1
|
Lalonde R, Strazielle C. Neurochemical Anatomy of Cushing's Syndrome. Neurochem Res 2024; 49:1945-1964. [PMID: 38833089 DOI: 10.1007/s11064-024-04172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The neurochemical anatomy underlying Cushing's syndrome is examined for regional brain metabolism as well as neurotransmitter levels and receptor binding of biogenic amines and amino acids. Preliminary studies generally indicate that glucose uptake, blood flow, and activation on fMRI scans decreased in neocortical areas and increased in subcortical areas of patients with Cushing's syndrome or disease. Glucocorticoid-mediated increases in hippocampal metabolism occurred despite in vitro evidence of glucocorticoid-induced decreases in glucose uptake or consumption, indicating that in vivo increases are the result of indirect, compensatory, or preliminary responses. In animal studies, glucocorticoid administration decreased 5HT levels and 5HT1A receptor binding in several brain regions while adrenalectomy increased such binding. Region-specific effects were also obtained in regard to the dopaminergic system, with predominant actions of glucocorticoid-induced potentiation of reuptake blockers and releasing agents. More in-depth neuroanatomical analyses are warranted of these and amino acid-related neurotransmission.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
van’t Westeinde A, Padilla N, Fletcher-Sandersjöö S, Kämpe O, Bensing S, Lajic S. Increased Resting-State Functional Connectivity in Patients With Autoimmune Addison Disease. J Clin Endocrinol Metab 2024; 109:701-710. [PMID: 37820745 PMCID: PMC10876407 DOI: 10.1210/clinem/dgad592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
CONTEXT Individuals with autoimmune Addison disease (AAD) take replacement medication for the lack of adrenal-derived glucocorticoid (GC) and mineralocorticoid hormones from diagnosis. The brain is highly sensitive to these hormones, but the consequence of having AAD for brain health has not been widely addressed. OBJECTIVE The present study compared resting-state functional connectivity (rs-fc) of the brain between individuals with AAD and healthy controls. METHODS Fifty-seven patients with AAD (33 female) and 69 healthy controls (39 female), aged 19 to 43 years were scanned with 3-T magnetic resonance imaging (MRI). RESULTS Independent component and subsequent dual regression analyses revealed that individuals with AAD had stronger rs-fc compared to controls in 3 networks: the bilateral orbitofrontal cortex (OFC), the left medial visual and left posterior default mode network. A higher GC replacement dose was associated with stronger rs-fc in a small part of the left OFC in patients. We did not find any clear associations between rs-fc and executive functions or mental fatigue. CONCLUSION Our results suggest that having AAD affects the baseline functional organization of the brain and that current treatment strategies of AAD may be one risk factor.
Collapse
Affiliation(s)
- Annelies van’t Westeinde
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Unit for Neonatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Sara Fletcher-Sandersjöö
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Endocrinology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Sweden and Department of Endocrinology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Endocrinology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Pediatric Endocrinology Unit, Sahlgrenska University Hospital, SE-416 50 Gothenburg, Sweden
| |
Collapse
|
3
|
Ramalho D, Araújo A, Correia S, Rocha G, Alves H, Oliveira MJ. Deleterious effects of endogenous hypercortisolism on brain structure: What do we know? ANNALES D'ENDOCRINOLOGIE 2024; 85:85-88. [PMID: 37722975 DOI: 10.1016/j.ando.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Affiliation(s)
- Diogo Ramalho
- Endocrinology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Rua Conceição Fernandes, s/n, 4434-502, Vila Nova de Gaia, Portugal.
