1
|
Mosley PE, van der Meer JN, Hamilton LHW, Fripp J, Parker S, Jeganathan J, Breakspear M, Parker R, Holland R, Mitchell BL, Byrne E, Hickie IB, Medland SE, Martin NG, Cocchi L. Markers of positive affect and brain state synchrony discriminate melancholic from non-melancholic depression using naturalistic stimuli. Mol Psychiatry 2024:10.1038/s41380-024-02699-y. [PMID: 39191867 DOI: 10.1038/s41380-024-02699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Melancholia has been proposed as a qualitatively distinct depressive subtype associated with a characteristic symptom profile (psychomotor retardation, profound anhedonia) and a better response to biological therapies. Existing work has suggested that individuals with melancholia are blunted in their display of positive emotions and differ in their neural response to emotionally evocative stimuli. Here, we unify these brain and behavioural findings amongst a carefully phenotyped group of seventy depressed participants, drawn from an established Australian database (the Australian Genetics of Depression Study) and further enriched for melancholia (high ratings of psychomotor retardation and anhedonia). Melancholic (n = 30) or non-melancholic status (n = 40) was defined using a semi-structured interview (the Sydney Melancholia Prototype Index). Complex facial expressions were captured whilst participants watched a movie clip of a comedian and classified using a machine learning algorithm. Subsequently, the dynamics of sequential changes in brain activity were modelled during the viewing of an emotionally evocative movie in the MRI scanner. We found a quantitative reduction in positive facial expressivity amongst participants with melancholia, combined with differences in the synchronous expression of brain states during positive epochs of the movie. In non-melancholic depression, the display of positive affect was inversely related to the activity of cerebellar regions implicated in the processing of affect. However, this relationship was reduced in those with a melancholic phenotype. Our multimodal findings show differences in evaluative and motoric domains between melancholic and non-melancholic depression through engagement in ecologically valid tasks that evoke positive emotion. These findings provide new markers to stratify depression and an opportunity to support the development of targeted interventions.
Collapse
Affiliation(s)
- Philip E Mosley
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Australian eHealth Research Centre, CSIRO Health and Biosecurity, Herston, QLD, Australia.
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Johan N van der Meer
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Information Systems, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | | | - Jurgen Fripp
- Australian eHealth Research Centre, CSIRO Health and Biosecurity, Herston, QLD, Australia
| | - Stephen Parker
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
- Metro North Mental Health, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Jayson Jeganathan
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, College of Medicine, Health and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, College of Medicine, Health and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rebecca Holland
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Brittany L Mitchell
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Enda Byrne
- Child Health Research Centre, University of Queensland, South Brisbane, QLD, Australia
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Psychology, University of Queensland, St Lucia, QLD, Australia
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | | | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
2
|
Kronberg G, Ceceli AO, Huang Y, Gaudreault PO, King SG, McClain N, Alia-Klein N, Goldstein RZ. Naturalistic drug cue reactivity in heroin use disorder: orbitofrontal synchronization as a marker of craving and recovery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.02.23297937. [PMID: 37961156 PMCID: PMC10635268 DOI: 10.1101/2023.11.02.23297937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Movies captivate groups of individuals (the audience), especially if they contain themes of common motivational interest to the group. In drug addiction, a key mechanism is maladaptive motivational salience attribution whereby drug cues outcompete other reinforcers within the same environment or context. We predicted that while watching a drug-themed movie, where cues for drugs and other stimuli share a continuous narrative context, fMRI responses in individuals with heroin use disorder (iHUD) will preferentially synchronize during drug scenes. Results revealed such drug-biased synchronization in the orbitofrontal cortex (OFC), ventromedial and ventrolateral prefrontal cortex, and insula. After 15 weeks of inpatient treatment, there was a significant reduction in this drug-biased shared response in the OFC, which correlated with a concomitant reduction in dynamically-measured craving, suggesting synchronized OFC responses to a drug-themed movie as a neural marker of craving and recovery in iHUD.
