1
|
Chen Y, Tozer D, Li R, Li H, Tuladhar A, De Leeuw FE, Markus HS. Improved Dementia Prediction in Cerebral Small Vessel Disease Using Deep Learning-Derived Diffusion Scalar Maps From T1. Stroke 2024; 55:2254-2263. [PMID: 39145386 PMCID: PMC11346716 DOI: 10.1161/strokeaha.124.047449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Cerebral small vessel disease is the most common pathology underlying vascular dementia. In small vessel disease, diffusion tensor imaging is more sensitive to white matter damage and better predicts dementia risk than conventional magnetic resonance imaging sequences, such as T1 and fluid attenuation inversion recovery, but diffusion tensor imaging takes longer to acquire and is not routinely available in clinical practice. As diffusion tensor imaging-derived scalar maps-fractional anisotropy (FA) and mean diffusivity (MD)-are frequently used in clinical settings, one solution is to synthesize FA/MD from T1 images. METHODS We developed a deep learning model to synthesize FA/MD from T1. The training data set consisted of 4998 participants with the highest white matter hyperintensity volumes in the UK Biobank. Four external validations data sets with small vessel disease were included: SCANS (St George's Cognition and Neuroimaging in Stroke; n=120), RUN DMC (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort; n=502), PRESERVE (Blood Pressure in Established Cerebral Small Vessel Disease; n=105), and NETWORKS (n=26), along with 1000 normal controls from the UK Biobank. RESULTS The synthetic maps resembled ground-truth maps (structural similarity index >0.89 for MD maps and >0.80 for FA maps across all external validation data sets except for SCANS). The prediction accuracy of dementia using whole-brain median MD from the synthetic maps is comparable to the ground truth (SCANS ground-truth c-index, 0.822 and synthetic, 0.821; RUN DMC ground truth, 0.816 and synthetic, 0.812) and better than white matter hyperintensity volume (SCANS, 0.534; RUN DMC, 0.710). CONCLUSIONS We have developed a fast and generalizable method to synthesize FA/MD maps from T1 to improve the prediction accuracy of dementia in small vessel disease when diffusion tensor imaging data have not been acquired.
Collapse
Affiliation(s)
- Yutong Chen
- Department of Clinical Neuroscience, Stroke Research Group, University of Cambridge, United Kingdom (Y.C., D.T., R.L., H.S.M.)
| | - Daniel Tozer
- Department of Clinical Neuroscience, Stroke Research Group, University of Cambridge, United Kingdom (Y.C., D.T., R.L., H.S.M.)
| | - Rui Li
- Department of Clinical Neuroscience, Stroke Research Group, University of Cambridge, United Kingdom (Y.C., D.T., R.L., H.S.M.)
| | - Hao Li
- Department of Clinical Neuroscience, Stroke Research Group, University of Cambridge, United Kingdom (Y.C., D.T., R.L., H.S.M.)
- Department of Neurology, Radboud University Medical Center, Donders Center for Medical Neurosciences, Nijmegen, the Netherlands (H.L., A.T., F.E.D.L.)
| | - Anil Tuladhar
- Department of Neurology, Radboud University Medical Center, Donders Center for Medical Neurosciences, Nijmegen, the Netherlands (H.L., A.T., F.E.D.L.)
| | - Frank Erik De Leeuw
- Department of Neurology, Radboud University Medical Center, Donders Center for Medical Neurosciences, Nijmegen, the Netherlands (H.L., A.T., F.E.D.L.)
| | - Hugh S. Markus
- Department of Clinical Neuroscience, Stroke Research Group, University of Cambridge, United Kingdom (Y.C., D.T., R.L., H.S.M.)
