rate and BP, arguing for an important role of this higher-level cortical area in the control of cardiovascular function.
Collapse
Affiliation(s)
- Gianni Sesa-Ashton
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Rebecca Wong
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Brendan McCarthy
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sudipta Datta
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Song X, Roy B, Vacas S, Woo MA, Kang DW, Aysola RS, Kumar R. Brain regional homogeneity changes after short-term positive airway pressure treatment in patients with obstructive sleep apnea. Sleep Med 2022; 91:12-20. [PMID: 35245787 PMCID: PMC10498724 DOI: 10.1016/j.sleep.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Patients with obstructive sleep apnea (OSA) reveal functional changes in brain sites involved in autonomic, cognitive, and mood regulations. However, it is unclear whether these brain changes reverse with short-term positive airway pressure (PAP) treatment. Our aim was to examine brain functional changes in response to 3-months of PAP treatment using regional homogeneity (ReHo) measures, where increased and decreased ReHo value indicates hyper- and hypo-local neural activities, respectively, and considered as functional deficits. We collected brain magnetic resonance imaging data as well as mood, cognitive, and sleep variables from 17 treatment-naïve OSA at baseline and after 3-months of PAP treatment and 25 age- and gender-matched healthy controls. Whole-brain ReHo maps were calculated and compared between OSA and controls and OSA subjects before and after PAP treatment. At baseline, treatment-naïve OSA subjects showed higher ReHo in the bilateral thalamus, putamen, postcentral gyrus, paracentral lobule, supplementary motor area, and right insula, and lower ReHo in the frontal and parietal cortices, compared to controls. After 3-months of PAP treatment, abnormal sleep and mood scores decreased significantly to normal levels. ReHo decreased in the autonomic and somatosensory control areas, including the thalamus, putamen, postcentral gyrus, and insula, and increased in the cognitive and affective regulatory parietal regions. The normalized ReHo was correlated with improved sleep quality and reduced anxiety symptoms. These findings suggest that 3-months of PAP use can improve sleep, mood issues, and partly recover brain activities, however, longer PAP treatment may be required to fully and permanently reverse brain functional deficits.
Collapse
Affiliation(s)
- Xiaopeng Song
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bhaswati Roy
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Susana Vacas
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mary A Woo
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel W Kang
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ravi S Aysola
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Bigalke JA, Carter JR. Sympathetic Neural Control in Humans with Anxiety-Related Disorders. Compr Physiol 2021; 12:3085-3117. [PMID: 34964121 DOI: 10.1002/cphy.c210027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Psychology, Montana State University, Bozeman, Montana, USA
| | - Jason R Carter
- Department of Psychology, Montana State University, Bozeman, Montana, USA.,Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
10
|
Anatomical Brain Changes and Cognitive Abilities in Patients with Obstructive Sleep Apnea Syndrome and Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2021; 2021:8873652. [PMID: 34722411 PMCID: PMC8550849 DOI: 10.1155/2021/8873652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 06/14/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repetitive complete or partial collapse of the upper airway and reduction of airflow during sleep. It is associated with significantly increased daytime muscle sympathetic nerve activity thought to result from the repetitive intermittent periods of hypoxemia during sleep and brain alterations that are likely to result. Different brain regions are affected by subsequent hypoxia/anoxia. Neurodegenerative processes result in measurable atrophy of cortical gray matter in the temporal lobes and posterior cingulate cortex, as well as in subcortical structures such as the hippocampus, amygdala, and thalamus. This study involved a group of firstly diagnosed, therapy-naive, nonalcoholic fatty liver disease (NAFLD) patients, out of which 144 (96 males and 48 females), aged 34-57 (mean 47.88 ± 6.07), satisfied the recruiting criteria for the study and control groups. All the patients underwent MRI scanning, polysomnography testing, and cognitive evaluation. Cognitively, worse results were obtained in the group with OSA (p < 0.05) and NAFLD (p=0.047). A significant decrease in volumes of cortical and subcortical structures was revealed (p < 0.001). In conclusion, brain deterioration followed by cognitive impairment is, most likely, the result of intermittent hypoxia and anoxia episodes that initiate the domino process of deteriorating biochemical reactions in the brain.