| | - André Araújo
- Neuroradiology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Rua Conceição Fernandes, s/n, 4434-502, Vila Nova de Gaia, Portugal
| | - Sara Correia
- Endocrinology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Rua Conceição Fernandes, s/n, 4434-502, Vila Nova de Gaia, Portugal
| | - Gustavo Rocha
- Endocrinology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Rua Conceição Fernandes, s/n, 4434-502, Vila Nova de Gaia, Portugal
| | - Helena Alves
- Endocrinology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Rua Conceição Fernandes, s/n, 4434-502, Vila Nova de Gaia, Portugal
| | - Maria João Oliveira
- Endocrinology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Rua Conceição Fernandes, s/n, 4434-502, Vila Nova de Gaia, Portugal
| |
Collapse
|
4
|
Kim K, Kim DK, Moon JH, Kim EH, Kim SH, Ku CR, Lee EJ. Dexamethasone suppression for 18F-FDG PET/CT to localize ACTH-secreting pituitary tumors. Cancer Imaging 2023; 23:85. [PMID: 37700359 PMCID: PMC10496442 DOI: 10.1186/s40644-023-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND 18Fluorine-Fluoro-deoxy-glucose (18F-FDG) positron emission tomography (PET) is widely used for diagnosing various malignant tumors and evaluating metabolic activities. Although the usefulness of 18F-FDG PET has been reported in several endocrine diseases, studies on pituitary disease are extremely limited. To evaluate whether dexamethasone (DEX) suppression can improve 18F-FDG PET for the localization of adrenocorticotropic hormone-secreting adenomas in the pituitary gland in Cushing's disease (CD). METHODS We included 22 patients with CD who underwent PET imaging before and after DEX administration. We compared the success rates of PET before and after DEX suppression, magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus sampling (BIPSS). We determined the final locations of adenomas based on intraoperative multiple-staged resection and tumor tissue identification using frozen sections. Standardized uptake value (SUV) were analyzed to confirm the change of intensity of adenomas on PET. RESULTS Twenty-two patients were included (age at diagnosis: 37 [13-56] years), and most were women (90.91%). Pituitary adenomas compared to normal pituitaries showed increased maximum SUV after DEX suppression but without statistical significance (1.13 versus. 1.21, z=-0.765, P = 0.444). After DEX suppression, the mean and maximum SUV of adenomas showed a positive correlation with nadir cortisol levels in high-dose DEX suppression test (Rho = 0.554, P = 0.007 and Rho = 0.503, P = 0.017, respectively). In reference sites, mean SUV of cerebellum was significantly decreased (7.65 vs. 6.40, P = 0.006*), but those of the thalamus and gray matter was increased after DEX suppression (thalamus, 8.70 vs. 11.20, P = 0.010*; gray matter, 6.25 vs. 7.95, P = 0.010*). CONCLUSION DEX suppression did not improve 18F-FDG PET/CT localization in patients with CD.
Collapse
Affiliation(s)
- Kyungwon Kim
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Kyu Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eun Jig Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
6
|
Terayama R, Ishikawa T, Ishiwata K, Sato A, Minamizuka T, Ohno T, Kono S, Yamamoto M, Yokoh H, Nagano H, Koshizaka M, Suzuki S, Koide H, Maezawa Y, Yokote K. Correction of Hypercortisolemia with an Improved Cognitive Function and Muscle Mass after Transsphenoidal Surgery in an Older Patient with Cushing's Disease. Intern Med 2022; 61:3391-3399. [PMID: 35491128 PMCID: PMC9751722 DOI: 10.2169/internalmedicine.8326-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cushing's disease causes numerous metabolic disorders, cognitive decline, and sarcopenia, leading to deterioration of the general health in older individuals. Cushing's disease can be treated with transsphenoidal surgery, but thus far, surgery has often been avoided in older patients. We herein report an older woman with Cushing's disease whose cognitive impairment and sarcopenia improved after transsphenoidal surgery. Although cognitive impairment and sarcopenia in most older patients show resistance to treatment, our case indicates that normalization of the cortisol level by transsphenoidal surgery can be effective in improving the cognitive impairment and muscle mass loss caused by Cushing's disease.
Collapse
Affiliation(s)
- Ryo Terayama
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Takahiro Ishikawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
- Department of General Medical Science, Chiba University Graduate School of Medicine, Japan
- Geriatric Medical Center, Chiba University Hospital, Japan
| | - Kazuki Ishiwata
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Ai Sato
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Takuya Minamizuka
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Tomohiro Ohno
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Satomi Kono
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Masashi Yamamoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Hidetaka Yokoh
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Sawako Suzuki
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Hisashi Koide