| |
Collapse
|
2
|
Chen F, Chen Q, Zhu Y, Long C, Lu J, Jiang Y, Zhang X, Zhang B. Alterations in Dynamic Functional Connectivity in Patients with Cerebral Small Vessel Disease. Transl Stroke Res 2024; 15:580-590. [PMID: 36967436 PMCID: PMC11106163 DOI: 10.1007/s12975-023-01148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023]
Abstract
Cerebral small vessel disease (CSVD) is a common disease that seriously endangers people's health, and is easily overlooked by both patients and clinicians due to its near-silent onset. Dynamic functional connectivity (DFC) is a new concept focusing on the dynamic features and patterns of brain networks that represents a powerful tool for gaining novel insight into neurological diseases. To assess alterations in DFC in CSVD patients, and the correlation of DFC with cognitive function. We enrolled 35 CSVD patients and 31 normal control subjects (NC). Resting-state functional MRI (rs-fMRI) with a sliding-window approach and k-means clustering based on independent component analysis (ICA) was used to evaluate DFC. The temporal properties of fractional windows and the mean dwell time in each state, as well as the number of transitions between each pair of DFC states, were calculated. Additionally, we assessed the functional connectivity (FC) strength of the dynamic states and the associations of altered neuroimaging measures with cognitive performance. A dynamic analysis of all included subjects suggested four distinct functional connectivity states. Compared with the NC group, the CSVD group had more fractional windows and longer mean dwell times in state 4 characterized by sparse FC both inter-network and intra-networks. Additionally, the CSVD group had a reduced number of windows and shorter mean dwell times compared to the NC group in state 3 characterized by highly positive FC between the somatomotor and visual networks, and negative FC in the basal ganglia and somatomotor and visual networks. The number of transitions between state 2 and state 3 and between state 3 and state 4 was significantly reduced in the CSVD group compared to the NC group. Moreover, there was a significant difference in the FC strength between the two groups, and the altered temporal properties of DFC were significantly related to cognitive performance. Our study indicated that CSVD is characterized by altered temporal properties in DFC that may be sensitive neuroimaging biomarkers for early disease identification. Further study of DFC alterations could help us to better understand the progressive dysfunction of networks in CSVD patients.
Collapse
Affiliation(s)
- Futao Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Qian Chen
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yajing Zhu
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Cong Long
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Yaoxian Jiang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China.
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China.
- Institute of Brain Science, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
4
|
Shaaban CE, Caprihan A. Functional and structural brain connectivity: Are they reproducible in cerebral small vessel disease? CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100175. [PMID: 39071742 PMCID: PMC11273089 DOI: 10.1016/j.cccb.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2024]
Affiliation(s)
- C. Elizabeth Shaaban
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
5
|
Chen Z, Wu B, Li G, Zhou L, Zhang L, Liu J. MAPT rs17649553 T allele is associated with better verbal memory and higher small-world properties in Parkinson's disease. Neurobiol Aging 2023; 129:219-231. [PMID: 37413784 DOI: 10.1016/j.neurobiolaging.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Currently, over 90 genetic loci have been found to be associated with Parkinson's disease (PD) in genome-wide association studies, nevertheless, the effects of these genetic variants on the clinical features and brain structure of PD patients are largely unknown. This study investigated the effects of microtubule-associated protein tau (MAPT) rs17649553 (C>T), a genetic variant associated with reduced PD risk, on the clinical manifestations and brain networks of PD patients. We found MAPT rs17649553 T allele was associated with better verbal memory in PD patients. In addition, MAPT rs17649553 significantly shaped the topology of gray matter covariance network and white matter network. Both the network metrics in gray matter covariance network and white matter network were correlated with verbal memory, however, the mediation analysis showed that it was the small-world properties in white matter network that mediated the effects of MAPT rs17649553 on verbal memory. These results suggest that MAPT rs17649553 T allele is associated with higher small-world properties in structural network and better verbal memory in PD.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Wu
- Department of Neurology, Xuchang Central Hospital Affiliated with Henan University of Science and Technology, Henan, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
da Silva PHR, de Leeuw FE, Zotin MCZ, Neto OMP, Leoni RF, Tuladhar AM. Cortical Thickness and Brain Connectivity Mediate the Relation Between White Matter Hyperintensity and Information Processing Speed in Cerebral Small Vessel Disease. Brain Topogr 2023:10.1007/s10548-023-00973-w. [PMID: 37273021 DOI: 10.1007/s10548-023-00973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
White matter hyperintensities of presumed vascular origin (WMH) are the most common imaging feature of cerebral small vessel disease (cSVD) and are associated with cognitive impairment, especially information processing speed (IPS) deficits. However, it is unclear how WMH can directly impact IPS or whether the cortical thickness and brain connectivity mediate such association. In this study, it was evaluated the possible mediating roles of cortical thickness and brain (structural and functional) connectivity on the relationship between WMH (also considering its topography distribution) and IPS in 389 patients with cSVD from the RUN-DMC (Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort) database. Significant (p < 0.05 after multiple comparisons correction) associations of WMH volume and topography with cortical thickness, brain connectivity, and IPS performance in cSVD individuals were found. Additionally, cortical thickness and brain structural and functional connectivity were shown to mediate the association of WMH volume and location with IPS scores. More specifically, frontal cortical thickness, functional sensorimotor network, and posterior thalamic radiation tract were the essential mediators of WMH and IPS in this clinical group. This study provided insight into the mechanisms underlying the clinical relevance of white matter hyperintensities in information processing speed deficits in cSVD through cortical thinning and network disruptions.
