1
|
Yan Z, Tan Z, Zhu Q, Shi Z, Feng J, Wei Y, Yin F, Wang X, Li Y. Cross-sectional and longitudinal evaluation of white matter microstructure damage and cognitive correlations by automated fibre quantification in relapsing-remitting multiple sclerosis patients. Brain Imaging Behav 2024; 18:1019-1033. [PMID: 38814544 DOI: 10.1007/s11682-024-00893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
The purpose of this study was to characterize whole-brain white matter (WM) fibre tracts by automated fibre quantification (AFQ), capture subtle changes cross-sectionally and longitudinally in relapsing-remitting multiple sclerosis (RRMS) patients and explore correlations between these changes and cognitive performance A total of 114 RRMS patients and 71 healthy controls (HCs) were enrolled and follow-up investigations were conducted on 46 RRMS patients. Fractional anisotropy (FA), mean diffusion (MD), axial diffusivity (AD), and radial diffusivity (RD) at each node along the 20 WM fibre tracts identified by AFQ were investigated cross-sectionally and longitudinally in entire and pointwise manners. Partial correlation analyses were performed between the abnormal metrics and cognitive performance. At baseline, compared with HCs, patients with RRMS showed a widespread decrease in FA and increases in MD, AD, and RD among tracts. In the pointwise comparisons, more detailed abnormalities were localized to specific positions. At follow-up, although there was no significant difference in the entire WM fibre tract, there was a reduction in FA in the posterior portion of the right superior longitudinal fasciculus (R_SLF) and elevations in MD and AD in the anterior and posterior portions of the right arcuate fasciculus (R_AF) in the pointwise analysis. Furthermore, the altered metrics were widely correlated with cognitive performance in RRMS patients. RRMS patients exhibited widespread WM microstructure alterations at baseline and alterations in certain regions at follow-up, and the altered metrics were widely correlated with cognitive performance in RRMS patients, which will enhance our understanding of WM microstructure damage and its cognitive correlation in RRMS patients.
Collapse
Affiliation(s)
- Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Zeyun Tan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqiu Wei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Feiyue Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Xiaohua Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
- College of Medical Informatics, Chongqing Medical University, Chongqing, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| |
Collapse
|
2
|
Bonacchi R, Valsasina P, Pagani E, Meani A, Preziosa P, Rocca MA, Filippi M. Sex-related differences in upper limb motor function in healthy subjects and multiple sclerosis patients: a multiparametric MRI study. J Neurol 2023; 270:5235-5250. [PMID: 37639018 DOI: 10.1007/s00415-023-11948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND We investigated sex-related differences in upper limb motor performance tested with the 9-Hole Peg Test (9HPT) in healthy controls (HC) and multiple sclerosis (MS) patients and their MRI substrates. MATERIALS AND METHODS We enrolled 94 HC and 133 MS patients, who underwent neurological examination, 9HPT and brain 3T MRI, with sequences for regional grey matter volume (GMV), white matter (WM) fractional anisotropy (FA) and resting state (RS) functional connectivity (FC) analysis. Associations between MRI variables and 9HPT performance were analyzed with general linear models. RESULTS 9HPT performance was better in HC vs MS patients, and in female vs male HC. Regional GMV analysis showed: associations between better 9HPT performance and higher GMV in motor and cognitive cortical areas in HC, with stronger positive correlations in females vs males. In MS, worse 9HPT performance correlated with lower volume in motor and cognitive areas. Sex-related differences were minimal and mostly found in cerebellar areas. WM FA analysis disclosed neither associations with 9HPT performance in HC, nor sex-related differences in MS. RS FC analysis showed: in the sensorimotor network, stronger associations of RS FC with 9HPT performance in female vs male HC and no sex-related differences in MS; in the cerebellar network, no sex-related differences in HC but stronger negative correlation in left cerebellum in male vs female MS patients. CONCLUSIONS Sex influences 9HPT performance in HC, mainly through differences in volume and RS FC of motor and cognitive areas. Sex-related effects on motor performance become secondary but still present in MS.