Collapse
|
11
|
Pal A, Martinez F, Aguila AP, Akey MA, Chatterjee R, Conserman MGE, Aysola RS, Henderson LA, Macey PM. Beat-to-beat blood pressure variability in patients with obstructive sleep apnea. J Clin Sleep Med 2021; 17:381-392. [PMID: 33089774 DOI: 10.5664/jcsm.8866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
STUDY OBJECTIVES Cardiovascular comorbidities in obstructive sleep apnea (OSA) are difficult to treat, perhaps due to autonomic dysfunction. We assessed beat-to-beat blood pressure (BP) variability (BPV) in OSA while considering other markers derived from electrocardiogram and continuous BP signals. METHODS We studied 66 participants (33 participants with OSA: respiratory event index [mean ± SEM]: 21.1 ± 2.7 events/h; 12 females, aged 51.5 ± 2.4 years; body mass index: 32.8 ± 1.4 kg/m²; 33 healthy controls: 20 females; aged 45.3 ± 2.4 years; body mass index: 26.3 ± 0.7 kg/m²). We collected 5-minute resting noninvasive beat-to-beat BP and electrocardiogram values. From BP, we derived systolic, diastolic, and mean BP values, and calculated variability as standard deviations (systolic BPV, diastolic BPV, BPV). We also calculated diastole-to-systole time (time to peak). From the electrocardiogram, we derived QRS markers and calculated heart rate and heart rate variability. We performed a multivariate analysis of variance based on sex and group (OSA vs control), with Bonferroni-corrected post hoc comparisons (P ≤ .05) between groups. We calculated correlations of BPV with biological variables. RESULTS Multivariate analysis of variance showed effects of diastolic BPV and BPV in OSA; post hoc comparisons revealed high diastolic BPV and BPV only in female participants with OSA vs controls. QRS duration was higher in OSA, with post hoc comparisons showing the effect only in males. BPV correlated positively with heart rate variability in controls but not in participants with OSA. BPV correlated positively with time to peak in females with OSA and OSA combined, whereas there was no BPV-time-to-peak correlation in healthy participants. CONCLUSIONS The findings show sex-specific autonomic dysfunction reflected in beat-to-beat BP in OSA. The higher BPV may reflect poor baroreflex control or vascular damage in OSA, which are potential precursors to cardiovascular complications.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, Los Angeles, California
| | | | | | | | | | | | - Ravi S Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Luke A Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | | |
Collapse
|
12
|
Pal A, Ogren JA, Aguila AP, Aysola R, Kumar R, Henderson LA, Harper RM, Macey PM. Functional organization of the insula in men and women with obstructive sleep apnea during Valsalva. Sleep 2021; 44:5864015. [PMID: 32592491 DOI: 10.1093/sleep/zsaa124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) patients show impaired autonomic regulation, perhaps related to functional reorganization of the insula, which in healthy individuals shows sex-specific anterior and right dominance during sympathetic activation. We examined insular organization of responses to a Valsalva maneuver in OSA with functional magnetic resonance imaging (fMRI). METHODS We studied 43 newly diagnosed OSA (age mean ± SD: 46.8 ± 8.7 years; apnea-hypopnea index (AHI) ± SD: 32.1 ± 20.1 events/hour; 34 males) and 63 healthy (47.2 ± 8.8 years; 40 males) participants. Participants performed four 18-second Valsalva maneuvers (1-minute intervals, pressure ≥ 30 mmHg) during scanning. fMRI time trends from five insular gyri-anterior short (ASG); mid short (MSG); posterior short (PSG); anterior long (ALG); and posterior long (PLG)-were assessed for within-group responses and between-group differences with repeated measures ANOVA (p < 0.05); age and resting heart rate (HR) influences were also assessed. RESULTS Right and anterior fMRI signal dominance appeared in OSA and controls, with no between-group differences. Separation by sex revealed group differences. Left ASG anterior signal dominance was lower in OSA versus control males. Left ASG and ALG anterior dominance was higher in OSA versus control females. In all right gyri, only OSA females showed greater anterior dominance than controls. Right dominance was apparent in PSG and ALG in all groups; females showed right dominance in MSG and PLG. OSA males did not show PLG right dominance. Responses were influenced substantially by HR but modestly by age. CONCLUSIONS Anterior and right insular fMRI dominance appears similar in OSA versus control participants during the sympathetic phase of the Valsalva maneuver. OSA and control similarities were present in just males, but not necessarily females, which may reflect sex-specific neural injury.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, University of California, Los Angeles, CA