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Liu YF, Pan L, Feng M. Structural and functional brain alterations in Cushing's disease: A narrative review. Front Neuroendocrinol 2022; 67:101033. [PMID: 36126747 DOI: 10.1016/j.yfrne.2022.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Neurocognitive and psychiatric symptoms are non-negligible in Cushing's disease and are accompanied by structural and functional alterations of the brain. In this review, we have summarized multimodal neuroimaging and neurophysiological studies to highlight the current and historical understandings of the structural and functional brain alterations in Cushing's disease. Specifically, structural studies showed atrophy of the gray matter, loss of white matter integrity, and demyelination in widespread brain regions. Functional imaging studies have identified three major functional brain connectome networks influenced by hypercortisolemia: the limbic network, the default mode network, and the executive control network. After endocrinological remission, atrophy of gray matter regions and the compromised functional network activities were partially reversible, and the widespread white matter integrity alterations cannot recover in years. In conclusion, Cushing's disease patients display structural and functional brain connectomic alterations, which provides insights into the neurocognitive and psychiatric symptoms observed in this disease.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Pan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; School of Medicine, Tsinghua University, Beijing 100083, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
8
|
Zhang Y, Zhou T, Feng S, Wang W, Liu H, Wang P, Sha Z, Yu X. The chronic effect of cortisol on orchestrating cerebral blood flow and brain functional connectivity: evidence from Cushing's disease. Metabolism 2021; 115:154432. [PMID: 33197455 DOI: 10.1016/j.metabol.2020.154432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cortisol has long been considered to play a crucial role in the pathogenesis of stress-related disorders. Cushing's disease (CD) provides an excellent "hyperexpression model" to investigate the chronic effects of cortisol on brain physiology and cognition. Previous studies have shown that cortisol is associated with neurophysiological alterations in animal models, which has also been examined by neural activity and cerebral blood flow (CBF) in human studies. However, the manner in which cortisol affects the coupling between brain activity and metabolic demand remains largely unknown. METHODS Here we used functional magnetic resonance imaging and arterial-spin-labeling imaging to investigate neurophysiological coupling by examining the ratio of CBF and functional connectivity strength (FCS) in 100 participants (47 CD patients and 53 healthy controls). RESULTS The results showed that CD was associated with lower CBF-FCS coupling predominantly in regions involving cognitive processing, such as the left dorsolateral prefrontal cortex and precuneus, as well as greater CBF-FCS coupling in subcortical structures, including the bilateral thalamus, right putamen, and hippocampus (P < 0.05, false discovery rate corrected). Moreover, regions with disrupted CBF-FCS coupling were associated with cortisol dosage and cognitive decline in CD patients. CONCLUSIONS Together, these findings elucidate the effect of cortisol excess on cerebral microenvironment regulation and associated cognitive disturbances in the human brain.
Collapse
Affiliation(s)
- Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Shiyu Feng
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Wenxin Wang
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Hailong Liu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Zhiqiang Sha
- Department of Psychiatry, Western Psychiatric Institute and Clinic, , University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
9
|
A novel rabbit fixator made of a thermoplastic mask for awake imaging experiments. Sci Rep 2021; 11:1546. [PMID: 33452449 PMCID: PMC7810717 DOI: 10.1038/s41598-021-81358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to develop and validate a novel rabbit fixator made from a thermoplastic mask for awake imaging experiments. When heated in a hot-water bath at 65–70 °C for 2–5 min, the thermoplastic mask became soft and could be molded to fit over the entire body of an anesthetized rabbit (4 ml of 3% pentobarbital sodium solution by intramuscular injection). Twenty rabbits were randomly divided into fixator (n = 10) and anesthesia (n = 10) groups. The animals’ vital signs, stress hormones (cortisol and adrenaline), and subjective image quality scores for the computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) scanning were measured and compared. Phantom CT, MRI and PET studies were performed to assess the performance with and without the thermoplastic mask by using image agents at different concentrations or with different radioactivity. The respiration rate (RR), systolic blood pressure (SBP), diastolic blood pressure (DBP), peripheral capillary oxygen saturation (SpO2) and body temperature (T) decreased after anesthesia (all P < 0.05) but did not significantly decrease after fixation (all P > 0.05). The heart rate (HR), cortisol and adrenaline did not significantly decrease after either anesthesia or fixation (all P > 0.05). The subjective image quality scores for the CT and MRI images of the head, thorax, liver, kidney, intestines and pelvis and the subjective image quality scores for the PET images did not significantly differ between the two groups (all P > 0.05). For all examined organs except the muscle, 18F-FDG metabolism was lower after fixation than after anesthesia, and was almost identical of liver between two groups. The phantom study showed that the CT values, standard uptake values and MR T2 signal values did not differ significantly with or without the mask (all P > 0.05). A novel rabbit fixator created using a thermoplastic mask could be used to obtain high-quality images for different imaging modalities in an awake and near-physiological state.