Collapse
Affiliation(s)
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Maria Clara Zanon Zotin
- Department of Neurology, J. Philip Kistler Stroke Research Center, MGH, Boston, MA, USA
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Octavio Marques Pontes Neto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Tozer DJ, Pflanz CP, Markus HS. Reproducibility of regional structural and functional MRI networks in cerebral small vessel disease compared to age matched and stroke-free controls. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100167. [PMID: 37397269 PMCID: PMC10313873 DOI: 10.1016/j.cccb.2023.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Abnormalities in structural and functional MRI connectivity measures have been reported in cerebral small vessel disease (SVD). Previous research has shown that whole-brain structural connectivity was highly reproducible in SVD patients, while whole-brain functional connectivity showed low reproducibility. It remains unclear whether the lower reproducibility of functional networks reported in SVD is due to selective disruption of reproducibility in specific networks or is generalised in patients with SVD. In this case-control study 15 SVD and 10 age-matched control participants were imaged twice with diffusion tensor imaging and resting state fMRI. Structural and functional connectivity matrices were constructed from this data and the default mode, fronto-parietal, limbic, salience, somatomotor and visual networks were extracted and the average connectivity between connections calculated and used to determine their reproducibility. Regional structural networks were more reproducible than functional networks, all structural networks showed ICC values ≥0.64 (except the salience network in SVD). The functional networks showed greater reproducibility in the controls compared to SVD with ICC values >0.7 for control participants and <=0.5 for the SVD group. The default mode network showed the greatest reproducibility for both control and SVD groups. Reproducibility of functional networks was affected by disease status with lower reproducibility in SVD compared with controls.
Collapse
Affiliation(s)
- Daniel J. Tozer
- Corresponding author at: University of Cambridge, Department of Clinical Neurosciences, Neurology Unit, R3, Box 83, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| | | | | |
Collapse
|
8
|
Tay J, Düring M, van Leijsen EMC, Bergkamp MI, Norris DG, de Leeuw FE, Markus HS, Tuladhar AM. Network structure-function coupling and neurocognition in cerebral small vessel disease. Neuroimage Clin 2023; 38:103421. [PMID: 37141644 PMCID: PMC10176072 DOI: 10.1016/j.nicl.2023.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cerebral small vessel disease is a leading cause of cognitive decline and vascular dementia. Small vessel disease pathology changes structural brain networks, but its impact on functional networks remains poorly understood. Structural and functional networks are closely coupled in healthy individuals, and decoupling is associated with clinical symptoms in other neurological conditions. We tested the hypothesis that structural-functional network coupling is related to neurocognitive outcomes in 262 small vessel disease patients. METHODS Participants underwent multimodal magnetic resonance imaging and cognitive assessment in 2011 and 2015. Structural connectivity networks were reconstructed using probabilistic diffusion tractography, while functional connectivity networks were estimated from resting-state functional magnetic resonance imaging. Structural and functional networks were then correlated to calculate a measure of structural-functional network coupling for each participant. RESULTS Lower whole-brain coupling was associated with reduced processing speed and greater apathy both cross-sectionally and longitudinally. In addition, coupling within the cognitive control network was associated with all cognitive outcomes, suggesting that neurocognitive outcomes in small vessel disease may be related to the functioning of this intrinsic connectivity network. CONCLUSIONS Our work demonstrates the influence of structural-functional connectivity network decoupling in small vessel disease symptomatology. Cognitive control network function may be investigated in future studies.