Collapse
Affiliation(s)
- Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Muñoz de la Torre LP, Trujillo Hernández A, Eguibar JR, Cortés C, Morales-Ledesma L. Characterization of sperm motility and testosterone secretion in the taiep myelin mutant, a model of demyelination. Anim Reprod 2023; 20:e20220102. [PMID: 38026000 PMCID: PMC10681128 DOI: 10.1590/1984-3143-ar2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Presently, demyelinating diseases have been reported to affect the reproductive life of patients who suffer from them, but the progression of the alterations is unknown, especially in men. To better understand these effects, it is necessary to perform studies in animal models, such as the male taiep rat, which exhibits progressive demyelination of the central nervous system, altered kisspeptin expression at the hypothalamic level, and decreased luteinizing hormone, which could alter sperm quality and testicular diameter. Thus, the objective of the present study was to analyze the diameter of the seminiferous tubules, the sperm motility, and the testosterone levels of 90-day-old male taiep rats. The obtained results indicate that male taiep rats show an increase in testicular size accompanied by an increase in the diameter of the seminiferous tubules of the left testicle. There was also a decrease in progressive motility in sperm samples from the left epididymis of male taiep rats compared to the control group, with no changes in serum testosterone concentration. Therefore, we conclude that male taiep rats with central demyelination show altered testicular diameter and decreased motility in sperm from the left side. This type of studies serves as a basis for proposing possible reproductive strategies to improve the fertility and testicular function of men with demyelinating diseases of the central nervous system.
Collapse
Affiliation(s)
- Luz Patricia Muñoz de la Torre
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio de Fisiología Reproductiva, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - José Ramón Eguibar
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Carmen Cortés
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Leticia Morales-Ledesma
- Laboratorio de Fisiología Reproductiva, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Hagen AC, Acosta JS, Geltser CS, Fling BW. Split-Belt Treadmill Adaptation Improves Spatial and Temporal Gait Symmetry in People with Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:5456. [PMID: 37420623 DOI: 10.3390/s23125456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by degradation of the myelin sheath resulting in impaired neural communication throughout the body. As a result, most people with MS (PwMS) experience gait asymmetries between their legs leading to an increased risk of falls. Recent work indicates that split-belt treadmill adaptation, where the speed of each leg is controlled independently, can decrease gait asymmetries for other neurodegenerative impairments. The purpose of this study was to test the efficacy of split-belt treadmill training to improve gait symmetry in PwMS. In this study, 35 PwMS underwent a 10 min split-belt treadmill adaptation paradigm, with the faster paced belt moving under the more affected limb. Step length asymmetry (SLA) and phase coordination index (PCI) were the primary outcome measures used to assess spatial and temporal gait symmetries, respectively. It was predicted that participants with a worse baseline symmetry would have a greater response to split-belt treadmill adaptation. Following this adaptation paradigm, PwMS experienced aftereffects that improved gait symmetry, with a significant difference between predicted responders and nonresponders in both SLA and PCI change (p < 0.001). Additionally, there was no correlation between SLA and PCI change. These findings suggest that PwMS retain the ability for gait adaptation, with those most asymmetrical at baseline demonstrating the greatest improvement, and that there may be separate neural mechanisms for spatial and temporal locomotor adjustments.
Collapse
Affiliation(s)
- Andrew C Hagen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Jordan S Acosta
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Chaia S Geltser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brett W Fling
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Lopez-Soley E, Martinez-Heras E, Solana E, Solanes A, Radua J, Vivo F, Prados F, Sepulveda M, Cabrera-Maqueda JM, Fonseca E, Blanco Y, Alba-Arbalat S, Martinez-Lapiscina EH, Villoslada P, Saiz A, Llufriu S. Diffusion tensor imaging metrics associated with future disability in multiple sclerosis. Sci Rep 2023; 13:3565. [PMID: 36864113 PMCID: PMC9981711 DOI: 10.1038/s41598-023-30502-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The relationship between brain diffusion microstructural changes and disability in multiple sclerosis (MS) remains poorly understood. We aimed to explore the predictive value of microstructural properties in white (WM) and grey matter (GM), and identify areas associated with mid-term disability in MS patients. We studied 185 patients (71% female; 86% RRMS) with the Expanded Disability Status Scale (EDSS), timed 25-foot walk (T25FW), nine-hole peg test (9HPT), and Symbol Digit Modalities Test (SDMT) at two time-points. We used Lasso regression to analyse the predictive value of baseline WM fractional anisotropy and GM mean diffusivity, and to identify areas related to each outcome at 4.1 years follow-up. Motor performance was associated with WM (T25FW: RMSE = 0.524, R2 = 0.304; 9HPT dominant hand: RMSE = 0.662, R2 = 0.062; 9HPT non-dominant hand: RMSE = 0.649, R2 = 0.139), and SDMT with GM diffusion metrics (RMSE = 0.772, R2 = 0.186). Cingulum, longitudinal fasciculus, optic radiation, forceps minor and frontal aslant were the WM tracts most closely linked to motor dysfunction, and temporal and frontal cortex were relevant for cognition. Regional specificity related to clinical outcomes provide valuable information that can be used to develop more accurate predictive models that could improve therapeutic strategies.