Collapse
|
10
|
Cheng H, Gao L, Hou B, Feng F, Guo X, Wang Z, Feng M, Xing B, Fan Y. Reversibility of cerebral blood flow in patients with Cushing's disease after surgery treatment. Metabolism 2020; 104:154050. [PMID: 31863780 PMCID: PMC6938712 DOI: 10.1016/j.metabol.2019.154050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Cushing's disease (CD) patients have metabolic abnormalities in the brain caused by excessive exposure to endogenous cortisol. However, the reversibility of brain metabolism of CD patients after treatment remains largely unknown. METHODS This study recruited 50 CD patients seeking treatment and 34 matched normal controls (NCs). The patients were treated with Transsphenoidal Adenomectomy (TSA) and reexamined 3 months later. Cerebral blood flow (CBF) of the patients was assessed using 3D pseudo-continuous arterial spin labelling (PCASL) imaging before the treatment and at the 3-month follow-up and were compared with CBF measure of the NCs using a whole-brain voxelwise group comparison method. For remitted patients, their CBF measures and hormone level measures, including adrenocorticotropic hormone (ACTH), 24-hour urinary free cortisol (24hUFC) and serum cortisol, were compared before and after the treatment. Finally, a correlation analysis was carried out to explore the relationship between changes of CBF and hormone level measures of the remitted CD patients. RESULTS After the treatment, 45 patients reached remission. Compared with the NCs, the CD patients before the treatment exhibited significantly reduced CBF in cortical regions, including occipital lobe, parietal lobe, superior/middle/inferior temporal gyrus, superior/middle/inferior frontal gyrus, orbitofrontal cortex, precentral gyrus, middle/posterior cingulate gyrus, and rolandic operculum, as well as significantly increased CBF in subcortical structures, including caudate, pallidum, putamen, limbic lobe, parahippocampal gyrus, hippocampus, thalamus, and amygdala (p < 0.01, false discovery rate corrected). For the remitted patients, the change in CBF before and after the treatment displayed a spatial pattern similar to the difference between the NCs and the CD patients before the treatment, and no significant difference in CBF was observed between the NCs and the remitted CD patients after the treatment. The changes of 24hUFC were significantly correlated with the changes of averaged CBF within the subcortical region in the remitted patients (p = 0.01). CONCLUSIONS Our findings demonstrate that the brain metabolic abnormalities of CD patients are reversible when their hormone level changes towards normal after surgery treatment.
Collapse
Affiliation(s)
- Hewei Cheng
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, PR China; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; China Pituitary Disease Registry Center, China Pituitary Adenoma Specialist Council, Beijing, PR China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; China Pituitary Disease Registry Center, China Pituitary Adenoma Specialist Council, Beijing, PR China
| | - Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; China Pituitary Disease Registry Center, China Pituitary Adenoma Specialist Council, Beijing, PR China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; China Pituitary Disease Registry Center, China Pituitary Adenoma Specialist Council, Beijing, PR China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; China Pituitary Disease Registry Center, China Pituitary Adenoma Specialist Council, Beijing, PR China.
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Gao L, Liu L, Shi L, Luo Y, Wang Z, Guo X, Xing B. Dynamic changes of views on the brain changes of Cushing's syndrome using different computer-assisted tool. Rev Endocr Metab Disord 2020; 21:185-200. [PMID: 31974674 DOI: 10.1007/s11154-020-09540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cushing's syndrome (CS) provides a unique model for assessing the neurotoxic effect of chronic hypercortisolism on human brains. With the ongoing development of different computer-assisted tools, four research stages emerged, each with its own pearls and pitfalls. This review summarizes current knowledge and describes the dynamic changes of views on the brain changes of CS, especially in the current era of the rapid development of artificial intelligence and big data. The adverse effects of GC on brain are proven to be on structural, functional and cellular levels at the same time.
Collapse
Affiliation(s)
- Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China.
| | - Lu Liu
- Department of Senior Officials Health Care, China-Japan Friendship Hospital, Beijing, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
- BrainNow Research Institute, Shenzhen, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | - Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China.
| |
Collapse
|
12
|
Wirth M, Lange C, Huijbers W. Plasma cortisol is associated with cerebral hypometabolism across the Alzheimer's disease spectrum. Neurobiol Aging 2019; 84:80-89. [DOI: 10.1016/j.neurobiolaging.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 01/19/2023]
|
13
|
Brzozowska MM, Kepreotis S, Tsang F, Fuentes- Patarroyo SX. Improvement in cognitive impairment following the successful treatment of endogenous Cushing's syndrome-a case report and literature review. BMC Endocr Disord 2019; 19:68. [PMID: 31253144 PMCID: PMC6599300 DOI: 10.1186/s12902-019-0401-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endogenous Cushing's syndrome, a rare endocrine disorder, characterised by chronic cortisol hypersecretion, results in neuropsychiatric disturbances and in cognitive deficits, which are only partially reversible after the biochemical remission of the disease. CASE PRESENTATION We report a case of a woman with a profound cognitive deficit and a gradual functional decline caused by Cushing's disease of at least 10 years duration. The neurosurgical resection of her 2 mm adrenocorticotropic hormone (ACTH) secreting pituitary microadenoma resulted in a successful resolution of the patient's hypercortisolism and a significant recovery of her neurocognitive function. The patient's progress was evaluated using serial clinical observations, functional assessments, Mini-Mental Status exams and through the formal neuropsychological report. Furthermore, the patient's recovery of her neurocognitive function was reflected by a sustained improvement in the patient's specific structural brain abnormalities on radiological imaging. CONCLUSIONS This report illustrates the importance of early detection and treatment of Cushing's syndrome in order to prevent neurocognitive impairment and neuropsychiatric disorders which are associated with an endogenous cortisol hypersecretion. The long term adverse effects of severe hypercortisolaemia on brain function and the pathophysiological mechanisms responsible for the structural and functional changes in brain anatomy due to glucocorticoid excess are reviewed.
