1
|
Huang F, Huang Y, Guo S, Chang X, Chen Y, Wang M, Wang Y, Ren S. A review of studies on constructing classification models to identify mental illness using brain effective connectivity. Psychiatry Res Neuroimaging 2025; 346:111928. [PMID: 39626592 DOI: 10.1016/j.pscychresns.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Brain effective connectivity (EC) is a functional measurement that reflects the causal effects and topological relationships of neural activities. Recent research has increasingly focused on the classification for mental illnesses and healthy controls using brain EC; however, no comprehensive reviews have synthesized these studies. Therefore, the aim of this review is to thoroughly examine the existing literature on constructing diagnosis model for mental illnesses using brain EC. We first conducted a systematical literature search and thirty-five papers met the inclusion criteria. Subsequently, we summarized the approaches for estimating EC, the classification and validation methods used, the accuracies of models, and the main findings. Finally, we discussed the limitations of current research and the challenges in future research. These summaries and discussion provide references for future research on mental illnesses identification based on brain EC.
Collapse
Affiliation(s)
- Fangfang Huang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China.
| | - Yuan Huang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Siying Guo
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoyi Chang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yuqi Chen
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Mingzhu Wang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yingfang Wang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuai Ren
- Luoyang Fifth People's Hospital, Luoyang 471027, China
| |
Collapse
|
2
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
3
|
Li H, Zhang W, Song H, Zhuo L, Yao H, Sun H, Liu R, Feng R, Tang C, Lui S. Altered temporal lobe connectivity is associated with psychotic symptoms in drug-naïve adolescent patients with first-episode schizophrenia. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02485-9. [PMID: 38832962 DOI: 10.1007/s00787-024-02485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Research on individuals with a younger onset age of schizophrenia is important for identifying neurobiological processes derived from the interaction of genes and the environment that lead to the manifestation of schizophrenia. Schizophrenia has long been recognized as a disorder of dysconnectivity, but it is largely unknown how brain connectivity changes are associated with psychotic symptoms. Twenty-one adolescent-onset schizophrenia (AOS) patients and 21 matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) was used to investigate local brain connectivity alterations in AOS. Regions with significant ReHo changes in patients were selected as "seeds" for further functional connectivity (FC) analysis and Granger causality analysis (GCA), and associations of the obtained functional brain measures with psychotic symptoms in patients with AOS were examined. Compared with HCs, AOS patients showed significantly increased ReHo in the right middle temporal gyrus (MTG), which was positively correlated with PANSS-positive scores, PSYRATS-delusion scores and auditory hallucination scores. With the MTG as the seed, lower connectivity with the bilateral postcentral gyrus (PCG) and higher connectivity with the right precuneus were observed in patients. The reduced FC between the right MTG and bilateral PCG was significantly and positively correlated with hallucination scores. GCA indicated decreased Granger causality from the right MTG to the left middle frontal gyrus (MFG) and from the right MFG to the right MTG in AOS patients, but such effects did not significantly associate with psychotic symptoms. Abnormalities in the connectivity within the MTG and its connectivity with other networks were identified and were significantly correlated with hallucination and delusion ratings. This region may be a key neural substrate of psychotic symptoms in AOS.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hui Song
- Department of Psychiatry, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Hongchao Yao
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Ruohan Feng
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Chungen Tang
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China.
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
4
|
Zou A, Ji J, Lei M, Liu J, Song Y. Exploring Brain Effective Connectivity Networks Through Spatiotemporal Graph Convolutional Models. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7871-7883. [PMID: 36399590 DOI: 10.1109/tnnls.2022.3221617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Learning brain effective connectivity networks (ECN) from functional magnetic resonance imaging (fMRI) data has gained much attention in recent years. With the successful applications of deep learning in numerous fields, several brain ECN learning methods based on deep learning have been reported in the literature. However, current methods ignore the deep temporal features of fMRI data and fail to fully employ the spatial topological relationship between brain regions. In this article, we propose a novel method for learning brain ECN based on spatiotemporal graph convolutional models (STGCM), named STGCMEC, in which we first adopt the temporal convolutional network to extract the deep temporal features of fMRI data and utilize the graph convolutional network to update the spatial features of each brain region by aggregating information from neighborhoods, which makes the features of brain regions more discriminative. Then, based on such features of brain regions, we design a joint loss function to guide STGCMEC to learn the brain ECN, which includes a task prediction loss and a graph regularization loss. The experimental results on a simulated dataset and a real Alzheimer's disease neuroimaging initiative (ADNI) dataset show that the proposed STGCMEC is able to better learn brain ECN compared with some state-of-the-art methods.
Collapse
|
5
|
Fu Z, Batta I, Wu L, Abrol A, Agcaoglu O, Salman MS, Du Y, Iraji A, Shultz S, Sui J, Calhoun VD. Searching Reproducible Brain Features using NeuroMark: Templates for Different Age Populations and Imaging Modalities. Neuroimage 2024; 292:120617. [PMID: 38636639 PMCID: PMC11416721 DOI: 10.1016/j.neuroimage.2024.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States.
| | - Ishaan Batta
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Lei Wu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Anees Abrol
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Oktay Agcaoglu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Mustafa S Salman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Yuhui Du
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Han GT, Trevisan DA, Foss-Feig J, Srihari V, McPartland JC. Distinct Symptom Network Structure and Shared Central Social Communication Symptomatology in Autism and Schizophrenia: A Bayesian Network Analysis. J Autism Dev Disord 2023; 53:3636-3647. [PMID: 35752729 PMCID: PMC10202012 DOI: 10.1007/s10803-022-05620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 11/27/2022]
Abstract
Autism (ASD) and schizophrenia spectrum disorders (SCZ) are neurodevelopmental conditions with overlapping and interrelated symptoms. A network analysis approach that represents clinical conditions as a set of "nodes" (symptoms) connected by "edges" (relations among symptoms) was used to compare symptom organization in the two conditions. Gaussian graphical models were estimated using Bayesian methods to model separate symptom networks for adults with confirmed ASD or SCZ diagnoses. Though overall symptom organization differed by diagnostic group, both symptom networks demonstrated high centrality of social communication difficulties. Autism-relevant restricted and repetitive behaviors and schizophrenia-related cognitive-perceptual symptoms were uniquely central to the ASD and SCZ networks, respectively. Results offer recommendations to improve differential diagnosis and highlight potential treatment targets in ASD and SCZ.