Collapse
Affiliation(s)
- E Lopez-Soley
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain.
| | - E Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain.
| | - A Solanes
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, and CIBERSAM, Barcelona, Spain
| | - J Radua
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, and CIBERSAM, Barcelona, Spain
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Early Psychosis Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - F Vivo
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - F Prados
- E-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - M Sepulveda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - J M Cabrera-Maqueda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E Fonseca
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Y Blanco
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - S Alba-Arbalat
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E H Martinez-Lapiscina
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - P Villoslada
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - A Saiz
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - S Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
6
|
Šoda J, Pavelin S, Vujović I, Rogić Vidaković M. Assessment of Motor Evoked Potentials in Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23010497. [PMID: 36617096 PMCID: PMC9824873 DOI: 10.3390/s23010497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive technique mainly used for the assessment of corticospinal tract integrity and excitability of the primary motor cortices. Motor evoked potentials (MEPs) play a pivotal role in TMS studies. TMS clinical guidelines, concerning the use and interpretation of MEPs in diagnosing and monitoring corticospinal tract integrity in people with multiple sclerosis (pwMS), were established almost ten years ago and refer mainly to the use of TMS implementation; this comprises the magnetic stimulator connected to a standard EMG unit, with the positioning of the coil performed by using the external landmarks on the head. The aim of the present work was to conduct a narrative literature review on the MEP assessment and outcome measures in clinical and research settings, assessed by TMS Methodological characteristics of different TMS system implementations (TMS without navigation, line-navigated TMS and e-field-navigated TMS); these were discussed in the context of mapping the corticospinal tract integrity in MS. An MEP assessment of two case reports, by using an e-field-navigated TMS, was presented; the results of the correspondence between the e-field-navigated TMS with MRI, and the EDSS classifications were presented. Practical and technical guiding principles for the improvement of TMS studies in MEP assessment for MS are discussed, suggesting the use of e-field TMS assessment in the sense that it can improve the accuracy of corticospinal tract integrity testing by providing a more objective correspondence of the neurophysiological (e-field-navigated TMS) and clinical (Expanded Disability Status Scale-EDSS) classifications.
Collapse
Affiliation(s)
- Joško Šoda
- Signal Processing, Analysis, and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia
| | - Igor Vujović
- Signal Processing, Analysis, and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
7
|
Faria MH, Simieli L, Rietdyk S, Penedo T, Santinelli FB, Barbieri FA. (A)symmetry during gait initiation in people with Parkinson's disease: A motor and cortical activity exploratory study. Front Aging Neurosci 2023; 15:1142540. [PMID: 37139089 PMCID: PMC10150081 DOI: 10.3389/fnagi.2023.1142540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Gait asymmetry and deficits in gait initiation (GI) are among the most disabling symptoms in people with Parkinson's disease (PwPD). Understanding if PwPD with reduced asymmetry during GI have higher asymmetry in cortical activity may provide support for an adaptive mechanism to improve GI, particularly in the presence of an obstacle. Objective This study quantified the asymmetry of anticipatory postural adjustments (APAs), stepping parameters and cortical activity during GI, and tested if the presence of an obstacle regulates asymmetry in PwPD. Methods Sixteen PwPD and 16 control group (CG) performed 20-trials in two conditions: unobstructed and obstructed GI with right and left limbs. We measured, through symmetry index, (i) motor parameters: APAs and stepping, and (ii) cortical activity: the PSD of the frontal, sensorimotor and occipital areas during APA, STEP-I (moment of heel-off of the leading foot in the GI until the heel contact of the same foot); and STEP-II (moment of the heel-off of the trailing foot in the GI until the heel contact of the same foot) phases. Results Parkinson's disease showed higher asymmetry in cortical activity during APA, STEP-I and STEP-II phases and step velocity (STEP-II phase) during unobstructed GI than CG. However, unexpectedly, PwPD reduced the level of asymmetry of anterior-posterior displacement (p < 0.01) and medial-lateral velocity (p < 0.05) of the APAs. Also, when an obstacle was in place, PwPD showed higher APAs asymmetry (medial-lateral velocity: p < 0.002), with reduced and increased asymmetry of the cortical activity during APA and STEP-I phases, respectively. Conclusion Parkinson's disease were not motor asymmetric during GI, indicating that higher cortical activity asymmetry can be interpreted as an adaptive behavior to reduce motor asymmetry. In addition, the presence of obstacle did not regulate motor asymmetry during GI in PwPD.