| | - Jennifer A Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Andrea P Aguila
- UCLA School of Nursing, University of California, Los Angeles, CA
| | - Ravi Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA.,Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Luke A Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, CA
| |
Collapse
|
13
|
Floras JS. From Brain to Blood Vessel: Insights From Muscle Sympathetic Nerve Recordings: Arthur C. Corcoran Memorial Lecture 2020. Hypertension 2021; 77:1456-1468. [PMID: 33775112 DOI: 10.1161/hypertensionaha.121.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiunit recordings of postganglionic sympathetic outflow to muscle yield otherwise imperceptible insights into sympathetic neural modulation of human vascular resistance and blood pressure. This Corcoran Lecture will illustrate the utility of microneurography to investigate neurogenic cardiovascular regulation; review data concerning muscle sympathetic nerve activity of women and men with normal and high blood pressure; explore 2 concepts, central upregulation of muscle sympathetic outflow and cortical autonomic neuroplasticity; present sleep apnea as an imperfect model of neurogenic hypertension; and expose the paradox of sympathetic excitation without hypertension. In awake healthy normotensive individuals, resting muscle sympathetic nerve activity increases with age, sleep fragmentation, and obstructive apnea. Its magnitude is not signaled by heart rate. Age-related changes are nonlinear and differ by sex. In men, sympathetic nerve activity increases with age but without relation to their blood pressure, whereas in women, both rise concordantly after age 40. Mean values for muscle sympathetic nerve activity burst incidence are consistently higher in cohorts with hypertension than in matched normotensives, yet women's sympathetic nerve traffic can increase 3-fold between ages 30 and 70 without causing hypertension. Thus, increased sympathetic nerve activity may be necessary but is insufficient for primary hypertension. Moreover, its inhibition does not consistently decrease blood pressure. Despite a half-century of microneurographic research, large gaps remain in our understanding of the content of the sympathetic broadcast from brain to blood vessel and its specific individual consequences for circulatory regulation and cardiovascular, renal, and metabolic risk.
Collapse
Affiliation(s)
- John S Floras
- Sinai Health and University Health Network Division of Cardiology, Toronto General Hospital Research Institute, and the Department of Medicine, University of Toronto
| |
Collapse
|
14
|
Zhang Y, Kong Y, Yang Y, Yin Y, Hou Z, Xu Z, Yuan Y. Asthma-Specific Temporal Variability Reveals the Effect of Group Cognitive Behavior Therapy in Asthmatic Patients. Front Neurol 2021; 12:615820. [PMID: 33776882 PMCID: PMC7994749 DOI: 10.3389/fneur.2021.615820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Group cognitive behavior therapy (GCBT) is a successful therapy for asthma. However, the neural biomarker of GCBT which could be used in clinic remains unclear. The temporal variability is a novel concept to characterize the dynamic functional connectivity (FC), which has many advantages as biomarker. Therefore, the aim of this study is to explore the potential difference of temporal variability between asthmatic patients and healthy controls, then determine the different patterns of temporal variability between pre- and post-treatment group and reveal the relationship between the variability and the symptoms improvement reduced by GCBT. Methods: At baseline, 40 asthmatic patients and 40 matched controls received resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments. After 8 weeks of GCBT treatment, 17 patients received fMRI scans, and assessments again. Temporal variability at baseline and post-treatment were calculated for further analysis. Results: Compared with controls, asthmatic patients showed widespread decreases in temporal variability. Moreover, the variability in both right caudate and left putamen were positively correlated with asthma control level. After GCBT, asthma control level and depression of patients were improved. Meanwhile, compared with pre-GCBT, patients after treatment showed lower variability in left opercular of Rolandic, right parahippocampal gyrus and right lingual gyrus, as well as higher variability in left temporal pole. Variability in regions which were found abnormal at baseline did not exhibit significant differences between post-GCBT and controls. Conclusions: Asthma-specific changes of dynamic functional connectivity may serve as promising underpinnings of GCBT for asthma. Clinical Trial Registration: http://www.chictr.org.cn/index.aspx, identifier: Chi-CTR-15007442.