Collapse
Affiliation(s)
- Malgorzata Monika Brzozowska
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW Australia
- Garvan institute of Medical Research, Darlinghurst, NSW Australia
| | - Sacha Kepreotis
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
| | - Fiona Tsang
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
| | | |
Collapse
|
14
|
Bauduin SEEC, van der Wee NJA, van der Werff SJA. Structural brain abnormalities in Cushing's syndrome. Curr Opin Endocrinol Diabetes Obes 2018; 25:285-289. [PMID: 29746308 DOI: 10.1097/med.0000000000000414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW Alongside various physical symptoms, patients with Cushing's disease and Cushing's syndrome display a wide variety of neuropsychiatric and cognitive symptoms, which are indicative of involvement of the central nervous system. The aim of this review is to provide an overview of the structural brain abnormalities that are associated with Cushing's disease and Cushing's syndrome and their relation to behavioral and cognitive symptomatology. RECENT FINDINGS In this review, we discuss the gray matter structural abnormalities found in patients with active Cushing's disease and Cushing's syndrome, the reversibility and persistence of these changes and the white matter structural changes related to Cushing's syndrome. Recent findings are of particular interest because they provide more detailed information on localization of the structural changes as well as possible insights into the underlying biological processes. SUMMARY Active Cushing's disease and Cushing's syndrome is related to volume reductions of the hippocampus and in a prefrontal region involving the anterior cingulate cortex (ACC) and medial frontal gyrus (MFG). Whilst there are indications that the reductions in hippocampal volume are partially reversible, the changes in the ACC and MFG appear to be more persistent. In contrast to the volumetric findings, changes in white matter connectivity are typically widespread involving multiple tracts.
Collapse
Affiliation(s)
- Stephanie E E C Bauduin
- Department of Psychiatry, Leiden University Medical Center
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Steven J A van der Werff
- Department of Psychiatry, Leiden University Medical Center
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
15
|
Liu S, Wang Y, Xu K, Ping F, Li F, Wang R, Cheng X. Voxel-based comparison of brain glucose metabolism between patients with Cushing's disease and healthy subjects. NEUROIMAGE-CLINICAL 2017; 17:354-358. [PMID: 29159047 PMCID: PMC5681338 DOI: 10.1016/j.nicl.2017.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022]
Abstract
Cognitive impairment and psychiatric symptoms are common in patients with Cushing's disease (CD) owing to elevated levels of glucocorticoids. Molecular neuroimaging methods may help to detect changes in the brain of patients with CD. The aim of this study was to investigate the characteristics of brain metabolism and its association with serum cortisol level in CD. We compared brain metabolism, as measured using [18F]-fluorodeoxyglucose positron emission tomography (FDG PET), between 92 patients with CD and 118 normal subjects on a voxel-wise basis. Pearson correlation was performed to evaluate the association between cerebral FDG uptake and serum cortisol level in patients with CD. We demonstrated that certain brain regions in patients with CD showed significantly increased FDG uptake, including the basal ganglia, anteromedial temporal lobe, thalamus, precentral cortex, and cerebellum. The clusters that demonstrated significantly decreased uptake were mainly located in the medial and lateral frontal cortex, superior and inferior parietal lobule, medial occipital cortex, and insular cortex. The metabolic rate of the majority of these regions was found to be significantly correlated with the serum cortisol level. Our findings may help to explain the underlying mechanisms of cognitive impairment and psychiatric symptoms in patients exposed to excessive glucocorticoids and evaluate the efficacy of treatments during follow-up. Hypercortisolism leads to metabolic changes in specific brain regions of CD patients. These brain regions involve in the regulation of cortisol and the symptoms of CD. The metabolism of 6 specific brain regions is correlated with cortisol level.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Xu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Ping
- Departments of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Li
- Departments of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Cheng
- Departments of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|