Collapse
Affiliation(s)
- Murilo Henrique Faria
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Lucas Simieli
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Shirley Rietdyk
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Tiago Penedo
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Felipe Balistieri Santinelli
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Fabio Augusto Barbieri
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
- *Correspondence: Fabio Augusto Barbieri,
| |
Collapse
|
8
|
Identification of disability status in persons with multiple sclerosis by lower limb neuromuscular function – emphasis on rate of force development. Mult Scler Relat Disord 2022; 67:104082. [DOI: 10.1016/j.msard.2022.104082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022]
|
9
|
van 't Westende C, Steggerda SJ, Jansen L, van den Berg-Huysmans AA, van de Pol LA, Wiggers-de Bruine FT, Stam CJ, Peeters-Scholte CMPCD. Combining advanced MRI and EEG techniques better explains long-term motor outcome after very preterm birth. Pediatr Res 2022; 91:1874-1881. [PMID: 34031571 DOI: 10.1038/s41390-021-01571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Preterm born children are at high risk for adverse motor neurodevelopment. The aim of this study was to establish the relationship between motor outcome and advanced magnetic resonance imaging (MRI) and electroencephalography (EEG) measures. METHODS In a prospective cohort study of 64 very preterm born children, the motor outcome was assessed at 9.83 (SD 0.70) years. Volumetric MRI, diffusion tensor imaging (DTI), and EEG were acquired at 10.85 (SD 0.49) years. We investigated associations between motor outcome and brain volumes (white matter, deep gray matter, cerebellum, and ventricles), white matter integrity (fractional anisotropy and mean, axial and radial diffusivity), and brain activity (upper alpha (A2) functional connectivity and relative A2 power). The independence of associations with motor outcome was investigated with a final model. For each technique, the measure with the strongest association was selected to avoid multicollinearity. RESULTS Ventricular volume, radial diffusivity, mean diffusivity, relative A2 power, and A2 functional connectivity were significantly correlated to motor outcome. The final model showed that ventricular volume and relative A2 power were independently associated with motor outcome (B = -9.42 × 10-5, p = 0.027 and B = 28.9, p = 0.007, respectively). CONCLUSIONS This study suggests that a lasting interplay exists between brain structure and function that might underlie motor outcome at school age. IMPACT This is the first study that investigates the relationships between motor outcome and brain volumes, DTI, and brain function in preterm born children at school age. Ventricular volume and relative upper alpha power on EEG have an independent relation with motor outcome in preterm born children at school age. This suggests that there is a lasting interplay between structure and function that underlies adverse motor outcome.
Collapse
Affiliation(s)
- Charlotte van 't Westende
- Department of Child Neurology, Amsterdam University Medical Centers, AMC Site, Amsterdam, The Netherlands. .,Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sylke J Steggerda
- Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisette Jansen
- Department of Psychology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Laura A van de Pol
- Department of Child Neurology, Amsterdam University Medical Centers, AMC Site, Amsterdam, The Netherlands
| | | | - Cornelis J Stam
- Department of Clinical Neurophysiology, Amsterdam University Medical Centers, VUmc Site, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
The association between cognition and motor performance is beyond structural damage in relapsing–remitting multiple sclerosis. J Neurol 2022; 269:4213-4221. [DOI: 10.1007/s00415-022-11044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
|
11
|
Kim H, Fraser S. Neural correlates of dual-task walking in people with central neurological disorders: a systematic review. J Neurol 2022; 269:2378-2402. [PMID: 34989867 DOI: 10.1007/s00415-021-10944-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND People with central neurological disorders experience difficulties with dual-task walking due to disease-related impairments. The objective of this review was to provide a comprehensive examination of the neural correlates (structural/functional brain changes) of dual-task walking in people with Parkinson's disease (PD), multiple sclerosis (MS), stroke, and Alzheimer's disease (AD). METHODS A systematic review of the literature was conducted, following PRISMA guidelines, on Medline, Embase, and Scopus. Included studies examined the relationship between structural and functional brain imaging and dual-task walking performance in people with PD, MS, stroke, and AD. Articles that met the inclusion criteria had baseline characteristics, study design, and behavioral and brain outcomes extracted. Twenty-three studies were included in this review. RESULTS Most structural imaging studies (75%) found an association between decreased brain integrity and poor dual-task performance. Specific brain regions that showed this association include the striatum regions and hippocampus in PD and supplementary motor area in MS. Functional imaging studies reported an association between increased prefrontal activity and maintained (compensatory recruitment) or decreased dual-task walking performance in PD and stroke. A subset (n = 2) of the stroke papers found no significant correlations. Increased supplementary motor area activity was associated with decreased performance in MS and stroke. No studies on AD were identified. CONCLUSION In people with PD, MS, and stroke, several neural correlates of dual-task walking have been identified, however, the direction of the association between neural and performance outcomes varied across the studies. The type of cognitive task used and presentation modality (e.g., visual) may have contributed to these mixed findings.