Collapse
Affiliation(s)
- Greg Kronberg
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ahmet O Ceceli
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yuefeng Huang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Sarah G King
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | |
Collapse
|
3
|
Chen Z, Ou Y, Liu F, Li H, Li P, Xie G, Cui X, Guo W. Increased brain nucleus accumbens functional connectivity in melancholic depression. Neuropharmacology 2024; 243:109798. [PMID: 37995807 DOI: 10.1016/j.neuropharm.2023.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Melancholic depression, marked by typical symptoms of anhedonia, is regarded as a homogeneous subtype of major depressive disorder (MDD). However, little attention was paid to underlying mechanisms of melancholic depression. This study aims to examine functional connectivity of the reward circuit associated with anhedonia symptoms in melancholic depression. METHODS Fifty-nine patients with first-episode drug- naive MDD, including 31 melancholic patients and 28 non-melancholic patients, were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Thirty-two healthy volunteers were recruited as controls. Bilateral nucleus accumbens (NAc) were selected as seed points to form functional NAc network. Then support vector machine (SVM) was used to distinguish melancholic patients from non-melancholic patients. RESULTS Relative to non-melancholic patients, melancholic patients displayed increased functional connectivity (FC) between bilateral NAc and right middle frontal gyrus (MFG) and between right NAc and left cerebellum lobule VIII. Compared to healthy controls, melancholic patients showed increased FC between right NAc and right lingual gyrus and between left NAc and left postcentral gyrus; non-melancholic patients had increased FC between bilateral NAc and right lingual gyrus. No significant correlations were observed between altered FC and clinical variables in melancholic patients. SVM results showed that FC between left NAc and right MFG could accurately distinguish melancholic patients from non-melancholic patients. CONCLUSION Melancholic depression exhibited different patterns of functional connectivity of the reward circuit relative to non-melancholic patients. This study highlights the significance of the reward circuit in the neuropathology of melancholic depression.
Collapse
Affiliation(s)
- Zhaobin Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Spoelma MJ, Serafimovska A, Parker G. Differentiating melancholic and non-melancholic depression via biological markers: A review. World J Biol Psychiatry 2023; 24:761-810. [PMID: 37259772 DOI: 10.1080/15622975.2023.2219725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES Melancholia is a severe form of depression that is typified by greater genetic and biological influence, distinct symptomatology, and preferential response to physical treatment. This paper sought to broadly overview potential biomarkers of melancholia to benefit differential diagnosis, clinical responses and treatment outcomes. Given nuances in distinguishing melancholia as its own condition from other depressive disorder, we emphasised studies directly comparing melancholic to non-melancholic depression. METHODS A comprehensive literature search was conducted. Key studies were identified and summarised qualitatively. RESULTS 105 studies in total were identified. These studies covered a wide variety of biomarkers, and largely fell into three domains: endocrinological (especially cortisol levels, particularly in response to the dexamethasone suppression test), neurological, and immunological (particularly inflammatory markers). Less extensive evidence also exists for metabolic, genetic, and cardiovascular markers. CONCLUSIONS Definitive conclusions were predominantly limited due to substantial heterogeneity in how included studies defined melancholia. Furthermore, this heterogeneity could be responsible for the between- and within-group variability observed in the candidate biomarkers that were examined. Therefore, clarifying these definitional parameters may help identify underlying patterns in biomarker expression to improve diagnostic and therapeutic precision for the depressive disorders.
Collapse
Affiliation(s)
- Michael J Spoelma
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | | | - Gordon Parker
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Tikka P, Kaipainen M, Salmi J. Narrative simulation of social experiences in naturalistic context - A neurocinematic approach. Neuropsychologia 2023; 188:108654. [PMID: 37507066 DOI: 10.1016/j.neuropsychologia.2023.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 07/02/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Narratives may be regarded as simulations of everyday social situations. They are key to studying the human mind in socio-culturally determined contexts as they allow anchoring to the common ground of embodied and environmentally-engaged cognition. Here we review recent findings from naturalistic neuroscience on neural functions in conditions that mimic lifelike situations. We will focus particularly on neurocinematics, a research field that applies mediated narratives as stimuli for neuroimaging experiments. During the last two decades, this paradigm has contributed to an accumulation of insights about the neural underpinnings of behavior and sense-making in various narratively contextualized situations particularly pertaining to socio-emotional encounters. One of the key questions in neurocinematics is, how do intersubjectively synchronized brain activations relate to subjective experiences? Another question we address is how to bring natural contexts into experimental studies. Seeking to respond to both questions, we suggest neurocinematic studies to examine three manifestations of the same phenomenon side-by-side: subjective experiences of narrative situations, unfolding of narrative stimulus structure, and neural processes that co-constitute the experience. This approach facilitates identifying experientially meaningful activity patterns in the brain and points out what they may mean in relation to shared and communicable contents. Via rich-featured and temporally contextualized narrative stimuli, neurocinematics attempts to contribute to emerging holistic theories of neural dynamics and connectomics explaining typical and atypical interindividual variability.