Collapse
Affiliation(s)
- Jonathan Tay
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marco Düring
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Mayra I Bergkamp
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - David G Norris
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Chen Z, Wu B, Li G, Zhou L, Zhang L, Liu J. Age and sex differentially shape brain networks in Parkinson's disease. CNS Neurosci Ther 2023. [PMID: 36890620 DOI: 10.1111/cns.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS Age and sex are important individual factors modifying the clinical symptoms of patients with Parkinson's disease (PD). Our goal is to evaluate the effects of age and sex on brain networks and clinical manifestations of PD patients. METHODS Parkinson's disease participants (n = 198) receiving functional magnetic resonance imaging from Parkinson's Progression Markers Initiative database were investigated. Participants were classified into lower quartile group (age rank: 0%~25%), interquartile group (age rank: 26%~75%), and upper quartile group (age rank: 76%~100%) according to their age quartiles to examine how age shapes brain network topology. The differences of brain network topological properties between male and female participants were also investigated. RESULTS Parkinson's disease patients in the upper quartile age group exhibited disrupted network topology of white matter networks and impaired integrity of white matter fibers compared to lower quartile age group. In contrast, sex preferentially shaped the small-world topology of gray matter covariance network. Differential network metrics mediated the effects of age and sex on cognitive function of PD patients. CONCLUSION Age and sex have diverse effects on brain structural networks and cognitive function of PD patients, highlighting their roles in the clinical management of PD.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Wu
- Department of Neurology, Xuchang Central Hospital affiliated with Henan University of Science and Technology, Henan, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Drenth N, Foster-Dingley JC, Bertens AS, Rius Ottenheim N, van der Mast RC, Rombouts SARB, van Rooden S, van der Grond J. Functional connectivity in older adults-the effect of cerebral small vessel disease. Brain Commun 2023; 5:fcad126. [PMID: 37168731 PMCID: PMC10165246 DOI: 10.1093/braincomms/fcad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Ageing is associated with functional reorganization that is mainly characterized by declining functional connectivity due to general neurodegeneration and increasing incidence of disease. Functional connectivity has been studied across the lifespan; however, there is a paucity of research within the older groups (≥75 years) where neurodegeneration and disease prevalence are at its highest. In this cross-sectional study, we investigated associations between age and functional connectivity and the influence of cerebral small vessel disease (CSVD)-a common age-related morbidity-in 167 community-dwelling older adults aged 75-91 years (mean = 80.3 ± 3.8). Resting-state functional MRI was used to determine functional connectivity within ten standard networks and calculate the whole-brain graph theoretical measures global efficiency and clustering coefficient. CSVD features included white matter hyperintensities, lacunar infarcts, cerebral microbleeds, and atrophy that were assessed in each individual and a composite score was calculated. Both main and interaction effects (age*CSVD features) on functional connectivity were studied. We found stable levels of functional connectivity across the age range. CSVD was not associated with functional connectivity measures. To conclude, our data show that the functional architecture of the brain is relatively unchanged after 75 years of age and not differentially affected by individual levels of vascular pathology.
Collapse
Affiliation(s)
- Nadieh Drenth
- Correspondence to: Nadieh Drenth Department of Radiology Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands. E-mail:
| | - Jessica C Foster-Dingley
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Anne Suzanne Bertens
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Nathaly Rius Ottenheim
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Roos C van der Mast
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI)–University of Antwerp, Antwerp, Belgium
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Institute of Psychology, Leiden University, P.O. Box 9555, 2300 RB Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
11
|
Abstract
Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia. This review summarizes recent developments in advanced neuroimaging of cSVD with a focus on clinical and research applications. In the first section, we highlight how advanced structural imaging techniques, including diffusion magnetic resonance imaging (MRI), enable improved detection of tissue damage, including characterization of tissue appearing normal on conventional MRI. These techniques enable progression to be monitored and may be useful as surrogate endpoint in clinical trials. Quantitative MRI, including iron and myelin imaging, provides insights into tissue composition on the molecular level. In the second section, we cover how advanced MRI techniques can demonstrate functional or dynamic abnormalities of the blood vessels, which could be targeted in mechanistic research and early-stage intervention trials. Such techniques include the use of dynamic contrast enhanced MRI to measure blood-brain barrier permeability, and MRI methods to assess cerebrovascular reactivity. In the third section, we discuss how the increased spatial resolution provided by ultrahigh field MRI at 7 T allows imaging of perforating arteries, and flow velocity and pulsatility within them. The advanced MRI techniques we describe are providing novel pathophysiological insights in cSVD and allow improved quantification of disease burden and progression. They have application in clinical trials, both in assessing novel therapeutic mechanisms, and as a sensitive endpoint to assess efficacy of interventions on parenchymal tissue damage. We also discuss challenges of these advanced techniques and suggest future directions for research.