Collapse
Affiliation(s)
- Yuqun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Youyong Kong
- Lab of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, School of Computer Science and Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Yuan Yang
- Department of Respiratory, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingyin Yin
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi Xu
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Dissanayake HU, Bin YS, Ucak S, de Chazal P, Sutherland K, Cistulli PA. Association between autonomic function and obstructive sleep apnea: A systematic review. Sleep Med Rev 2021; 57:101470. [PMID: 33839505 DOI: 10.1016/j.smrv.2021.101470] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for hypertension and cardiovascular disease. Effects of OSA on the autonomic nervous system may mediate this association. We performed a systematic literature review to determine the profile of autonomic function associated with OSA. Three electronic databases were searched for studies of OSA patients aged ≥18 years in which autonomic function was assessed. Studies comparing patients with and without OSA, or examining the association of OSA severity with changes in autonomic function were included. Seventy-one studies met the inclusion criteria and autonomic function has been assessed using a range of techniques. The profile of autonomic function found in OSA include increased sympathetic activity, reduced parasympathetic activity and less consistently found low heart rate variability. Altered autonomic function in OSA may explain the pathophysiology of increased cardiovascular risk. Evidence from intervention studies is required to determine if treatment improves autonomic function associated with OSA.
Collapse
Affiliation(s)
- Hasthi U Dissanayake
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia.
| | - Yu S Bin
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Seren Ucak
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Philip de Chazal
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kate Sutherland
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia; Centre for Sleep Health & Research, Department of Respiratory Medicine, Royal North Shore Hospital, Australia
| | - Peter A Cistulli
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia; Centre for Sleep Health & Research, Department of Respiratory Medicine, Royal North Shore Hospital, Australia
| |
Collapse
|
16
|
Naismith SL, Duffy SL, Cross N, Grunstein R, Terpening Z, Hoyos C, D'Rozario A, Lagopoulos J, Osorio RS, Shine JM, McKinnon AC. Nocturnal Hypoxemia Is Associated with Altered Parahippocampal Functional Brain Connectivity in Older Adults at Risk for Dementia. J Alzheimers Dis 2020; 73:571-584. [PMID: 31815696 DOI: 10.3233/jad-190747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obstructive sleep apnea is associated with an increased risk of developing mild cognitive impairment and dementia. Intermittent nocturnal hypoxemia in obstructive sleep apnea is associated with brain changes in key regions that underpin memory. OBJECTIVE To determine whether older adults with severe nocturnal hypoxemia would exhibit reduced functional connectivity within these regions, with associated deficits in memory. METHODS Seventy-two participants 51 years and over underwent polysomnography with continuous blood oxygen saturation recorded via oximetry. The oxygen desaturation index (ODI, 3% dips in oxygen levels per hour) was the primary outcome measure. ODI was split into tertiles, with analyses comparing the lowest and highest tertiles (N = 48). Thirty-five of the 48 participants from these two tertiles had mild cognitive impairment. Participants also underwent resting-state fMRI and comprehensive neuropsychological, medical, and psychiatric assessment. RESULTS The highest ODI tertile group demonstrated significantly reduced connectivity between the left and right parahippocampal cortex, relative to the lowest ODI tertile group (t(42) = -3.26, p = 0.041, beta = -1.99).The highest ODI tertile group also had poorer working memory performance. In the highest ODI tertile group only, higher left-right parahippocampal functional connectivity was associated with poorer visual memory recall (between-groups z = -2.93, p = 0.0034). CONCLUSIONS Older adults with severe nocturnal hypoxemia demonstrate impaired functional connectivity in medial temporal structures, key regions involved in sleep memory processing and implicated in dementia pathophysiology. Oxygen desaturation and functional connectivity in these individuals each relate to cognitive performance. Research is now required to further elucidate these findings.