Collapse
Affiliation(s)
- Pia Tikka
- Enactive Virtuality Lab, Baltic School of Film, Media and Arts, Tallinn University, Estonia.
| | | | - Juha Salmi
- Translational Cognitive Neuroscience Lab, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
6
|
Valerio MP, Lomastro J, Igoa A, Martino DJ. Neurocognitive function of patients with melancholic and non-melancholic major depressive episodes: An exploratory study. Aust N Z J Psychiatry 2022:48674221133743. [PMID: 36314084 DOI: 10.1177/00048674221133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this exploratory study was to compare the neurocognitive performance of patients undergoing melancholic and non-melancholic major depressive episodes. Considering potential limitations of the Diagnostic and Statistical Manual of Mental Disorders (5th ed.) specifier, we employed an additional tool that has proven useful in identifying melancholia (the Sydney Melancholia Prototype Index). METHODS One hundred forty-one depressed inpatients were classified as melancholic or non-melancholic according to the Sydney Melancholia Prototype Index and the Diagnostic and Statistical Manual of Mental Disorders (5th ed.) criteria and compared on a neurocognitive battery selected to assess attention and processing speed, verbal memory, working memory and executive functions. Results were controlled for several potential confounders. RESULTS Patients diagnosed as melancholic by the two diagnostic systems displayed lower scores in executive measures, semantic verbal fluency and phonological verbal fluency. On attention and processing speed, patients with melancholia underperformed those with non-melancholic depression only when diagnosed by the Sydney Melancholia Prototype Index. After controlling for confounders, associations between melancholic status and executive dysfunction remained significant for the Sydney Melancholia Prototype Index but not for the Diagnostic and Statistical Manual of Mental Disorders (5th ed.) diagnosis. CONCLUSION In this study, melancholia diagnosed by the Sydney Melancholia Prototype Index (but not by the Diagnostic and Statistical Manual of Mental Disorders [5th ed.] criteria) was characterized by a greater compromise of tests assessing executive functions than non-melancholic depressions, even after controlling for depressive severity. These preliminary results might contribute to generating hypotheses about differences in the cognitive profile and pathophysiological substrate between melancholic and non-melancholic depressions. Likewise, the pattern of findings supports the hypothesis that the Diagnostic and Statistical Manual of Mental Disorders (5th ed.) melancholia specifier might identify more severe forms of depressive episodes rather than a qualitatively different subtype.
Collapse
Affiliation(s)
- Marina P Valerio
- National Council of Scientific and Technical Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Psychiatric Emergencies Hospital Torcuato de Alvear, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Lomastro
- Psychiatric Emergencies Hospital Torcuato de Alvear, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Igoa
- Psychiatric Emergencies Hospital Torcuato de Alvear, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego J Martino
- National Council of Scientific and Technical Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Camacho MC, Williams EM, Balser D, Kamojjala R, Sekar N, Steinberger D, Yarlagadda S, Perlman SB, Barch DM. EmoCodes: a Standardized Coding System for Socio-emotional Content in Complex Video Stimuli. AFFECTIVE SCIENCE 2022; 3:168-181. [PMID: 36046099 PMCID: PMC9383008 DOI: 10.1007/s42761-021-00100-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 06/10/2023]
Abstract
UNLABELLED Social information processing is vital for inferring emotional states in others, yet affective neuroscience has only begun to scratch the surface of how we represent emotional information in the brain. Most previous affective neuroscience work has used isolated stimuli such as static images of affective faces or scenes to probe affective processing. While this work has provided rich insight to the initial stages of emotion processing (encoding cues), activation to isolated stimuli provides limited insight into later phases of emotion processing such as interpretation of cues or interactions between cues and established cognitive schemas. Recent work has highlighted the potential value of using complex video stimuli to probe socio-emotional processing, highlighting the need to develop standardized video coding schemas as this exciting field expands. Toward that end, we present a standardized and open-source coding system for complex videos, two fully coded videos, and a video and code processing Python library. The EmoCodes manual coding system provides an externally validated and replicable system for coding complex cartoon stimuli, with future plans to validate the system for other video types. The emocodes Python library provides automated tools for extracting low-level features from video files as well as tools for summarizing and analyzing the manual codes for suitability of use in neuroimaging analysis. Materials can be freely accessed at https://emocodes.org/. These tools represent an important step toward replicable and standardized study of socio-emotional processing using complex video stimuli. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42761-021-00100-7.