Collapse
|
7
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Du Y, He X, Kochunov P, Pearlson G, Hong LE, van Erp TGM, Belger A, Calhoun VD. A new multimodality fusion classification approach to explore the uniqueness of schizophrenia and autism spectrum disorder. Hum Brain Mapp 2022; 43:3887-3903. [PMID: 35484969 PMCID: PMC9294304 DOI: 10.1002/hbm.25890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorder (ASD) sharing overlapping symptoms have a long history of diagnostic confusion. It is unclear what their differences at a brain level are. Here, we propose a multimodality fusion classification approach to investigate their divergence in brain function and structure. Using brain functional network connectivity (FNC) calculated from resting-state fMRI data and gray matter volume (GMV) estimated from sMRI data, we classify the two disorders using the main data (335 SZ and 380 ASD patients) via an unbiased 10-fold cross-validation pipeline, and also validate the classification generalization ability on an independent cohort (120 SZ and 349 ASD patients). The classification accuracy reached up to 83.08% for the testing data and 72.10% for the independent data, significantly better than the results from using the single-modality features. The discriminative FNCs that were automatically selected primarily involved the sub-cortical, default mode, and visual domains. Interestingly, all discriminative FNCs relating to the default mode network showed an intermediate strength in healthy controls (HCs) between SZ and ASD patients. Their GMV differences were mainly driven by the frontal gyrus, temporal gyrus, and insula. Regarding these regions, the mean GMV of HC fell intermediate between that of SZ and ASD, and ASD showed the highest GMV. The middle frontal gyrus was associated with both functional and structural differences. In summary, our work reveals the unique neuroimaging characteristics of SZ and ASD that can achieve high and generalizable classification accuracy, supporting their potential as disorder-specific neural substrates of the two entwined disorders.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information TechnologyShanxi UniversityTaiyuanShanxiChina
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Xingyu He
- School of Computer and Information TechnologyShanxi UniversityTaiyuanShanxiChina
| | - Peter Kochunov
- Center for Brain Imaging ResearchUniversity of MarylandBaltimoreMarylandUSA
| | | | - L. Elliot Hong
- Center for Brain Imaging ResearchUniversity of MarylandBaltimoreMarylandUSA
| | - Theo G. M. van Erp
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Aysenil Belger
- Department of PsychiatryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
10
|
Zhang X, Guan M, Chen X, Zhang P, Wu J, Zhang X, Dong M. Identifying neuroimaging biomarkers for psychogenic erectile dysfunction by fusing multi‐level brain information: a resting‐state fMRI study. Andrology 2022; 10:1398-1410. [PMID: 35869867 DOI: 10.1111/andr.13238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710071 China
- Xian Key Laboratory of Intelligent Sensing and Regulation of tran‐Scale Life Information Xi'an Shaanxi 710071 China
| | - Min Guan
- Department of Cerebrovascular Disease Henan Provincial People's Hospital Zhengzhou 450003 China
| | - Xin Chen
- Department of Andrology Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zheng Zhou Henan 450003 China
| | - Peiming Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710071 China
- Xian Key Laboratory of Intelligent Sensing and Regulation of tran‐Scale Life Information Xi'an Shaanxi 710071 China
| | - Jia Wu
- School of Foreign Languages Northwestern Polytechnical University Xi'an Shaanxi China
| | - Xiangsheng Zhang
- Department of Andrology Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zheng Zhou Henan 450003 China
| | - Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710071 China
- Xian Key Laboratory of Intelligent Sensing and Regulation of tran‐Scale Life Information Xi'an Shaanxi 710071 China
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence Xidian University Xi'an China
| |
Collapse
|
11
|
Santana CP, de Carvalho EA, Rodrigues ID, Bastos GS, de Souza AD, de Brito LL. rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis. Sci Rep 2022; 12:6030. [PMID: 35411059 PMCID: PMC9001715 DOI: 10.1038/s41598-022-09821-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) diagnosis is still based on behavioral criteria through a lengthy and time-consuming process. Much effort is being made to identify brain imaging biomarkers and develop tools that could facilitate its diagnosis. In particular, using Machine Learning classifiers based on resting-state fMRI (rs-fMRI) data is promising, but there is an ongoing need for further research on their accuracy and reliability. Therefore, we conducted a systematic review and meta-analysis to summarize the available evidence in the literature so far. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across the 55 studies that offered sufficient information for quantitative analysis. Our results indicated overall summary sensitivity and specificity estimates of 73.8% and 74.8%, respectively. SVM stood out as the most used classifier, presenting summary estimates above 76%. Studies with bigger samples tended to obtain worse accuracies, except in the subgroup analysis for ANN classifiers. The use of other brain imaging or phenotypic data to complement rs-fMRI information seems promising, achieving higher sensitivities when compared to rs-fMRI data alone (84.7% versus 72.8%). Finally, our analysis showed AUC values between acceptable and excellent. Still, given the many limitations indicated in our study, further well-designed studies are warranted to extend the potential use of those classification algorithms to clinical settings.
Collapse
Affiliation(s)
- Caio Pinheiro Santana
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil.
| | - Emerson Assis de Carvalho
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
- Department of Computing, Federal Institute of Education, Science and Technology of South of Minas Gerais (IFSULDEMINAS), Machado, 37750-000, Brazil
| | - Igor Duarte Rodrigues
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Guilherme Sousa Bastos
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Adler Diniz de Souza
- Institute of Mathematics and Computation, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | | |
Collapse
|
12
|
Soldevila-Matías P, Schoretsanitis G, Tordesillas-Gutierrez D, Cuesta MJ, de Filippis R, Ayesa-Arriola R, González-Vivas C, Setién-Suero E, Verdolini N, Sanjuán J, Radua J, Crespo-Facorro B. Neuroimaging correlates of insight in non-affective psychosis: A systematic review and meta-analysis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2022; 15:117-133. [PMID: 35840278 DOI: 10.1016/j.rpsmen.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Neurological correlates of impaired insight in non-affective psychosis remain unclear. This study aimed to review and meta-analyze the studies assessing the grey matter volumetric correlates of impaired insight in non-affective psychosis. METHODS This study consisted of a systematic review of 23 studies, and a meta-analysis with SDM-PSI of the 11 studies that were whole-brain and reported maps or peaks of correlation of studies investigating the grey matter volumetric correlates of insight assessments of non-affective psychosis, PubMed and OVID datasets were independently reviewed for articles reporting neuroimaging correlates of insight in non-affective psychosis. Quality assessment was realized following previous methodological approaches for the ABC quality assessment test of imaging studies, based on two main criteria: the statistical power and the multidimensional assessment of insight. Study peaks of correlation between grey matter volume and insight were used to recreate brain correlation maps. RESULTS A total of 418 records were identified through database searching. Of these records, twenty-three magnetic resonance imaging (MRI) studies that used different insight scales were included. The quality of the evidence was high in 11 studies, moderate in nine, and low in three. Patients with reduced insight showed decreases in the frontal, temporal (specifically in superior temporal gyrus), precuneus, cingulate, insula, and occipital lobes cortical grey matter volume. The meta-analysis indicated a positive correlation between grey matter volume and insight in the right insula (i.e., the smaller the grey matter, the lower the insight). CONCLUSION Several brain areas might be involved in impaired insight in patients with non-affective psychoses. The methodologies employed, such as the applied insight scales, may have contributed to the considerable discrepancies in the findings.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain; Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; National Reference Center for Psychosocial Care for People with Serious Mental Disorder (CREAP), Valencia, Spain
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
| | - Diana Tordesillas-Gutierrez
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain.