Collapse
Affiliation(s)
- Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Shantel L Duffy
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Nathan Cross
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia
| | - Ron Grunstein
- Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Zoe Terpening
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Camilla Hoyos
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Angela D'Rozario
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson Institute University of Sunshine Coast, Queensland, Australia
| | - Ricardo S Osorio
- Department of Psychiatry, Sleep Aging and Memory Lab, NYU School of Medicine, New York, NY, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - James M Shine
- Brain & Mind Centre, University of Sydney, Sydney, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| |
Collapse
|
17
|
Rostampour M, Noori K, Heidari M, Fadaei R, Tahmasian M, Khazaie H, Zarei M. White matter alterations in patients with obstructive sleep apnea: a systematic review of diffusion MRI studies. Sleep Med 2020; 75:236-245. [DOI: 10.1016/j.sleep.2020.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
|
18
|
Differences in regional grey matter volume of the brain are related to mean blood pressure and muscle sympathetic nerve activity in normotensive humans. J Hypertens 2020; 38:303-313. [DOI: 10.1097/hjh.0000000000002243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Macefield VG, Henderson LA. Identifying Increases in Activity of the Human RVLM Through MSNA-Coupled fMRI. Front Neurosci 2020; 13:1369. [PMID: 32038124 PMCID: PMC6985468 DOI: 10.3389/fnins.2019.01369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIM We initially developed concurrent recording of muscle sympathetic nerve activity (MSNA) and functional magnetic resonance imaging (fMRI) of the brain to functionally identify the human homolog of the rostral ventrolateral medulla (RVLM). Here we summarize the cortical and subcortical connections to the RVLM, as identified using MSNA-coupled fMRI. METHODS MSNA was recorded via tungsten microelectrodes inserted into the peroneal nerve. Gradient echo, echo-planar fMRI was performed at 3T (Philips Achieva). 200 volumes (46 axial slices (TR = 8 s, TE = 4 s, flip angle = 90°, raw voxel size = 1.5 × 1.5 × 2.75 mm) were collected in a 4 s-ON, 4 s-OFF sparse sampling protocol and MSNA measured in each 1 s epoch in the 4-s period between scans. Blood oxygen level dependent (BOLD) signal intensity was measured in the corresponding 1 s epoch 4 s later to account for peripheral neural conduction and central neurovascular coupling delays. RESULTS BOLD signal intensity was positively related to bursts of MSNA in the RVLM, dorsomedial hypothalamus (DMH), ventromedial hypothalamus (VMH), insula, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex (PCC), and precuneus, and negatively related in the caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and the midbrain periaqueductal gray (PAG). During physiological increases in MSNA (tonic muscle pain), MSNA-coupled BOLD signal intensity was greater in RVLM, NTS, PAG, DMH, dlPFC, medial prefrontal cortex (mPFC), precuneus, and anterior cingulate cortex (ACC) than at rest. During pathophysiological increases in MSNA [obstructive sleep apnoea (OSA)] signal intensity was also higher in dlPFC, mPFC, ACC, and precuneus than in controls. Conversely, signal intensity was lower in RVLM in OSA than in controls, which we interpret as reflecting a withdrawal of active inhibition of the RVLM. CONCLUSION These results suggest that multiple cortical and subcortical areas are functionally coupled to the RVLM, which in turn is functionally coupled to the generation of spontaneous bursts of MSNA and their augmentation during physiological and pathophysiological increase in vasoconstrictor drive.