Collapse
Affiliation(s)
- Hilde van den Brink
- Department of Neurology and
Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University,
Utrecht, The Netherlands
| | - Fergus N Doubal
- Centre for Clinical Brain Sciences, UK
Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG)
and qbig, Department of Biomedical Engineering, University of Basel, Basel,
Switzerland,Marco Duering, Medical Image Analysis
Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of
Basel, Marktgasse 8, Basel, CH-4051, Switzerland.
; @MarcoDuering
| |
Collapse
|
12
|
Li Y, Liu X, Jia X, Li H, Jia X, Yang Q. Structural and functional alterations in cerebral small vessel disease: an ALE-based meta-analysis. Cereb Cortex 2022; 33:5484-5492. [PMID: 36376927 DOI: 10.1093/cercor/bhac435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of stroke and dementia. Although increasing studies have reported alterations of brain structural or neuronal functional activity exhibited in patients with CSVD, it is still unclear which alterations are reliable. Here, we performed a meta-analysis to establish which brain structural or neuronal functional activity changes in those studies were consistent. Activation likelihood estimation revealed that changes in neuronal functional activity in the left angular gyrus, bilateral anterior cingulate cortex/left medial prefrontal cortex, right rolandic operculum, and alterations of gray structure in the left insular cortex/superior temporal gyrus/claustrum were reliable in sporadic CSVD. Decreased neuronal functional activity in the caudate head, anterior cingulate cortex, and reduced gray matter volume in the insular cortex/superior temporal gyrus/claustrum were associated with CSVD-related cognitive impairment. Furthermore, unlike sporadic CSVD, the reliable alterations of neuronal functional activity in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy were concentrated in the left parahippocampal gyrus. The current study presents stable brain structural and neuronal functional abnormalities within the brain, which can help further understand the pathogenesis of CSVD and CSVD-cognitive impairment and provide an index to evaluate the effectiveness of treatment protocols.
Highlights
• Default mode network and salience network are reliable networks affected in sporadic CSVD in resting-state.
• Altered corticostriatal circuitry is associated with cognitive decline.
• Decreased gray matter volume in the insular cortex is stable “remote effects” of sporadic CSVD.
• The parahippocampal gyrus may be a reliable affected brain region in CADASIL.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Xin Liu
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Xuejia Jia
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Haoyuan Li
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Xiuqin Jia
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University , No.10 Xitoutiao, Fengtai District, Beijing 100069 , China
| | - Qi Yang
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University , No.10 Xitoutiao, Fengtai District, Beijing 100069 , China
| |
Collapse
|
13
|
da Silva PHR, Paschoal AM, Secchinatto KF, Zotin MCZ, Dos Santos AC, Viswanathan A, Pontes-Neto OM, Leoni RF. Contrast agent-free state-of-the-art magnetic resonance imaging on cerebral small vessel disease - Part 2: Diffusion tensor imaging and functional magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4743. [PMID: 35429070 DOI: 10.1002/nbm.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Cerebral small vessel disease (cSVD) has been widely studied using conventional magnetic resonance imaging (MRI) methods, although the association between MRI findings and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast agent-free, state-of-the-art MRI techniques, particularly diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), to understand brain damage and structural and functional connectivity impairment related to cSVD. We performed a review following the PICOS worksheet and Search Strategy, including 152 original papers in English, published from 2000 to 2022. For each MRI method, we extracted information about their contributions regarding the origins, pathology, markers, and clinical outcomes in cSVD. In general, DTI studies have shown that changes in mean, radial, and axial diffusivity measures are related to the presence of cSVD. In addition to the classical deficit in executive functions and processing speed, fMRI studies indicate connectivity dysfunctions in other domains, such as sensorimotor, memory, and attention. Neuroimaging metrics have been correlated with the diagnosis, prognosis, and rehabilitation of patients with cSVD. In short, the application of contrast agent-free, state-of-the-art MRI techniques has provided a complete picture of cSVD markers and tools to explore questions that have not yet been clarified about this clinical condition. Longitudinal studies are desirable to look for causal relationships between image biomarkers and clinical outcomes.