Collapse
Affiliation(s)
- M. Catalina Camacho
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| | - Elizabeth M. Williams
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| | - Dori Balser
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| | - Ruchika Kamojjala
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| | - Nikhil Sekar
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| | - David Steinberger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| | - Sishir Yarlagadda
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| | - Susan B. Perlman
- Department of Psychiatry, Washington University in St. Louis, 4444 Forest Park Drive, MO 63110 St. Louis, USA
| | - Deanna M. Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 USA
| |
Collapse
|
8
|
Wang D, Liang S. Dynamic Causal Modeling on the Identification of Interacting Networks in the Brain: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2299-2311. [PMID: 34714747 DOI: 10.1109/tnsre.2021.3123964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dynamic causal modeling (DCM) has long been used to characterize effective connectivity within networks of distributed neuronal responses. Previous reviews have highlighted the understanding of the conceptual basis behind DCM and its variants from different aspects. However, no detailed summary or classification research on the task-related effective connectivity of various brain regions has been made formally available so far, and there is also a lack of application analysis of DCM for hemodynamic and electrophysiological measurements. This review aims to analyze the effective connectivity of different brain regions using DCM for different measurement data. We found that, in general, most studies focused on the networks between different cortical regions, and the research on the networks between other deep subcortical nuclei or between them and the cerebral cortex are receiving increasing attention, but far from the same scale. Our analysis also reveals a clear bias towards some task types. Based on these results, we identify and discuss several promising research directions that may help the community to attain a clear understanding of the brain network interactions under different tasks.
Collapse
|
9
|
Jiang W, Zhang H, Zeng L, Shen H, Qin J, Thung K, Yap P, Liu H, Hu D, Wang W, Shen D. Dynamic neural circuit disruptions associated with antisocial behaviors. Hum Brain Mapp 2021; 42:329-344. [PMID: 33064332 PMCID: PMC7776000 DOI: 10.1002/hbm.25225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Antisocial behavior (ASB) is believed to have neural substrates; however, the association between ASB and functional brain networks remains unclear. The temporal variability of the functional connectivity (or dynamic FC) derived from resting-state functional MRI has been suggested as a useful metric for studying abnormal behaviors including ASB. This is the first study using low-frequency fluctuations of the dynamic FC to unravel potential system-level neural correlates with ASB. Specifically, we individually associated the dynamic FC patterns with the ASB scores (measured by Antisocial Process Screening Device) of the male offenders (age: 23.29 ± 3.36 years) based on machine learning. Results showed that the dynamic FCs were associated with individual ASB scores. Moreover, we found that it was mainly the inter-network dynamic FCs that were negatively associated with the ASB severity. Three major high-order cognitive functional networks and the sensorimotor network were found to be more associated with ASB. We further found that impaired behavior in the ASB subjects was mainly associated with decreased FC dynamics in these networks, which may explain why ASB subjects usually have impaired executive control and emotional processing functions. Our study shows that temporal variation of the FC could be a promising tool for ASB assessment, treatment, and prevention.
Collapse
Affiliation(s)
- Weixiong Jiang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Information Science and EngineeringHunan First Normal UniversityChangshaHunanChina
| | - Han Zhang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ling‐Li Zeng
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaHunanChina
| | - Hui Shen
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaHunanChina
| | - Jian Qin
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaHunanChina
| | - Kim‐Han Thung
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Pew‐Thian Yap
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Huasheng Liu
- Department of Radiology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Dewen Hu
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaHunanChina
| | - Wei Wang
- Department of Radiology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Dinggang Shen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Artificial IntelligenceKorea UniversitySeoulSouth Korea
| |
Collapse
|
10
|
Zhang Y, Cui X, Ou Y, Liu F, Li H, Chen J, Zhao J, Xie G, Guo W. Differentiating Melancholic and Non-melancholic Major Depressive Disorder Using Fractional Amplitude of Low-Frequency Fluctuations. Front Psychiatry 2021; 12:763770. [PMID: 35185634 PMCID: PMC8847389 DOI: 10.3389/fpsyt.2021.763770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Melancholic major depressive disorder (MDD) is a network-based brain disorder. However, whether or not network-based changes can be applied to differentiate melancholic (MEL) from non-melancholic (NMEL) MDD remains unclear. METHODS Thirty-one MEL patients, 28 NMEL patients, and 32 matched healthy controls (HCs) were scanned using resting-state functional magnetic resonance imaging. Patients were assessed by the Chinese version of Snaith-Hamilton Pleasure Scale (SHAPS-C) and Temporal Experience of Pleasure Scale (TEPS). Fractional amplitude of low-frequency fluctuations (fALFF) and correlation analysis were used to analyze the data. RESULTS Compared with HCs, the MEL group had significantly higher fALFF values in the bilateral inferior frontal gyrus and right supplementary motor area (SMA) and significantly lower fALFF values in the right inferior occipital gyrus (IOG), right middle temporal gyrus (MTG)/left IOG, and bilateral superior occipital gyrus (SOG)/MTG. On the other hand, the NMEL group showed significantly higher fALFF values in the bilateral SMA and significantly lower fALFF values in the bilateral posterior cingulate cortex/precuneus relative to HCs. Compared with the NMEL group, the MEL group showed significantly lower fALFF values in the left anterior cingulate cortex (ACC). A correlation was found between the fALFF values of the right SMA and the SHAPS-C in the MEL group. In addition, correlations were observed between the fALFF values of the left ACC and the TEPS contextual consummatory and total scores in all patients. CONCLUSION Our study uncovered that MDD exhibited altered brain activity in extensive brain networks, including the default-mode network, frontal-striatal network, reward system, and frontal-limbic network. Decreased fALFF in the left ACC might be applied to differentiate the two subtypes of MDD.