Collapse
Affiliation(s)
- Hyejun Kim
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 125 University Private, Ottawa, ON, K1N 6N5, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON, K1N 7K4, Canada.
| |
Collapse
|
12
|
Landelle C, Lungu O, Vahdat S, Kavounoudias A, Marchand-Pauvert V, De Leener B, Doyon J. Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging. Neuroimage 2021; 245:118684. [PMID: 34732324 DOI: 10.1016/j.neuroimage.2021.118684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023] Open
Abstract
Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms. By cross-referencing these human neuroimaging findings with knowledge acquired through neurophysiological recordings, our review demonstrates that spinal fMRI is a powerful tool for exploring, in vivo, the human spinal cord pathways. We report strong cross-validation between task-related and resting-state fMRI in accordance with well-known hemicord, postero-anterior and rostro-caudal organization of these pathways. We also highlight the specific advantages of using spinal fMRI in clinical settings to characterize better spinal-related impairments, predict disease progression, and guide the implementation of therapeutic interventions.
Collapse
Affiliation(s)
- Caroline Landelle
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Ovidiu Lungu
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Anne Kavounoudias
- CNRS, UMR7291, Laboratory of Cognitive Neurosciences, Aix-Marseille University, Marseille, France
| | | | - Benjamin De Leener
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada; CHU Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Swanson CW, Richmond SB, Sharp BE, Fling BW. Middle-age people with multiple sclerosis demonstrate similar mobility characteristics to neurotypical older adults. Mult Scler Relat Disord 2021; 51:102924. [PMID: 33813095 DOI: 10.1016/j.msard.2021.102924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Clinical trials often report significant mobility differences between neurotypical and atypical groups, however, these analyses often do not determine which measures are capable of discriminating between groups. Additionally, indirect evidence supports the notion that some mobility impaired populations demonstrate similar mobility deficits. Thus, the current study aimed to provide a comprehensive analysis of three distinct aspects of mobility (walking, turning, and balance) to determine which variables were significantly different and were also able to discriminate between neurotypical older adults (OA) and middle-aged people with multiple sclerosis (PwMS), and between middle-aged neurotypical adults and PwMS. METHODS This study recruited 21 neurotypical OA, 19 middle-aged neurotypical adults, and 30 people with relapsing remitting MS. Participants came into the laboratory on two separate occasions to complete mobility testing while wearing wireless inertial sensors. Testing included a self-selected pace two-minute walk, a series of 180˚ and 360˚ turns, and a clinical balance test capturing a total of 99 distinct mobility characteristics. We determined significant differences for gait and turning measures through univariate analyses and a series of repeated measures analysis of variance in determining significance for balance conditions and measures. In determining discrimination between groups, the Area Under the Curve (AUC) was calculated for all individual mobility measures with a threshold of 0.80, denoting excellent discrimination. Additionally, a stepwise regression of the top five AUC producing variables was performed to determine whether a combination of variables could enhance discrimination while accounting for multicollinearity. RESULTS The results between neurotypical OA and middle-aged PwMS demonstrated significant differences for three gait and one turning variable, with no variable or combination of variables able to provide excellent discrimination between groups. Between middle-age neurotypical adults and PwMS a variety of mean and variability gait measures demonstrated significant differences between groups; however, no variable or combination of variables met discriminatory threshold. For turning, five 360˚ turn variables demonstrated significant differences and furthermore, the combination of 360˚ mean turn duration and variability of peak turn velocity were able to discriminate between groups. Finally, the majority of postural sway measures demonstrated significant group differences and the ability to discriminate between groups, particularly during more challenging balance conditions where participants stood on a compliant surface. CONCLUSION These results offer a comprehensive analysis of mobility differences and measures capable of discriminating between middle-age neurotypical adults and PwMS. Additionally, these results provide evidence that OA and middle-age PwMS display similar movement characteristics and thus a potential indicator of advanced aging from a mobility perspective.