Collapse
Affiliation(s)
- Vaughan G. Macefield
- Human Autonomic Neurophysiology Laboratory, School of Medicine, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A. Henderson
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res 2018; 29:555-566. [PMID: 30470943 PMCID: PMC6858471 DOI: 10.1007/s10286-018-0577-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/07/2018] [Indexed: 12/08/2023]
Abstract
Purpose The central autonomic network (CAN) is an intricate system of brainstem, subcortical, and cortical structures that play key roles in the function of the autonomic nervous system. Prior to the advent of functional neuroimaging, in vivo studies of the human CAN were limited. The purpose of this review is to highlight the contribution of functional neuroimaging, specifically functional magnetic resonance imaging (fMRI), to the study of the CAN, and to discuss recent advances in this area. Additionally, we aim to emphasize exciting areas for future research. Methods We reviewed the existing literature in functional neuroimaging of the CAN. Here, we focus on fMRI research conducted in healthy human subjects, as well as research that has been done in disease states, to understand CAN function. To minimize confounding, papers examining CAN function in the context of cognition, emotion, pain, and affective disorders were excluded. Results fMRI has led to significant advances in the understanding of human CAN function. The CAN is composed of widespread brainstem and forebrain structures that are intricately connected and play key roles in reflexive and modulatory control of autonomic function. Conclusions fMRI technology has contributed extensively to current knowledge of CAN function. It holds promise to serve as a biomarker in disease states. With ongoing advancements in fMRI technology, there is great opportunity and need for future research involving the CAN.
Collapse
Affiliation(s)
- Miriam Sklerov
- Department of Neurology, University of North Carolina, 170 Manning Drive, CB# 7025, Chapel Hill, NC, 27599, USA.
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, 130 Mason Farm Road, CB# 7513, Chapel Hill, NC, 27599, USA
| | - Nina Browner
- Department of Neurology, University of North Carolina, 170 Manning Drive, CB# 7025, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Wszedybyl-Winklewska M, Wolf J, Szarmach A, Winklewski PJ, Szurowska E, Narkiewicz K. Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med Rev 2018; 39:143-154. [DOI: 10.1016/j.smrv.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/30/2023]
|
22
|
Abumuamar AM, Dorian P, Newman D, Shapiro CM. The STOP-BANG questionnaire shows an insufficient specificity for detecting obstructive sleep apnea in patients with atrial fibrillation. J Sleep Res 2018; 27:e12702. [DOI: 10.1111/jsr.12702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Asmaa M. Abumuamar
- Institute of Medical Science; Faculty of Medicine; University of Toronto; Toronto ON Canada
- Department of Psychiatry; Toronto Western Hospital; University Health Network; University of Toronto; Toronto ON Canada
| | - Paul Dorian
- Department of Cardiology; St. Michael's Hospital; University of Toronto; Toronto ON Canada
| | - David Newman
- Department of Cardiology; Sunnybrook Health Sciences Centre; University of Toronto; Toronto ON Canada
| | - Colin M. Shapiro
- Department of Psychiatry; Toronto Western Hospital; University Health Network; University of Toronto; Toronto ON Canada
| |
Collapse
|
23
|
Gozal D, Khalyfa A, Qiao Z, Almendros I, Farré R. Temporal trajectories of novel object recognition performance in mice exposed to intermittent hypoxia. Eur Respir J 2017; 50:50/6/1701456. [DOI: 10.1183/13993003.01456-2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/10/2017] [Indexed: 01/01/2023]
Abstract
Intermittent hypoxia is one of the major perturbations of sleep-disordered breathing and has been causally implicated in neurocognitive deficits. However, the reversibility of such deficits is unclear.Male C57BL/6J mice were exposed to either intermittent hypoxia or room air for 3–240 days, and then half were randomly selected and allowed to recover in normoxic conditions for the same duration of the previous exposure. A novel object recognition (NOR) test was performed.NOR performance was stable over time in room air. Intermittent hypoxia induced significant reductions in recognition index that progressed over the first 45 days and stabilised thereafter. Normoxic recovery of recognition index was essentially complete and indistinguishable from room air in mice exposed to shorter intermittent hypoxia times (<90 days). However, significant residual deficits emerged after normoxic recovery following prolonged intermittent hypoxia exposures (p<0.01). In addition, gradual attenuation of the magnitude of recovery in recognition index occurred with increasingly longer intermittent hypoxia exposures (MANOVA p<0.0001).Intermittent hypoxia during the resting period reduces NOR performance in a time-dependent fashion. Reversal of NOR performance deficits is unlikely after prolonged intermittent hypoxia duration. These findings suggest that early recognition of sleep apnoea and effective treatment are critical for restoration of the adverse cognitive effects of the disease.