Collapse
Affiliation(s)
- Yingying Zhang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xilong Cui
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangrong Xie
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
11
|
Gaviria J, Rey G, Bolton T, Delgado J, Van De Ville D, Vuilleumier P. Brain functional connectivity dynamics at rest in the aftermath of affective and cognitive challenges. Hum Brain Mapp 2020; 42:1054-1069. [PMID: 33231916 PMCID: PMC7856644 DOI: 10.1002/hbm.25277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Carry-over effects on brain states have been reported following emotional and cognitive events, persisting even during subsequent rest. Here, we investigated such effects by identifying recurring co-activation patterns (CAPs) in neural networks at rest with functional magnetic resonance imaging (fMRI). We compared carry-over effects on brain-wide CAPs at rest and their modulation after both affective and cognitive challenges. Healthy participants underwent fMRI scanning during emotional induction with negative valence and performed cognitive control tasks, each followed by resting periods. Several CAPs, overlapping with the default-mode (DMN), salience, dorsal attention, and social cognition networks were impacted by both the preceding events (movie or task) and the emotional valence of the experimental contexts (neutral or negative), with differential dynamic fluctuations over time. Temporal metrics of DMN-related CAPs were altered after exposure to negative emotional content (compared to neutral) and predicted changes in subjective affect on self-reported scores. In parallel, duration rates of another attention-related CAP increased with greater task difficulty during the preceding cognitive control condition, specifically in the negative context. These findings provide new insights on the anatomical organization and temporal inertia of functional brain networks, whose expression is differentially shaped by emotional states, presumably mediating adaptive homeostatic processes subsequent to behaviorally challenging events.
Collapse
Affiliation(s)
- Julian Gaviria
- Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland.,Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland.,Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Gwladys Rey
- Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Thomas Bolton
- Medical Image Processing Lab, Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Jaime Delgado
- Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Lab, Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland.,Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland.,Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Multilayer MEG functional connectivity as a potential marker for suicidal thoughts in major depressive disorder. NEUROIMAGE-CLINICAL 2020; 28:102378. [PMID: 32836087 PMCID: PMC7451429 DOI: 10.1016/j.nicl.2020.102378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/18/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is highly heterogeneous in its clinical presentation. The present exploratory study used magnetoencephalography (MEG) to investigate electrophysiological intrinsic connectivity differences between healthy volunteers and unmedicated participants with treatment-resistant MDD. The study examined canonical frequency bands from delta through gamma. In addition to group comparisons, correlational studies were conducted to determine whether connectivity was related to five symptom factors: depressed mood, tension, negative cognition, suicidal thoughts, and amotivation. The MDD and healthy volunteer groups did not differ significantly at baseline when corrected across all frequencies and clusters, although evidence of generalized slowing in MDD was observed. Notably, however, electrophysiological connectivity was strongly related to suicidal thoughts, particularly as coupling of low frequency power fluctuations (delta and theta) with alpha and beta power. This analysis revealed hub areas underlying this symptom cluster, including left hippocampus, left anterior insula, and bilateral dorsolateral prefrontal cortex. No other symptom cluster demonstrated a relationship with neurophysiological connectivity, suggesting a specificity to these results as markers of suicidal ideation.