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Renato de Filippis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Psychiatry Unit Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Rosa Ayesa-Arriola
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Carlos González-Vivas
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Norma Verdolini
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel Street, 12-0, 08036 Barcelona, Spain
| | - Julio Sanjuán
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| | - Joaquim Radua
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
13
|
Jutla A, Foss-Feig J, Veenstra-VanderWeele J. Autism spectrum disorder and schizophrenia: An updated conceptual review. Autism Res 2022; 15:384-412. [PMID: 34967130 PMCID: PMC8931527 DOI: 10.1002/aur.2659] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are separate disorders, with distinct clinical profiles and natural histories. ASD, typically diagnosed in childhood, is characterized by restricted or repetitive interests or behaviors and impaired social communication, and it tends to have a stable course. SCZ, typically diagnosed in adolescence or adulthood, is characterized by hallucinations and delusions, and tends to be associated with declining function. However, youth with ASD are three to six times more likely to develop SCZ than their neurotypical counterparts, and increasingly, research has shown that ASD and SCZ converge at several levels. We conducted a systematic review of studies since 2013 relevant to understanding this convergence, and present here a narrative synthesis of key findings, which we have organized into four broad categories: symptoms and behavior, perception and cognition, biomarkers, and genetic and environmental risk. We then discuss opportunities for future research into the phenomenology and neurobiology of overlap between ASD and SCZ. Understanding this overlap will allow for researchers, and eventually clinicians, to understand the factors that may make a child with ASD vulnerable to developing SCZ. LAY SUMMARY: Autism spectrum disorder and schizophrenia are distinct diagnoses, but people with autism and people with schizophrena share several characteristics. We review recent studies that have examined these areas of overlap, and discuss the kinds of studies we will need to better understand how these disorders are related. Understanding this will be important to help us identify which autistic children are at risk of developing schizophrenia.
Collapse
Affiliation(s)
- Amandeep Jutla
- Columbia University Vagelos College of Physicians and
Surgeons, 630 W 168th St, New York, NY 10032, United States
- New York State Psychiatric Institute, 1051 Riverside
Drive, Mail Unit 78, New York, NY 10032, United States
| | - Jennifer Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn
School of Medicine at Mount Sinai, Department of Psychiatry, 1 Gustave L. Levy
Place, Box 1230, New York, NY 10029, United States
| | - Jeremy Veenstra-VanderWeele
- Columbia University Vagelos College of Physicians and
Surgeons, 630 W 168th St, New York, NY 10032, United States
- New York State Psychiatric Institute, 1051 Riverside
Drive, Mail Unit 78, New York, NY 10032, United States
- Center for Autism and the Developing Brain, New
York-Presbyterian Westchester Behavioral Health Center, 21 Bloomingdale Road, White
Plains, NY 10605, United States
| |
Collapse
|
14
|
Lyu H, Jiao J, Feng G, Wang X, Sun B, Zhao Z, Shang D, Pan F, Xu W, Duan J, Zhou Q, Hu S, Xu Y, Xu D, Huang M. Abnormal causal connectivity of left superior temporal gyrus in drug-naïve first- episode adolescent-onset schizophrenia: A resting-state fMRI study. Psychiatry Res Neuroimaging 2021; 315:111330. [PMID: 34280873 DOI: 10.1016/j.pscychresns.2021.111330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/06/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the alterations of causal connectivity between the brain regions in Adolescent-onset schizophrenia (AOS) patients. Thirty-two first-episode drug-naïve AOS patients and 27 healthy controls (HC) were recruited for resting-state functional MRI scanning. The brain region with the between-group difference in regional homogeneity (ReHo) values was chosen as a seed to perform the Granger causality analysis (GCA) and further detect the alterations of causal connectivity in AOS. AOS patients exhibited increased ReHo values in left superior temporal gyrus (STG) compared with HCs. Significantly decreased values of outgoing Granger causality from left STG to right superior frontal gyrus and right angular gyrus were observed in GC mapping for AOS. Significantly stronger causal outflow from left STG to right insula and stronger causal inflow from right middle occipital gyrus (MOG) to left STG were also observed in AOS patients. Based on assessments of the two strengthened causal connectivity of the left STG with insula and MOG, a discriminant model could identify all patients from controls with 94.9% accuracy. This study indicated that alterations of directional connections in left STG may play an important role in the pathogenesis of AOS and serve as potential biomarkers for the disease.
Collapse
Affiliation(s)
- Hailong Lyu
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianping Jiao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoxun Feng
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Ningbo Mental Hospital, Ningbo, Zhejiang, China
| | - Xinxin Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Sun
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Ningbo Mental Hospital, Ningbo, Zhejiang, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China; Columbia University & New York State Psychiatric Institute, New York, United States
| | - Desheng Shang
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fen Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weijuan Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinfeng Duan
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | | | - Shaohua Hu
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dongrong Xu
- Columbia University & New York State Psychiatric Institute, New York, United States.
| | - Manli Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder. Commun Biol 2021; 4:1073. [PMID: 34521980 PMCID: PMC8440519 DOI: 10.1038/s42003-021-02592-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorder (ASD) share considerable clinical features and intertwined historical roots. It is greatly needed to explore their similarities and differences in pathophysiologic mechanisms. We assembled a large sample size of neuroimaging data (about 600 SZ patients, 1000 ASD patients, and 1700 healthy controls) to study the shared and unique brain abnormality of the two illnesses. We analyzed multi-scale brain functional connectivity among functional networks and brain regions, intra-network connectivity, and cerebral gray matter density and volume. Both SZ and ASD showed lower functional integration within default mode and sensorimotor domains, but increased interaction between cognitive control and default mode domains. The shared abnormalties in intra-network connectivity involved default mode, sensorimotor, and cognitive control networks. Reduced gray matter volume and density in the occipital gyrus and cerebellum were observed in both illnesses. Interestingly, ASD had overall weaker changes than SZ in the shared abnormalities. Interaction between visual and cognitive regions showed disorder-unique deficits. In summary, we provide strong neuroimaging evidence of the convergent and divergent changes in SZ and ASD that correlated with clinical features.