Collapse
Affiliation(s)
- Clayton W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Sutton B Richmond
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Benjamin E Sharp
- Department of Statistics, Colorado State University, Fort Collins, Colorado, USA
| | - Brett W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, Colorado, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Non-invasive brain stimulation to assess neurophysiologic underpinnings of lower limb motor impairment in multiple sclerosis. J Neurosci Methods 2021; 356:109143. [PMID: 33757762 DOI: 10.1016/j.jneumeth.2021.109143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory disease resulting in axonal demyelination and an amalgamation of symptoms which commonly result in decreased quality of life due to mobility dysfunction and limited participation in meaningful activities. NEW METHOD The use of non-invasive brain stimulation (NIBS) techniques, specifically transcranial magnetic and transcranial direct current stimulation, have been essential in understanding the pathophysiological decrements related to disease progression, particularly with regard to motor impairments. Although the research in this area has primarily focused on the upper extremities, new interest has arisen in understanding the neurophysiological underpinnings of lower limb impairment. Therefore, the purpose of this review is to: first, provide an overview of common NIBS techniques used to explore sensorimotor neurophysiology; second, summarize lower limb neuromuscular and mobility impairments typically observed in PwMS; third, review the current knowledge regarding interactions between TMS-assessed neurophysiology and lower limb impairments in PwMS; and fourth, provide recommendations for future NIBS studies based on current gaps in the literature. RESULTS PwMS exhibit reduced excitability and increased inhibitory neurophysiologic function which has been related to disease severity and lower limb motor impairments. Comparison with existing methods: Moreover, promising results indicate that the use of repetitive stimulation and transcranial direct current stimulation may prime neural adaptability and prove useful as a therapeutic tool in ameliorating lower limb impairments. CONCLUSIONS While these studies are both informative and promising, additional studies are necessary to be conclusive. As such, studies assessing objective measures of lower limb impairments associated with neurophysiological adaptations need further evaluation.
Collapse
|
15
|
Cordani C, Hidalgo de la Cruz M, Meani A, Valsasina P, Esposito F, Pagani E, Filippi M, Rocca MA. MRI correlates of clinical disability and hand-motor performance in multiple sclerosis phenotypes. Mult Scler 2020; 27:1205-1221. [DOI: 10.1177/1352458520958356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Hand-motor impairment affects a large proportion of multiple sclerosis (MS) patients; however, its substrates are still poorly understood. Objectives: To investigate the association between global disability, hand-motor impairment, and alterations in motor-relevant structural and functional magnetic resonance imaging (MRI) networks in MS patients with different clinical phenotypes. Methods: One hundred thirty-four healthy controls (HC) and 364 MS patients (250 relapsing-remitting MS (RRMS) and 114 progressive MS (PMS)) underwent Expanded Disability Status Scale (EDSS) rating, nine-hole peg test (9HPT), and electronic finger tapping rate (EFTR). Structural and resting state (RS) functional MRI scans were used to perform a source-based morphometry on gray matter (GM) components, to analyze white matter (WM) tract diffusivity indices and to perform a RS seed-based approach from the primary motor cortex involved in hand movement (hand-motor cortex). Random forest analyses identified the predictors of clinical impairment. Result: In RRMS, global measures of atrophy and lesions together with measures of structural damage of motor-related regions predicted EDSS (out-of-bag (OOB)- R2 = 0.19, p-range = <0.001–0.04), z9HPT (right: OOB- R2 = 0.14; left: OOB- R2 = 0.24, p-range = <0.001–0.03). No RS functional connectivity (FC) abnormalities were identified in RRMS models. In PMS, cerebellar and sensorimotor regions atrophy, cerebellar peduncles integrity and increased RS FC between left hand-motor cortex and right inferior frontal gyrus predicted EDSS (OBB- R2 = 0.16, p-range = 0.02–0.04). Conclusion: In RRMS, only measures of structural damage contribute to explain motor impairment, whereas both structural and functional MRI measures predict clinical disability in PMS. A multiparametric MRI approach could be relevant to investigate hand-motor impairment in different MS phenotypes.
Collapse
Affiliation(s)
- Claudio Cordani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Milagros Hidalgo de la Cruz
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Abstract
The corpus callosum is an important neural structure for controlling and coordinating bilateral movements of the upper limbs; however, there remains a substantial lack of knowledge regarding its association with lower limb control. We argue that transcallosal structure is an integral neural mechanism underlying control of the lower limbs and callosal degradation is a key contributor to mobility declines.