Collapse
|
13
|
Gruskin DC, Rosenberg MD, Holmes AJ. Relationships between depressive symptoms and brain responses during emotional movie viewing emerge in adolescence. Neuroimage 2019; 216:116217. [PMID: 31628982 DOI: 10.1016/j.neuroimage.2019.116217] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/14/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Affective disorders such as major depression are common but serious illnesses characterized by altered processing of emotional information. Although the frequency and severity of depressive symptoms increase dramatically over the course of childhood and adolescence, much of our understanding of their neurobiological bases comes from work characterizing adults' responses to static emotional information. As a consequence, relationships between depressive brain phenotypes and naturalistic emotional processing, as well as the manner in which these associations emerge over the lifespan, remain poorly understood. Here, we apply static and dynamic inter-subject correlation analyses to examine how brain function is associated with clinical and non-clinical depressive symptom severity in 112 children and adolescents (7-21 years old) who viewed an emotionally evocative clip from the film Despicable Me during functional MRI. Our results reveal that adolescents with greater depressive symptom severity exhibit atypical fMRI responses during movie viewing, and that this effect is stronger during less emotional moments of the movie. Furthermore, adolescents with more similar item-level depressive symptom profiles showed more similar brain responses during movie viewing. In contrast, children's depressive symptom severity and profiles were unrelated to their brain response typicality or similarity. Together, these results indicate a developmental change in the relationships between brain function and depressive symptoms from childhood through adolescence. Our findings suggest that depressive symptoms may shape how the brain responds to complex emotional information in a dynamic manner sensitive to both developmental stage and affective context.
Collapse
Affiliation(s)
- David C Gruskin
- Department of Psychology, Yale University, New Haven, CT, 06520, USA.
| | - Monica D Rosenberg
- Department of Psychology, Yale University, New Haven, CT, 06520, USA; Department of Psychology, University of Chicago, Chicago, IL, 60637, USA.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT, 06520, USA; Department of Psychiatry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
14
|
Duquette P, Ainley V. Working With the Predictable Life of Patients: The Importance of "Mentalizing Interoception" to Meaningful Change in Psychotherapy. Front Psychol 2019; 10:2173. [PMID: 31607993 PMCID: PMC6774393 DOI: 10.3389/fpsyg.2019.02173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
To understand our patients and optimize their treatment, psychotherapists of all theoretical orientations may benefit from considering current scientific evidence alongside psychodynamic constructs. There is recent neuroscientific evidence that subjective awareness, feelings and emotions depend upon "interoception," defined as the neural signaling to the brain from all tissues of the body. Interoception is the obvious basis of homeostasis (in the brainstem) but some interoceptive signals rise above this level and contribute to inferential processes that substantiate intrapersonal and interpersonal experience. The focus of this paper is on the essential role that their "interoception" plays in our patients' emotional experience and subjective awareness, and how the process referred to as "mentalizing interoception" may be harnessed in therapy. This can best be understood in terms of "predictive processing," which describes how subjective states, and particularly emotion, are inferred from sensory inputs - both interoceptive and exteroceptive. Predictive processing assumes that the brain infers (probabilistically) the likely cause of sensation experienced through the sense organs, by testing this sensory data against its innate and learned "priors." This implies that any effort at changing heavily over-learned prior beliefs will require action upon the system that has generated that set of prior beliefs. This involves, quite literally, acting upon the world to alter inferential processes, or in the case of interoceptive priors, acting on the patient's body to alter habitual autonomic nervous system (ANS) reflexes. Focused attention to bodily sensations/reactions, in the safety of the therapeutic relationship, provides a route to "mentalizing interoception," by means of the bodily cues that may be the only conscious element of deeply hidden priors and thus the clearest way to access them. This can: update patients' characteristic, dysfunctional responses to emotion and feelings; increase emotional insight; decrease cognitive distortions; and engender a more acute awareness of the present moment. These important ideas are outlined below from the perspective of psychodynamic psychotherapeutic practice, in order to discuss how relevant information from neuroscientific theory and current research can best be applied in clinical treatment. A clinical case will be presented to illustrate how this argument or treatment relates directly to clinical practice.
Collapse
Affiliation(s)
| | - Vivien Ainley
- Lab of Action and Body, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
15
|
Naturalistic Stimuli in Neuroscience: Critically Acclaimed. Trends Cogn Sci 2019; 23:699-714. [PMID: 31257145 DOI: 10.1016/j.tics.2019.05.004] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023]
Abstract
Cognitive neuroscience has traditionally focused on simple tasks, presented sparsely and using abstract stimuli. While this approach has yielded fundamental insights into functional specialisation in the brain, its ecological validity remains uncertain. Do these tasks capture how brains function 'in the wild', where stimuli are dynamic, multimodal, and crowded? Ecologically valid paradigms that approximate real life scenarios, using stimuli such as films, spoken narratives, music, and multiperson games emerged in response to these concerns over a decade ago. We critically appraise whether this approach has delivered on its promise to deliver new insights into brain function. We highlight the challenges, technological innovations, and clinical opportunities that are required should this field meet its full potential.