Collapse
|
16
|
Soldevila-Matías P, Schoretsanitis G, Tordesillas-Gutierrez D, Cuesta MJ, de Filippis R, Ayesa-Arriola R, González-Vivas C, Setién-Suero E, Verdolini N, Sanjuán J, Radua J, Crespo-Facorro B. Neuroimaging correlates of insight in non-affective psychosis: A systematic review and meta-analysis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2021; 15:S1888-9891(21)00067-7. [PMID: 34271162 DOI: 10.1016/j.rpsm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Neurological correlates of impaired insight in non-affective psychosis remain unclear. This study aimed to review and meta-analyze the studies assessing the grey matter volumetric correlates of impaired insight in non-affective psychosis. METHODS This study consisted of a systematic review of 23 studies, and a meta-analysis with SDM-PSI of the 11 studies that were whole-brain and reported maps or peaks of correlation of studies investigating the grey matter volumetric correlates of insight assessments of non-affective psychosis, PubMed and OVID datasets were independently reviewed for articles reporting neuroimaging correlates of insight in non-affective psychosis. Quality assessment was realized following previous methodological approaches for the ABC quality assessment test of imaging studies, based on two main criteria: the statistical power and the multidimensional assessment of insight. Study peaks of correlation between grey matter volume and insight were used to recreate brain correlation maps. RESULTS A total of 418 records were identified through database searching. Of these records, twenty-three magnetic resonance imaging (MRI) studies that used different insight scales were included. The quality of the evidence was high in 11 studies, moderate in nine, and low in three. Patients with reduced insight showed decreases in the frontal, temporal (specifically in superior temporal gyrus), precuneus, cingulate, insula, and occipital lobes cortical grey matter volume. The meta-analysis indicated a positive correlation between grey matter volume and insight in the right insula (i.e., the smaller the grey matter, the lower the insight). CONCLUSION Several brain areas might be involved in impaired insight in patients with non-affective psychoses. The methodologies employed, such as the applied insight scales, may have contributed to the considerable discrepancies in the findings.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain; Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; National Reference Center for Psychosocial Care for People with Serious Mental Disorder (CREAP), Valencia, Spain
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
| | - Diana Tordesillas-Gutierrez
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain.
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Renato de Filippis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Psychiatry Unit Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Rosa Ayesa-Arriola
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Carlos González-Vivas
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Norma Verdolini
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel Street, 12-0, 08036 Barcelona, Spain
| | - Julio Sanjuán
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| | - Joaquim Radua
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
17
|
Ahmedt-Aristizabal D, Armin MA, Denman S, Fookes C, Petersson L. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future. SENSORS (BASEL, SWITZERLAND) 2021; 21:4758. [PMID: 34300498 PMCID: PMC8309939 DOI: 10.3390/s21144758] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/17/2023]
Abstract
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered, which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interacting nodes connected by edges whose weights can be determined by either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure, and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Collapse
Affiliation(s)
- David Ahmedt-Aristizabal
- Imaging and Computer Vision Group, CSIRO Data61, Canberra 2601, Australia; (M.A.A.); (L.P.)
- Signal Processing, Artificial Intelligence and Vision Technologies (SAIVT) Research Program, Queensland University of Technology, Brisbane 4000, Australia; (S.D.); (C.F.)
| | - Mohammad Ali Armin
- Imaging and Computer Vision Group, CSIRO Data61, Canberra 2601, Australia; (M.A.A.); (L.P.)
| | - Simon Denman
- Signal Processing, Artificial Intelligence and Vision Technologies (SAIVT) Research Program, Queensland University of Technology, Brisbane 4000, Australia; (S.D.); (C.F.)
| | - Clinton Fookes
- Signal Processing, Artificial Intelligence and Vision Technologies (SAIVT) Research Program, Queensland University of Technology, Brisbane 4000, Australia; (S.D.); (C.F.)
| | - Lars Petersson
- Imaging and Computer Vision Group, CSIRO Data61, Canberra 2601, Australia; (M.A.A.); (L.P.)
| |
Collapse
|
18
|
Structurally constrained effective brain connectivity. Neuroimage 2021; 239:118288. [PMID: 34147631 DOI: 10.1016/j.neuroimage.2021.118288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/01/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.
Collapse
|
19
|
Statistical and Machine Learning Link Selection Methods for Brain Functional Networks: Review and Comparison. Brain Sci 2021; 11:brainsci11060735. [PMID: 34073098 PMCID: PMC8227272 DOI: 10.3390/brainsci11060735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
Network-based representations have introduced a revolution in neuroscience, expanding the understanding of the brain from the activity of individual regions to the interactions between them. This augmented network view comes at the cost of high dimensionality, which hinders both our capacity of deciphering the main mechanisms behind pathologies, and the significance of any statistical and/or machine learning task used in processing this data. A link selection method, allowing to remove irrelevant connections in a given scenario, is an obvious solution that provides improved utilization of these network representations. In this contribution we review a large set of statistical and machine learning link selection methods and evaluate them on real brain functional networks. Results indicate that most methods perform in a qualitatively similar way, with NBS (Network Based Statistics) winning in terms of quantity of retained information, AnovaNet in terms of stability and ExT (Extra Trees) in terms of lower computational cost. While machine learning methods are conceptually more complex than statistical ones, they do not yield a clear advantage. At the same time, the high heterogeneity in the set of links retained by each method suggests that they are offering complementary views to the data. The implications of these results in neuroscience tasks are finally discussed.