Collapse
Affiliation(s)
| | - Brett W Fling
- Department of Health and Exercise Science.,Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
17
|
Seidel-Marzi O, Ragert P. Neurodiagnostics in Sports: Investigating the Athlete's Brain to Augment Performance and Sport-Specific Skills. Front Hum Neurosci 2020; 14:133. [PMID: 32327988 PMCID: PMC7160821 DOI: 10.3389/fnhum.2020.00133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Enhancing performance levels of athletes during training and competition is a desired goal in sports. Quantifying training success is typically accompanied by performance diagnostics including the assessment of sports-relevant behavioral and physiological parameters. Even though optimal brain processing is a key factor for augmented motor performance and skill learning, neurodiagnostics is typically not implemented in performance diagnostics of athletes. We propose, that neurodiagnostics via non-invasive brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) will offer novel perspectives to quantify training-induced neuroplasticity and its relation to motor behavior. A better understanding of such a brain-behavior relationship during the execution of sport-specific movements might help to guide training processes and to optimize training outcomes. Furthermore, targeted non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) might help to further enhance training outcomes by modulating brain areas that show training-induced neuroplasticity. However, we strongly suggest that ethical aspects in the use of non-invasive brain stimulation during training and/or competition need to be addressed before neuromodulation can be considered as a performance enhancer in sports.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
18
|
Khavari R, Chen J, Boone T, Karmonik C. Brain activation patterns of female multiple sclerosis patients with voiding dysfunction. Neurourol Urodyn 2020; 39:969-977. [PMID: 32032447 DOI: 10.1002/nau.24304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
AIMS We compared brain activation patterns between female multiple sclerosis (MS) patients with voiding dysfunction (VD) and those without. We aim to expand current knowledge of supraspinal correlates of voiding initiation within a cohort of female MS patients with and without VD. MATERIALS AND METHODS Twenty-eight ambulatory female MS patients with stable disease and lower urinary tract dysfunction were recruited for this study. Subjects were divided into group 1, without VD (n = 14), and group 2, with VD (n = 14), defined as postvoid residual urine of ≥40% of maximum cystometric capacity or need for self-catheterization. We recorded brain activity via functional magnetic resonance imaging (fMRI) with simultaneous urodynamic testing. Average fMRI activation maps (the Student t test) were created for both groups, and areas of significant activation were identified (P < .05). A priori regions of interest (ROIs), identified by prior meta-analysis to be involved in voiding, were selected. RESULTS Group-averaged blood-oxygen level-dependent (BOLD) activation maps demonstrated significant differences between groups 1 and 2 during initiation of voiding with group 2 showing significantly lower levels of activation in all ROIs except for the left cerebellum and right cingulate gyrus. Interestingly, group 2 displayed negative BOLD signals, while group 1 displayed positive signals in the right and left pontine micturition center, right periaqueductal gray, left thalamus, and left cingulate gyrus. The activation map of group 1 was similar to healthy controls. CONCLUSIONS Our results support the hypothesis that distinct supraspinal activation patterns exist between female MS patients with VD and those without.
Collapse
Affiliation(s)
- Rose Khavari
- Department of Urology, Houston Methodist Hospital, Houston, Texas
| | - Jessie Chen
- Department of Urology, Baylor College of Medicine, Houston, Texas
| | - Timothy Boone
- Department of Urology, Houston Methodist Hospital, Houston, Texas
| | - Christof Karmonik
- MRI Core, Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
19
|
Pinter D, Beckmann CF, Fazekas F, Khalil M, Pichler A, Gattringer T, Ropele S, Fuchs S, Enzinger C. Morphological MRI phenotypes of multiple sclerosis differ in resting-state brain function. Sci Rep 2019; 9:16221. [PMID: 31700126 PMCID: PMC6838050 DOI: 10.1038/s41598-019-52757-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022] Open
Abstract
We aimed to assess differences in resting-state functional connectivity (FC) between distinct morphological MRI-phenotypes in multiple sclerosis (MS). Out of 180 MS patients, we identified those with high T2-hyperintense lesion load (T2-LL) and high normalized brain volume (NBV; a predominately white matter damage group, WMD; N = 37) and patients with low T2-LL and low NBV (N = 37; a predominately grey matter damage group; GMD). Independent component analysis of resting-state fMRI was used to test for differences in the sensorimotor network (SMN) between MS MRI-phenotypes and compared to 37 age-matched healthy controls (HC). The two MS groups did not differ regarding EDSS scores, disease duration and distribution of clinical phenotypes. WMD compared to GMD patients showed increased FC in all sub-units of the SMN (sex- and age-corrected). WMD patients had increased FC compared to HC and GMD patients in the central SMN (leg area). Only in the WMD group, higher EDSS scores and T2-LL correlated with decreased connectivity in SMN sub-units. MS patients with distinct morphological MRI-phenotypes also differ in brain function. The amount of focal white matter pathology but not global brain atrophy affects connectivity in the central SMN (leg area) of the SMN, consistent with the notion of a disconnection syndrome.
Collapse
Affiliation(s)
- Daniela Pinter
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
- Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Christian F Beckmann
- Donders Institute, Cognitive Neuroscience Department and Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Kapittelweg 29, Nijmegen, The Netherlands
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Alexander Pichler
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Siegrid Fuchs
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria.
- Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria.