Collapse
|
16
|
Perry A, Roberts G, Mitchell PB, Breakspear M. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Mol Psychiatry 2019; 24:1296-1318. [PMID: 30279458 PMCID: PMC6756092 DOI: 10.1038/s41380-018-0267-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The notion that specific cognitive and emotional processes arise from functionally distinct brain regions has lately shifted toward a connectivity-based approach that emphasizes the role of network-mediated integration across regions. The clinical neurosciences have likewise shifted from a predominantly lesion-based approach to a connectomic paradigm-framing disorders as diverse as stroke, schizophrenia (SCZ), and dementia as "dysconnection syndromes". Here we position bipolar disorder (BD) within this paradigm. We first summarise the disruptions in structural, functional and effective connectivity that have been documented in BD. Not surprisingly, these disturbances show a preferential impact on circuits that support emotional processes, cognitive control and executive functions. Those at high risk (HR) for BD also show patterns of connectivity that differ from both matched control populations and those with BD, and which may thus speak to neurobiological markers of both risk and resilience. We highlight research fields that aim to link brain network disturbances to the phenotype of BD, including the study of large-scale brain dynamics, the principles of network stability and control, and the study of interoception (the perception of physiological states). Together, these findings suggest that the affective dysregulation of BD arises from dynamic instabilities in interoceptive circuits which subsequently impact on fear circuitry and cognitive control systems. We describe the resulting disturbance as a "psychosis of interoception".
Collapse
Affiliation(s)
- Alistair Perry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany. .,Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Gloria Roberts
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Philip B. Mitchell
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Metro North Mental Health Service, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Fan Y, Borchardt V, von Düring F, Leutritz AL, Dietz M, Herrera-Meléndez AL, Bajbouj M, Li M, Grimm S, Walter M. Dorsal and Ventral Posterior Cingulate Cortex Switch Network Assignment via Changes in Relative Functional Connectivity Strength to Noncanonical Networks. Brain Connect 2018; 9:77-94. [PMID: 30255708 DOI: 10.1089/brain.2018.0602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The posterior cingulate cortex (PCC) is often used as a seed region for probing default-mode network (DMN) connectivity. However, there is evidence for a functional segregation between its dorsal (dPCC) and ventral (vPCC) subregions, which suggests differential involvements of d-/vPCC in regulating cognitive demands. Our paradigm included functional magnetic resonance imaging measures for baseline resting state, affective or cognitive tasks, and post-task resting states. We investigated the effect of task demands on intra-PCC coupling and d-/vPCC network assignment to major intrinsic connectivity networks (ICNs), which was estimated via edge weights of a graph network encompassing DMN, dorsal-attention network, and central-executive network (CEN). Although PCC subregions were functionally coupled during both resting-state conditions and cognitive tasks, they decoupled during affective stimulation. For dPCC, functional connectivity strength (FCS) to CEN was higher than to the other two ICNs; whereas for vPCC, FCS to DMN was the highest. We, hence, defined CEN and DMN as the canonical networks at rest for dPCC and vPCC, respectively. Switching from rest to affective stimulation, however, induced the strongest effects to relative network assignments between non-canonical networks of dPCC and vPCC. Although vPCC showed a durable functional connectivity (FC) to DMN, dPCC played a crucial role during switches of between-network FC depending on cognitive versus affective task requirements. Our results underline that it is crucial for future seed-based FC studies to consider these two subregions separately in terms of seed location and discussion of findings. Finally, our findings highlight the functional importance of connectivity changes toward regions outside the canonical networks.