Collapse
|
20
|
Reiter MA, Jahedi A, Jac Fredo A, Fishman I, Bailey B, Müller RA. Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity. Neural Comput Appl 2021; 33:3299-3310. [PMID: 34149191 PMCID: PMC8210842 DOI: 10.1007/s00521-020-05193-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental conditions. In fMRI studies, including most machine learning studies seeking to distinguish ASD from typical developing (TD) samples, cohorts differing in gender and symptom severity composition are often treated statistically as one "ASD group". Using resting-state functional connectivity (FC) data, we implemented random forest to build diagnostic classifiers in 4 ASD samples including a total of 656 participants (NASD = 306, NTD = 350, ages 6-18). Groups were manipulated to titrate heterogeneity of gender and symptom severity and partially overlapped. Each sample differed on inclusionary criteria: (1) all genders, unrestricted severity range; (2) only male participants, unrestricted severity; (3) all genders, higher severity only; (4) only male participants, higher severity. Each set consisted of 200 participants per group (ASD, TD; matched on age and head motion), 160 for training and 40 for validation. FMRI time series from 237 regions of interest (ROIs) were Pearson correlated in a 237×237 FC matrix and classifiers were built using random forest in training samples. Classification accuracies in validation samples were 62.5%, 65%, 70% and 73.75%, respectively for samples 1-4. Connectivity within cingulo-opercular task control (COTC) network, and between COTC ROIs and default mode and dorsal attention network contributed overall most informative features, but features differed across sets. Findings suggest that diagnostic classifiers vary depending on ASD sample composition. Specifically, greater homogeneity of samples regarding gender and symptom severity enhances classifier performance. However, given the true heterogeneity of ASDs, performance metrics alone may not adequately reflect classifier utility.
Collapse
Affiliation(s)
- Maya A. Reiter
- Brain Development Imaging Lab (BDIL), Psychology, San Diego State University (SDSU), 6363 Alvarado Ct. Suite 200, San Diego, CA 92120, USA,Joint Doctoral Program in Clinical Psychology, San Diego State University/UC San Diego, San Diego, CA, USA
| | - Afrooz Jahedi
- Computational Science, San Diego State University/ Claremont Graduate University’s Joint Doctoral Program, San Diego, CA, USA
| | - A.R. Jac Fredo
- Computational Science, San Diego State University/ Claremont Graduate University’s Joint Doctoral Program, San Diego, CA, USA
| | - Inna Fishman
- Brain Development Imaging Lab (BDIL), Psychology, San Diego State University (SDSU), 6363 Alvarado Ct. Suite 200, San Diego, CA 92120, USA
| | - Barbara Bailey
- Department of Mathematics and Statistics, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Lab (BDIL), Psychology, San Diego State University (SDSU), 6363 Alvarado Ct. Suite 200, San Diego, CA 92120, USA,Joint Doctoral Program in Clinical Psychology, San Diego State University/UC San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Graña M, Silva M. Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data. Int J Neural Syst 2021; 31:2150009. [PMID: 33472548 DOI: 10.1142/s012906572150009x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.
Collapse
Affiliation(s)
- Manuel Graña
- Computational Intelligence Group, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Moises Silva
- Universidad Mayor de San Andres, La Paz, Bolivia
| |
Collapse
|
22
|
Fu Z, Sui J, Turner JA, Du Y, Assaf M, Pearlson GD, Calhoun VD. Dynamic functional network reconfiguration underlying the pathophysiology of schizophrenia and autism spectrum disorder. Hum Brain Mapp 2021; 42:80-94. [PMID: 32965740 PMCID: PMC7721229 DOI: 10.1002/hbm.25205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023] Open
Abstract
The dynamics of the human brain span multiple spatial scales, from connectivity associated with a specific region/network to the global organization, each representing different brain mechanisms. Yet brain reconfigurations at different spatial scales are seldom explored and whether they are associated with the neural aspects of brain disorders is far from understood. In this study, we introduced a dynamic measure called step-wise functional network reconfiguration (sFNR) to characterize how brain configuration rewires at different spatial scales. We applied sFNR to two independent datasets, one includes 160 healthy controls (HCs) and 151 patients with schizophrenia (SZ) and the other one includes 314 HCs and 255 individuals with autism spectrum disorder (ASD). We found that both SZ and ASD have increased whole-brain sFNR and sFNR between cerebellar and subcortical/sensorimotor domains. At the ICN level, the abnormalities in SZ are mainly located in ICNs within subcortical, sensory, and cerebellar domains, while the abnormalities in ASD are more widespread across domains. Interestingly, the overlap SZ-ASD abnormality in sFNR between cerebellar and sensorimotor domains was correlated with the reasoning-problem-solving performance in SZ (r = -.1652, p = .0058) as well as the Autism Diagnostic Observation Schedule in ASD (r = .1853, p = .0077). Our findings suggest that dynamic reconfiguration deficits may represent a key intersecting point for SZ and ASD. The investigation of brain dynamics at different spatial scales can provide comprehensive insights into the functional reconfiguration, which might advance our knowledge of cognitive decline and other pathophysiology in brain disorders.
Collapse
Affiliation(s)
- Zening Fu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Jing Sui
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
- Chinese Academy of Sciences (CAS) Centre for Excellence in Brain Science and Intelligence TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | | | - Yuhui Du
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
- School of Computer and Information TechnologyShanxi UniversityTaiyuanChina
| | - Michal Assaf
- Olin Neuropsychiatry Research Center, The Institute of LivingHartfordConnecticutUSA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, The Institute of LivingHartfordConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
23
|
Agastinose Ronicko JF, Thomas J, Thangavel P, Koneru V, Langs G, Dauwels J. Diagnostic classification of autism using resting-state fMRI data improves with full correlation functional brain connectivity compared to partial correlation. J Neurosci Methods 2020; 345:108884. [PMID: 32730918 DOI: 10.1016/j.jneumeth.2020.108884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disability with altered connectivity in brain networks. NEW METHOD In this study, brain connections in Resting-state functional Magnetic Resonance Imaging (Rs-fMRI) of ASD and Typical Developing (TD) are analyzed by partial and full correlation methods such as Gaussian Graphical Least Absolute Shrinkage and Selection Operator (GLASSO), Max-Det Matrix Completion (MDMC), and Pearson Correlation Co-Efficient (PCCE). We investigated Functional Connectivity (FC) of ASD and TD brain from 238 functionally defined regions of interest. Furthermore, we constructed a series of feature sets by applying conditional random forests and conditional permutation importance. We built classifier models by Random Forest (RF), Oblique RF (ORF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN) for each feature set. FC features are ranked based on p-value and we analyzed the top 20 FC features. RESULTS We achieved a single-trial test accuracy of 72.5 %, though MDMC-SVM and PCCE-CNN pipelines. Further, PCCE-CNN pipeline gives better average test accuracy (70.31 %) and area under the curve (0.73) compared to other pipelines. We found that top-20 PCCE based FC features are from networks such as Dorsal Attention (DA), Cingulo-Opercular Task Control (COTC), somatosensory motor hand and subcortical. In addition, among top 20 PCCE features, many FC links are found between COTC and DA (4 connections) which helped to discriminate the ASD and TD. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The generalized classifier models built in our study for highly heterogeneous participants perform better than previous studies with similar data sets and diagnostic groups.