Collapse
|
24
|
Reduced Regional Grey Matter Volumes in Pediatric Obstructive Sleep Apnea. Sci Rep 2017; 7:44566. [PMID: 28303917 PMCID: PMC5355989 DOI: 10.1038/srep44566] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Pediatric OSA is associated with cognitive risk. Since adult OSA manifests MRI evidence of brain injury, and animal models lead to regional neuronal losses, pediatric OSA patients may also be affected. We assessed the presence of neuronal injury, measured as regional grey matter volume, in 16 OSA children (8 male, 8.1 ± 2.2 years, AHI:11.1 ± 5.9 events/hr), and 200 control subjects (84 male, 8.2 ± 2.0 years), 191 of whom were from the NIH-Pediatric MRI database. High resolution T1-weighted whole-brain images were assessed between groups with voxel-based morphometry, using ANCOVA (covariates, age and gender; family-wise error correction, P < 0.01). Significant grey matter volume reductions appeared in OSA throughout areas of the superior frontal and prefrontal, and superior and lateral parietal cortices. Other affected sites included the brainstem, ventral medial prefrontal cortex, and superior temporal lobe, mostly on the left side. Thus, pediatric OSA subjects show extensive regionally-demarcated grey matter volume reductions in areas that control cognition and mood functions, even if such losses are apparently independent of cognitive deficits. Since OSA disease duration in our subjects is unknown, these findings may result from either delayed neuronal development, neuronal damaging processes, or a combination thereof, and could either reflect neuronal atrophy or reductions in cellular volume (neurons and glia).
Collapse
|
25
|
Macefield VG, Henderson LA. "Real-time" imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects. J Neurophysiol 2016; 116:1199-207. [PMID: 27334958 PMCID: PMC5018056 DOI: 10.1152/jn.00783.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
We review our approach to functionally identifying cortical and subcortical areas involved in the generation of spontaneous fluctuations in sympathetic outflow to muscle or skin. We record muscle sympathetic nerve activity (MSNA) or skin sympathetic nerve activity (SSNA), via a tungsten microelectrode inserted percutaneously into the common peroneal nerve, at the same time as performing functional magnetic resonance imaging (fMRI) of the brain. By taking advantage of the neurovascular coupling delay associated with BOLD (blood oxygen level dependent) fMRI, and the delay associated with conduction of a burst of sympathetic impulses to the peripheral recording site, we can identify structures in which BOLD signal intensity covaries with MSNA or SSNA. Using this approach, we found MSNA-coupled increases in BOLD signal intensity in the mid-insula and dorsomedial hypothalamus on the left side, and in dorsolateral prefrontal cortex, posterior cingulate cortex, precuneus, ventromedial hypothalamus and rostral ventrolateral medulla on both sides. Conversely, spontaneous bursts of SSNA were positively correlated with BOLD signal intensity in the ventromedial thalamus and posterior insula on the left side, and in the anterior insula, orbitofrontal cortex and frontal cortex on the right side, and in the mid-cingulate cortex and precuneus on both sides. Inverse relationships were observed between MSNA and BOLD signal intensity in the right ventral insula, nucleus tractus solitarius and caudal ventrolateral medulla, and between SSNA and signal intensity in the left orbitofrontal cortex. These results emphasize the contributions of cortical regions of the brain to sympathetic outflow in awake human subjects, and the extensive interactions between cortical and subcortical regions in the ongoing regulation of sympathetic nerve activity to muscle and skin in awake human subjects.