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, Austria.
| |
Collapse
|
20
|
Bonzano L, Pedullà L, Tacchino A, Brichetto G, Battaglia MA, Mancardi GL, Bove M. Upper limb motor training based on task-oriented exercises induces functional brain reorganization in patients with multiple sclerosis. Neuroscience 2019; 410:150-159. [DOI: 10.1016/j.neuroscience.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
21
|
Body image in multiple sclerosis patients: a descriptive review. Neurol Sci 2019; 40:923-928. [DOI: 10.1007/s10072-019-3722-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/12/2019] [Indexed: 12/18/2022]
|
22
|
Cordani C, Meani A, Esposito F, Valsasina P, Colombo B, Pagani E, Preziosa P, Comi G, Filippi M, Rocca MA. Imaging correlates of hand motor performance in multiple sclerosis: A multiparametric structural and functional MRI study. Mult Scler 2019; 26:233-244. [PMID: 30657011 DOI: 10.1177/1352458518822145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hand motor impairment has considerable effects on daily-life activities of patients with multiple sclerosis (pwMS). Understanding its anatomo-functional substrates is relevant to provide more specific therapeutic interventions. OBJECTIVES To investigate the association between hand motor performance and anatomo-functional magnetic resonance imaging (MRI) abnormalities in pwMS. METHODS A total of 134 healthy controls (HC) and 366 pwMS underwent the Nine-Hole-Peg-Test (9HPT), structural and resting state (RS) functional MRI. Multivariate analyses identified the independent predictors of hand motor performance. RESULTS PwMS versus HC showed widespread gray matter atrophy, microstructural white matter abnormalities, and decreased RS functional connectivity in motor and cognitive networks. Predictors of worse right-9HPT (R2 = 0.52) were decreased right superior cerebellar peduncle and right lemniscus fractional anisotropy (FA) (p ⩽ 0.02), left angular gyrus atrophy (p < 0.003), decreased RS connectivity in left superior frontal gyrus, and left posterior cerebellum (p < 0.001). Worse left 9HPT (R2 = 0.56) was predicted by decreased right corticospinal FA (p = 0.003), atrophy of left anterior cingulum and left cerebellum (p ⩽ 0.02), decreased RS connectivity of left lingual gyrus and right posterior cerebellum in cerebellar and executive networks (p ⩽ 0.02). CONCLUSION Structural and functional abnormalities of regions involved in motor functions contribute to explain motor disability in pwMS. The integration of clinical and advanced MRI measures contributes to improve our understanding of multiple sclerosis clinical manifestations.
Collapse
Affiliation(s)
- Claudio Cordani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Esposito
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Colombo
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/ Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/ Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Cabeça HLS, Rocha LC, Sabbá AF, Tomás AM, Bento-Torres NVO, Anthony DC, Diniz CWP. The subtleties of cognitive decline in multiple sclerosis: an exploratory study using hierarchichal cluster analysis of CANTAB results. BMC Neurol 2018; 18:140. [PMID: 30200902 PMCID: PMC6131879 DOI: 10.1186/s12883-018-1141-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022] Open
Abstract
Background It is essential to investigate cognitive deficits in multiple sclerosis (MS) to develop evidence-based cognitive rehabilitation strategies. Here we refined cognitive decline assessment using the automated tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB) and hierarchical cluster analysis. Methods We searched for groups of distinct cognitive profiles in 35 relapsing-remitting MS outpatients and 32 healthy controls. All individuals participated in an automated assessment (CANTAB) and in a pencil and paper general neuropsychological evaluation. Results Hierarchical cluster analysis of the CANTAB results revealed two distinct groups of patients based mainly on the Simple Reaction Time (RTI) and on the Mean Latency of Rapid Visual Processing (RVP). The general neuropsychological assessment did not show any statistically significant differences between the cluster groups. Compared to the healthy control group, all MS outpatients had lower scores for RTI, RVP, paired associate learning, and delayed matching to sample. We also analyzed the associations between CANTAB results and age, education, sex, pharmacological treatment, physical activity, employment status, and the Expanded Disability Status Scale (EDSS). Although limited by the small number of observations, our findings suggest a weak correlation between performance on the CANTAB and age, education, and EDSS scores. Conclusions We suggest that the use of selected large-scale automated visuospatial tests from the CANTAB in combination with multivariate statistical analyses may reveal subtle and earlier changes in information processing speed and cognition. This may expand our ability to define the limits between normal and impaired cognition in patients with Multiple Sclerosis. Electronic supplementary material The online version of this article (10.1186/s12883-018-1141-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Luciano Chaves Rocha
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Amanda Ferreira Sabbá
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Natali Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil.,Faculdade de Fisioterapia e Terapia Ocupacional, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil.
| |
Collapse
|