Collapse
Affiliation(s)
- Jac Fredo Agastinose Ronicko
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - John Thomas
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - Prasanth Thangavel
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - Vineetha Koneru
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| | - Justin Dauwels
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| |
Collapse
|
24
|
Shi LJ, Zhou HY, Wang Y, Shen YM, Fang YM, He YQ, Ou JJ, Li HB, Luo XR, Cheung EFC, Pantelis C, Chan RCK. Altered empathy-related resting-state functional connectivity in adolescents with early-onset schizophrenia and autism spectrum disorders. Asian J Psychiatr 2020; 53:102167. [PMID: 32474345 DOI: 10.1016/j.ajp.2020.102167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Empathy refers to the ability to understand other people's feelings and reacting emotionally to others. Impaired empathy has been reported in both individuals with schizophrenia and autism spectrum disorders (ASD). Despite overlaps, few studies have directly examined the neural mechanisms of impaired empathy in these two clinical groups. We used resting-state fMRI to investigate the neural correlates of empathic functioning in adolescents with ASD (N = 11), early-onset schizophrenia (EOS) (N = 20), and typically developing (TD) controls (N = 26). Their parents completed the Griffith Empathy Measure (GEM) to assess the adolescents' empathic capacity. We found that EOS and ASD participants both exhibited impaired empathy as measured by the GEM, especially in cognitive empathy (post-hoc ps < 0.05). Regions-of-interest-based functional connectivity revealed decreased connectivity between the salience network (SN) (i.e., the anterior insula and the anterior cingulate cortex) and core regions of the mentalizing network (e.g., the temporal-parietal junction and the precuneus), and among the SN and the bilateral superior temporal gyri (STG) and the left cerebellum in EOS participants. Subsequent comparisons revealed reduced grey matter volume in the STG bilaterally in both clinical groups. Increased resting-state functional connectivity within the social brain network was correlated with higher parent-reported scores of empathic capacity in TD adolescents, but such a brain-phenotype relationship was absent in the two clinical groups. These findings indicate that structural alterations and disturbed resting-state functional connectivity in the core empathy network may be the neural correlates of social cognitive deficits in individuals with EOS and ASD.
Collapse
Affiliation(s)
- Li-Juan Shi
- School of Education, Hunan University of Science and Technology, Xiangtan, Hunan, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Han-Yu Zhou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Mei Shen
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Min Fang
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Qiong He
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Jun Ou
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua-Bing Li
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xue-Rong Luo
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong, Special Administrative Region, China
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, VIC, Australia; Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Zhang Z, Liu G, Zheng W, Shi J, Liu H, Sun Y. Altered dynamic effective connectivity of the default mode network in newly diagnosed drug-naïve juvenile myoclonic epilepsy. Neuroimage Clin 2020; 28:102431. [PMID: 32950903 PMCID: PMC7509229 DOI: 10.1016/j.nicl.2020.102431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/08/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023]
Abstract
Juvenile myoclonic epilepsy (JME) has been repeatedly revealed to be associated with brain dysconnectivity in the default mode network (DMN). However, the implicit assumption of stationary and nondirectional functional connectivity (FC) in most previous resting-state fMRI studies raises an open question of JME-related aberrations in dynamic causal properties of FC. Here, we introduces an empirical method incorporating sliding-window approach and a multivariate Granger causality analysis to investigate, for the first time, the reorganization of dynamic effective connectivity (DEC) in DMN for patients with JME. DEC was obtained from resting-state fMRI of 34 patients with newly diagnosed and drug-naïve JME and 34 matched controls. Through clustering analysis, we found two distinct states that characterize the DEC patterns (i.e., a less frequent, strongly connected state (State 1) and a more frequent, weakly connected state (State 2)). Patients showed altered ECs within DMN subnetworks in the State 2, whereas abnormal ECs between DMN subnetworks were found in the State 1. Furthermore, we observed that the causal influence flows of the medial prefrontal cortex and angular gyrus were altered in a manner of state specificity, and associated with disease severity of patients. Overall, our findings extend the dysconnectivity hypothesis in JME from static to dynamic causal FC and demonstrate that aberrant DEC may underlie abnormal brain function in JME at early phase of illness.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang, China
| | - Jie Shi
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Hong Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang, China; Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China.
| |
Collapse
|
26
|
Du Y, Li B, Hou Y, Calhoun VD. A deep learning fusion model for brain disorder classification: Application to distinguishing schizophrenia and autism spectrum disorder. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2020; 2020:56. [PMID: 33363290 PMCID: PMC7758676 DOI: 10.1145/3388440.3412478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Deep learning has shown a great promise in classifying brain disorders due to its powerful ability in learning optimal features by nonlinear transformation. However, given the high-dimension property of neuroimaging data, how to jointly exploit complementary information from multimodal neuroimaging data in deep learning is difficult. In this paper, we propose a novel multilevel convolutional neural network (CNN) fusion method that can effectively combine different types of neuroimage-derived features. Importantly, we incorporate a sequential feature selection into the CNN model to increase the feature interpretability. To evaluate our method, we classified two symptom-related brain disorders using large-sample multi-site data from 335 schizophrenia (SZ) patients and 380 autism spectrum disorder (ASD) patients within a cross-validation procedure. Brain functional networks, functional network connectivity, and brain structural morphology were employed to provide possible features. As expected, our fusion method outperformed the CNN model using only single type of features, as our method yielded higher classification accuracy (with mean accuracy >85%) and was more reliable across multiple runs in differentiating the two groups. We found that the default mode, cognitive control, and subcortical regions contributed more in their distinction. Taken together, our method provides an effective means to fuse multimodal features for the diagnosis of different psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer & Information Technology, Shanxi University Taiyuan, China
| | - Bang Li
- School of Computer & Information Technology, Shanxi University Taiyuan, China
| | - Yuliang Hou
- School of Computer & Information Technology, Shanxi University Taiyuan, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)
| |
Collapse
|
27
|
Harmah DJ, Li C, Li F, Liao Y, Wang J, Ayedh WMA, Bore JC, Yao D, Dong W, Xu P. Measuring the Non-linear Directed Information Flow in Schizophrenia by Multivariate Transfer Entropy. Front Comput Neurosci 2020; 13:85. [PMID: 31998105 PMCID: PMC6966771 DOI: 10.3389/fncom.2019.00085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
People living with schizophrenia (SCZ) experience severe brain network deterioration. The brain is constantly fizzling with non-linear causal activities measured by electroencephalogram (EEG) and despite the variety of effective connectivity methods, only few approaches can quantify the direct non-linear causal interactions. To circumvent this problem, we are motivated to quantitatively measure the effective connectivity by multivariate transfer entropy (MTE) which has been demonstrated to be able to capture both linear and non-linear causal relationships effectively. In this work, we propose to construct the EEG effective network by MTE and further compare its performance with the Granger causal analysis (GCA) and Bivariate transfer entropy (BVTE). The simulation results quantitatively show that MTE outperformed GCA and BVTE under varied signal-to-noise conditions, edges recovered, sensitivity, and specificity. Moreover, its applications to the P300 task EEG of healthy controls (HC) and SCZ patients further clearly show the deteriorated network interactions of SCZ, compared to that of the HC. The MTE provides a novel tool to potentially deepen our knowledge of the brain network deterioration of the SCZ.