Collapse
Affiliation(s)
- Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia; and
| | - Luke A Henderson
- Department of Anatomy & Histology, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Obstructive Sleep Apnoea and Hypertension: the Role of the Central Nervous System. Curr Hypertens Rep 2016; 18:59. [DOI: 10.1007/s11906-016-0665-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Henderson LA, Fatouleh RH, Lundblad LC, McKenzie DK, Macefield VG. Effects of 12 Months Continuous Positive Airway Pressure on Sympathetic Activity Related Brainstem Function and Structure in Obstructive Sleep Apnea. Front Neurosci 2016; 10:90. [PMID: 27013952 PMCID: PMC4785184 DOI: 10.3389/fnins.2016.00090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Muscle sympathetic nerve activity (MSNA) is greatly elevated in patients with obstructive sleep apnea (OSA) during normoxic daytime wakefulness. Increased MSNA is a precursor to hypertension and elevated cardiovascular morbidity and mortality. However, the mechanisms underlying the high MSNA in OSA are not well understood. In this study we used concurrent microneurography and magnetic resonance imaging to explore MSNA-related brainstem activity changes and anatomical changes in 15 control and 15 OSA subjects before and after 6 and 12 months of continuous positive airway pressure (CPAP) treatment. We found that following 6 and 12 months of CPAP treatment, resting MSNA levels were significantly reduced in individuals with OSA. Furthermore, this MSNA reduction was associated with restoration of MSNA-related brainstem activity and structural changes in the medullary raphe, rostral ventrolateral medulla, dorsolateral pons, and ventral midbrain. This restoration occurred after 6 months of CPAP treatment and was maintained following 12 months CPAP. These findings show that continual CPAP treatment is an effective long-term treatment for elevated MSNA likely due to its effects on restoring brainstem structure and function.
Collapse
Affiliation(s)
- Luke A Henderson
- Neural Imaging Laboratory, Discipline of Anatomy and Histology, The University of Sydney Sydney, NSW, Australia
| | - Rania H Fatouleh
- School of Medicine, Western Sydney University Sydney, NSW, Australia
| | - Linda C Lundblad
- Neural Imaging Laboratory, Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia; School of Medicine, Western Sydney UniversitySydney, NSW, Australia
| | - David K McKenzie
- Department of Respiratory Medicine, Prince of Wales Private Hospital Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| |
Collapse
|
28
|
Macey PM, Sarma MK, Nagarajan R, Aysola R, Siegel JM, Harper RM, Thomas MA. Obstructive sleep apnea is associated with low GABA and high glutamate in the insular cortex. J Sleep Res 2016; 25:390-4. [PMID: 26843332 DOI: 10.1111/jsr.12392] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/14/2022]
Abstract
The insular cortex is injured in obstructive sleep apnea (OSA) and responds inappropriately to autonomic challenges, suggesting neural reorganization. The objective of this study was to assess whether the neural changes might result from γ-aminobutyric acid (GABA) and glutamate alterations. We studied 14 OSA patients [mean age ± standard deviation (SD): 47.5 ± 10.5 years; nine male; apnea-hypopnea index (AHI): 29.5 ± 15.6 events h(-1) ] and 22 healthy participants (47.5 ± 10.1 years; 11 male), using magnetic resonance spectroscopy to detect GABA and glutamate levels in insular cortices. We localized the cortices with anatomical scans, and measured neurochemical levels from anterior to mid-regions. Left and right anterior insular cortices showed lower GABA and higher glutamate in OSA versus healthy subjects [GABA left: OSA n = 6: 0.36 ± 0.10 (mean ± SD), healthy n = 5: 0.62 ± 0.18; P < 0.05), right: OSA n = 11: 0.27 ± 0.09, healthy n = 14: 0.45 ± 0.16; P < 0.05; glutamate left: OSA n = 6: 1.61 ± 0.32, healthy n = 8: 0.94 ± 0.34; P < 0.05, right: OSA n = 14: 1.26 ± 0.28, healthy n = 19: 1.02 ± 0.28; P < 0.05]. GABA and glutamate levels were correlated only within the healthy group in the left insula (r: -0.9, P < 0.05). The altered anterior insular levels of GABA and glutamate may modify integration and projections to autonomic areas, contributing to the impaired cardiovascular regulation in OSA.
Collapse
Affiliation(s)
- Paul M Macey
- School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Manoj K Sarma
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Rajakumar Nagarajan
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ravi Aysola
- Department of Medicine (Division of Pulmonary and Critical Care), University of California at Los Angeles, Los Angeles, CA, USA
| | - Jerome M Siegel
- Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ronald M Harper
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - M Albert Thomas
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|