Collapse
Affiliation(s)
- Yan Fan
- 1 Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany.,2 Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viola Borchardt
- 1 Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany.,3 Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Felicia von Düring
- 1 Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany.,4 Clinic for Psychiatry and Psychotherapy, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Linda Leutritz
- 1 Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany.,4 Clinic for Psychiatry and Psychotherapy, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Marie Dietz
- 2 Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ana Lucía Herrera-Meléndez
- 2 Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malek Bajbouj
- 2 Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meng Li
- 1 Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany.,3 Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Simone Grimm
- 2 Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-University of Berlin, and Berlin Institute of Health, Berlin, Germany.,5 Department of Psychiatry, Psychotherapy and Psychosomatics, Therapy and Process Research, University Hospital of Psychiatry Zurich, Zurich, Switzerland.,6 MSB Medical School Berlin, Berlin, Germany
| | - Martin Walter
- 1 Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany.,3 Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,4 Clinic for Psychiatry and Psychotherapy, Otto-von Guericke University Magdeburg, Magdeburg, Germany.,7 Clinic for Psychiatry and Psychotherapy, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Borchardt V, Fan Y, Dietz M, Melendez ALH, Bajbouj M, Gärtner M, Li M, Walter M, Grimm S. Echoes of Affective Stimulation in Brain connectivity Networks. Cereb Cortex 2017; 28:4365-4378. [DOI: 10.1093/cercor/bhx290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Viola Borchardt
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Yan Fan
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Marie Dietz
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Ana Lucia Herrera Melendez
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Malek Bajbouj
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Matti Gärtner
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Psychiatry and Psychotherapy, Eberhard-Karls University, Tuebingen, Germany
| | - Simone Grimm
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Therapy and Process Research, University Hospital of Psychiatry, Zurich, Switzerland
- Medical School Berlin, Berlin, Germany
| |
Collapse
|
19
|
Cocchi L, Gollo LL, Zalesky A, Breakspear M. Criticality in the brain: A synthesis of neurobiology, models and cognition. Prog Neurobiol 2017; 158:132-152. [PMID: 28734836 DOI: 10.1016/j.pneurobio.2017.07.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 11/26/2022]
Abstract
Cognitive function requires the coordination of neural activity across many scales, from neurons and circuits to large-scale networks. As such, it is unlikely that an explanatory framework focused upon any single scale will yield a comprehensive theory of brain activity and cognitive function. Modelling and analysis methods for neuroscience should aim to accommodate multiscale phenomena. Emerging research now suggests that multi-scale processes in the brain arise from so-called critical phenomena that occur very broadly in the natural world. Criticality arises in complex systems perched between order and disorder, and is marked by fluctuations that do not have any privileged spatial or temporal scale. We review the core nature of criticality, the evidence supporting its role in neural systems and its explanatory potential in brain health and disease.
Collapse
Affiliation(s)
- Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Metro North Mental Health Service, Brisbane, Australia
| |
Collapse
|
20
|
Roberts JA, Friston KJ, Breakspear M. Clinical Applications of Stochastic Dynamic Models of the Brain, Part II: A Review. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017. [DOI: 10.1016/j.bpsc.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Wang J, Ren Y, Hu X, Nguyen VT, Guo L, Han J, Guo CC. Test-retest reliability of functional connectivity networks during naturalistic fMRI paradigms. Hum Brain Mapp 2017; 38:2226-2241. [PMID: 28094464 DOI: 10.1002/hbm.23517] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 01/24/2023] Open
Abstract
Functional connectivity analysis has become a powerful tool for probing the human brain function and its breakdown in neuropsychiatry disorders. So far, most studies adopted resting-state paradigm to examine functional connectivity networks in the brain, thanks to its low demand and high tolerance that are essential for clinical studies. However, the test-retest reliability of resting-state connectivity measures is moderate, potentially due to its low behavioral constraint. On the other hand, naturalistic neuroimaging paradigms, an emerging approach for cognitive neuroscience with high ecological validity, could potentially improve the reliability of functional connectivity measures. To test this hypothesis, we characterized the test-retest reliability of functional connectivity measures during a natural viewing condition, and benchmarked it against resting-state connectivity measures acquired within the same functional magnetic resonance imaging (fMRI) session. We found that the reliability of connectivity and graph theoretical measures of brain networks is significantly improved during natural viewing conditions over resting-state conditions, with an average increase of almost 50% across various connectivity measures. Not only sensory networks for audio-visual processing become more reliable, higher order brain networks, such as default mode and attention networks, but also appear to show higher reliability during natural viewing. Our results support the use of natural viewing paradigms in estimating functional connectivity of brain networks, and have important implications for clinical application of fMRI. Hum Brain Mapp 38:2226-2241, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Yudan Ren
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Vinh Thai Nguyen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Christine Cong Guo
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
22
|
Nguyen VT, Sonkusare S, Stadler J, Hu X, Breakspear M, Guo CC. Distinct Cerebellar Contributions to Cognitive-Perceptual Dynamics During Natural Viewing. Cereb Cortex 2016; 27:5652-5662. [DOI: 10.1093/cercor/bhw334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
- Vinh Thai Nguyen
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
| | - Saurabh Sonkusare
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
- School of Medicine, The University of Queensland, Queensland, Brisbane 4067, Australia
| | - Jane Stadler
- School of Communication and Arts, The University of Queensland, Queensland, Brisbane 4067, Australia
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
| | - Christine Cong Guo
- QIMR Berghofer Medical Research Institute, Queensland, Herston 4006, Australia
| |
Collapse
|