Collapse
Affiliation(s)
- Dennis Joe Harmah
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cunbo Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuju Wang
- Institute of Mental Health, Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Walid M. A. Ayedh
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Joyce Chelangat Bore
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wentian Dong
- Institute of Mental Health, Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
28
|
Moon SJ, Hwang J, Kana R, Torous J, Kim JW. Accuracy of Machine Learning Algorithms for the Diagnosis of Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Brain Magnetic Resonance Imaging Studies. JMIR Ment Health 2019; 6:e14108. [PMID: 31562756 PMCID: PMC6942187 DOI: 10.2196/14108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, their application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder (ASD). However, given their complexity and potential clinical implications, there is an ongoing need for further research on their accuracy. OBJECTIVE This study aimed to perform a systematic review and meta-analysis to summarize the available evidence for the accuracy of machine learning algorithms in diagnosing ASD. METHODS The following databases were searched on November 28, 2018: MEDLINE, EMBASE, CINAHL Complete (with Open Dissertations), PsycINFO, and Institute of Electrical and Electronics Engineers Xplore Digital Library. Studies that used a machine learning algorithm partially or fully for distinguishing individuals with ASD from control subjects and provided accuracy measures were included in our analysis. The bivariate random effects model was applied to the pooled data in a meta-analysis. A subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false-negative, and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw Summary Receiver Operating Characteristics curves, and obtain the area under the curve (AUC) and partial AUC (pAUC). RESULTS A total of 43 studies were included for the final analysis, of which a meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural magnetic resonance imaging (sMRI) subgroup meta-analysis (12 samples with 1776 participants) showed a sensitivity of 0.83 (95% CI 0.76-0.89), a specificity of 0.84 (95% CI 0.74-0.91), and AUC/pAUC of 0.90/0.83. A functional magnetic resonance imaging/deep neural network subgroup meta-analysis (5 samples with 1345 participants) showed a sensitivity of 0.69 (95% CI 0.62-0.75), specificity of 0.66 (95% CI 0.61-0.70), and AUC/pAUC of 0.71/0.67. CONCLUSIONS The accuracy of machine learning algorithms for diagnosis of ASD was considered acceptable by few accuracy measures only in cases of sMRI use; however, given the many limitations indicated in our study, further well-designed studies are warranted to extend the potential use of machine learning algorithms to clinical settings. TRIAL REGISTRATION PROSPERO CRD42018117779; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=117779.
Collapse
Affiliation(s)
- Sun Jae Moon
- Ewha Womans University Mokdong Hospital, Ewha Womans University Medical Center, Seoul, Republic of Korea
| | - Jinseub Hwang
- Department of Computer Science and Statistics, Daegu University, Gyeongsangbuk-do, Republic of Korea
| | - Rajesh Kana
- Department of Psychology, University of Alabama at Tuscaloosa, Tuscaloosa, AL, United States
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jung Won Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
29
|
Liu J, Ji J, Jia X, Zhang A. Learning Brain Effective Connectivity Network Structure Using Ant Colony Optimization Combining With Voxel Activation Information. IEEE J Biomed Health Inform 2019; 24:2028-2040. [PMID: 31603829 DOI: 10.1109/jbhi.2019.2946676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Learning brain effective connectivity (EC) networks from functional magnetic resonance imaging (fMRI) data has become a new hot topic in the neuroinformatics field. However, how to accurately and efficiently learn brain EC networks is still a challenging problem. In this paper, we propose a new algorithm to learn the brain EC network structure using ant colony optimization (ACO) algorithm combining with voxel activation information, named as VACOEC. First, VACOEC uses the voxel activation information to measure the independence between each pair of brain regions and effectively restricts the space of candidate solutions, which makes many unnecessary searches of ants be avoided. Then, by combining the global score increase of a solution with the voxel activation information, a new heuristic function is designed to guide the process of ACO to search for the optimal solution. The experimental results on simulated datasets show that the proposed method can accurately and efficiently identify the directions of the brain EC networks. Moreover, the experimental results on real-world data show that patients with Alzheimers disease (AD) exhibit decreased effective connectivity not only in the intra-network within the default mode network (DMN) and salience network (SN), but also in the inter-network between DMN and SN, compared with normal control (NC) subjects. The experimental results demonstrate that VACOEC is promising for practical applications in the neuroimaging studies of geriatric subjects and neurological patients.
Collapse
|
30
|
Farahani FV, Karwowski W, Lighthall NR. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Front Neurosci 2019; 13:585. [PMID: 31249501 PMCID: PMC6582769 DOI: 10.3389/fnins.2019.00585] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Analysis of the human connectome using functional magnetic resonance imaging (fMRI) started in the mid-1990s and attracted increasing attention in attempts to discover the neural underpinnings of human cognition and neurological disorders. In general, brain connectivity patterns from fMRI data are classified as statistical dependencies (functional connectivity) or causal interactions (effective connectivity) among various neural units. Computational methods, especially graph theory-based methods, have recently played a significant role in understanding brain connectivity architecture. Objectives: Thanks to the emergence of graph theoretical analysis, the main purpose of the current paper is to systematically review how brain properties can emerge through the interactions of distinct neuronal units in various cognitive and neurological applications using fMRI. Moreover, this article provides an overview of the existing functional and effective connectivity methods used to construct the brain network, along with their advantages and pitfalls. Methods: In this systematic review, the databases Science Direct, Scopus, arXiv, Google Scholar, IEEE Xplore, PsycINFO, PubMed, and SpringerLink are employed for exploring the evolution of computational methods in human brain connectivity from 1990 to the present, focusing on graph theory. The Cochrane Collaboration's tool was used to assess the risk of bias in individual studies. Results: Our results show that graph theory and its implications in cognitive neuroscience have attracted the attention of researchers since 2009 (as the Human Connectome Project launched), because of their prominent capability in characterizing the behavior of complex brain systems. Although graph theoretical approach can be generally applied to either functional or effective connectivity patterns during rest or task performance, to date, most articles have focused on the resting-state functional connectivity. Conclusions: This review provides an insight into how to utilize graph theoretical measures to make neurobiological inferences regarding the mechanisms underlying human cognition and behavior as well as different brain disorders.
Collapse
Affiliation(s)
- Farzad V Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Nichole R Lighthall
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
31
|
Gotts SJ, Ramot M, Jasmin K, Martin A. Altered resting-state dynamics in autism spectrum disorder: Causal to the social impairment? Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:28-36. [PMID: 30414457 DOI: 10.1016/j.pnpbp.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by profound impairments in social abilities and by restricted interests and repetitive behaviors. Much work in the past decade has been dedicated to understanding the brain-bases of ASD, and in the context of resting-state functional connectivity fMRI in high-functioning adolescents and adults, the field has established a set of reliable findings: decreased cortico-cortical interactions among brain regions thought to be engaged in social processing, along with a simultaneous increase in thalamo-cortical and striato-cortical interactions. However, few studies have attempted to manipulate these altered patterns, leading to the question of whether such patterns are actually causally involved in producing the corresponding behavioral impairments. We discuss a few such recent attempts in the domains of fMRI neurofeedback and overt social interaction during scanning, and we conclude that the evidence of causal involvement is somewhat mixed. We highlight the potential role of the thalamus and striatum in ASD and emphasize the need for studies that directly compare scanning during multiple cognitive states in addition to the resting-state.
Collapse
Affiliation(s)
- Stephen J Gotts
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States.
| | - Michal Ramot
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States
| | - Kyle Jasmin
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States; Department of Psychological Sciences, Birkbeck University of London, London, UK
| | - Alex Martin
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States
| |
Collapse
|
32
|
Overlaps in brain dynamic functional connectivity between schizophrenia and autism spectrum disorder. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2018.e00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
33
|
Crimi A, Giancardo L, Sambataro F, Gozzi A, Murino V, Sona D. MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis. Sci Rep 2019; 9:65. [PMID: 30635604 PMCID: PMC6329758 DOI: 10.1038/s41598-018-37300-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.
Collapse
Affiliation(s)
- Alessandro Crimi
- Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy. .,Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.
| | - Luca Giancardo
- Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy.,Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, USA
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Vittorio Murino
- Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Computer Science, University of Verona, Verona, Italy
| | - Diego Sona
- Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy.,Neuroinformatics Laboratory, Fondazione Bruno Kessler, Trento, Italy
| |
Collapse
|
34
|
Farahani FV, Karwowski W, Lighthall NR. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Front Neurosci 2019. [PMID: 31249501 DOI: 10.3389/fnins.2019.00585/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Background: Analysis of the human connectome using functional magnetic resonance imaging (fMRI) started in the mid-1990s and attracted increasing attention in attempts to discover the neural underpinnings of human cognition and neurological disorders. In general, brain connectivity patterns from fMRI data are classified as statistical dependencies (functional connectivity) or causal interactions (effective connectivity) among various neural units. Computational methods, especially graph theory-based methods, have recently played a significant role in understanding brain connectivity architecture. Objectives: Thanks to the emergence of graph theoretical analysis, the main purpose of the current paper is to systematically review how brain properties can emerge through the interactions of distinct neuronal units in various cognitive and neurological applications using fMRI. Moreover, this article provides an overview of the existing functional and effective connectivity methods used to construct the brain network, along with their advantages and pitfalls. Methods: In this systematic review, the databases Science Direct, Scopus, arXiv, Google Scholar, IEEE Xplore, PsycINFO, PubMed, and SpringerLink are employed for exploring the evolution of computational methods in human brain connectivity from 1990 to the present, focusing on graph theory. The Cochrane Collaboration's tool was used to assess the risk of bias in individual studies. Results: Our results show that graph theory and its implications in cognitive neuroscience have attracted the attention of researchers since 2009 (as the Human Connectome Project launched), because of their prominent capability in characterizing the behavior of complex brain systems. Although graph theoretical approach can be generally applied to either functional or effective connectivity patterns during rest or task performance, to date, most articles have focused on the resting-state functional connectivity. Conclusions: This review provides an insight into how to utilize graph theoretical measures to make neurobiological inferences regarding the mechanisms underlying human cognition and behavior as well as different brain disorders.
Collapse
Affiliation(s)
- Farzad V Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Nichole R Lighthall
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
35
|
Damiani S, Scalabrini A, Gomez-Pilar J, Brondino N, Northoff G. Increased scale-free dynamics in salience network in adult high-functioning autism. Neuroimage Clin 2018; 21:101634. [PMID: 30558869 PMCID: PMC6411906 DOI: 10.1016/j.nicl.2018.101634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 12/08/2018] [Indexed: 02/04/2023]
Abstract
Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD.
Collapse
Affiliation(s)
- Stefano Damiani
- Department of Brain and Behavioral Science, University of Pavia, 27100 Pavia, Italy.
| | - Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, 47011 Valladolid, Spain
| | - Natascia Brondino
- Department of Brain and Behavioral Science, University of Pavia, 27100 Pavia, Italy
| | - Georg Northoff
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China; Institute of Mental Health Research, University of Ottawa, K1Z 7K4 Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, K1H 8M5 Ottawa, ON, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
36
|
Abstract
In 1943, Leo Kanner published the first systematic description of early infantile autism. He concluded that this was a neurodevelopmental disorder and that 'these children have come into the world with an innate inability to form the usual, biologically provided contact with people'. Moreover, his astute descriptions of parental behavior in his first publications were prescient and underlie later recognition of the importance of genetics. Our understanding has grown over the ensuing years with revisions in diagnostic classification, recognition of the broader autism phenotype in families, appreciation of the importance of developmental models, advances in genetic methodology, better understanding of the relationship to intellectual deficits, recognition of syndromic autism in neurogenetic sydromes, advances in neuroimaging, and advances in animal models, both mutant mouse models and transgenic non human primate models. Kanner recognized diagnostic heterogeneity and opined that the children had not read those diagnostic manuals and did not easily fall into clear cut categories. Such heterogeneity continues to confound our diagnostic efforts. Always an advocate for children, when reviewing the DSM III criteria in 1980, Kanner emphasized that no matter how well developed our criteria each child must be treated as a unique person.
Collapse
Affiliation(s)
- James Harris
- a Department of Psychiatry and Behavioral Sciences , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|