Collapse
Affiliation(s)
| | - André Monteiro Paschoal
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Clara Zanon Zotin
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anand Viswanathan
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Octavio M Pontes-Neto
- Department of Neurosciences and Behavioral Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Ferranti Leoni
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Yin W, Zhou X, Li C, You M, Wan K, Zhang W, Zhu W, Li M, Zhu X, Qian Y, Sun Z. The Clustering Analysis of Time Properties in Patients With Cerebral Small Vessel Disease: A Dynamic Connectivity Study. Front Neurol 2022; 13:913241. [PMID: 35795790 PMCID: PMC9251301 DOI: 10.3389/fneur.2022.913241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study aimed to investigate the dynamic functional connectivity (DFC) pattern in cerebral small vessel disease (CSVD) and explore the relationships between DFC temporal properties and cognitive impairment in CSVD.MethodsFunctional data were collected from 67 CSVD patients, including 35 patients with subcortical vascular cognitive impairment (SVCI) and 32 cognitively unimpaired (CU) patients, as well as 35 healthy controls (HCs). The DFC properties were estimated by k-means clustering analysis. DFC strength analysis was used to explore the regional functional alterations between CSVD patients and HCs. Correlation analysis was used for DFC properties with cognition and SVD scores, respectively.ResultsThe DFC analysis showed three distinct connectivity states (state I: sparsely connected, state II: strongly connected, state III: intermediate pattern). Compared to HCs, CSVD patients exhibited an increased proportion in state I and decreased proportion in state II. Besides, CSVD patients dwelled longer in state I while dwelled shorter in state II. CSVD subgroup analyses showed that state I frequently occurred and dwelled longer in SVCI compared with CSVD-CU. Also, the internetwork (frontal-parietal lobe, frontal-occipital lobe) and intranetwork (frontal lobe, occipital lobe) functional activities were obviously decreased in CSVD. Furthermore, the fractional windows and mean dwell time (MDT) in state I were negatively correlated with cognition in CSVD but opposite to cognition in state II.ConclusionPatients with CSVD accounted for a higher proportion and dwelled longer mean time in the sparsely connected state, while presented lower proportion and shorter mean dwell time in the strongly connected state, which was more prominent in SVCI. The changes in the DFC are associated with altered cognition in CSVD. This study provides a better explanation of the potential mechanism of CSVD patients with cognitive impairment from the perspective of DFC.
Collapse
Affiliation(s)
- Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengzhe You
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingxu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zhongwu Sun
| |
Collapse
|
15
|
Boccalini C, Carli G, Tondo G, Polito C, Catricalà E, Berti V, Bessi V, Sorbi S, Iannaccone S, Esposito V, Cappa SF, Perani D. Brain metabolic connectivity reconfiguration in the semantic variant of primary progressive aphasia. Cortex 2022; 154:1-14. [PMID: 35717768 DOI: 10.1016/j.cortex.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Functional network-level alterations in the semantic variant of Primary Progressive Aphasia (sv-PPA) are relevant to understanding the clinical features and the neural spreading of the pathology. We assessed the effect of neurodegeneration on brain systems reorganization in early sv-PPA, using advanced brain metabolic connectivity approaches. Forty-four subjects with sv-PPA and forty-four age-matched healthy controls (HC) were included. We applied two multivariate approaches to [18F]FDG-PET data - i.e., sparse inverse covariance estimation and seed-based interregional correlation analysis - to assess the integrity of (i) the whole-brain metabolic connectivity and (ii) the connectivity of brain regions relevant for cognitive and behavioral functions. Whole-brain analysis revealed a global-scale connectivity reconfiguration in sv-PPA, with widespread changes in metabolic connections of frontal, temporal, and parietal regions. In comparison to HC, the seed-based analysis revealed a) functional isolation of the left anterior temporal lobe (ATL), b) decreases in temporo-occipital connections and contralateral homologous regions, c) connectivity increases to the dorsal parietal cortex from the spared posterior temporal cortex, d) a disruption of the large-scale limbic brain networks. In sv-PPA, the severe functional derangement of the left ATL may lead to an extensive connectivity reconfiguration, encompassing several brain regions, including those not yet affected by neurodegeneration. These findings support the hypothesis that in sv-PPA the focal vulnerability of the core region (i.e., ATL) can potentially drive the widespread cerebral connectivity changes, already present in the early phase.
Collapse
Affiliation(s)
- Cecilia Boccalini
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Carli
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Tondo
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Polito
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Valentina Berti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sandro Iannaccone
- Department of Rehabilitation and Functional Recovery, San Raffaele Hospital, Milan, Italy
| | | | - Stefano F Cappa
- University School for Advanced Studies (IUSS), Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
16
|
Janssen E, ter Telgte A, Verburgt E, de Jong JJA, Marques JP, Kessels RPC, Backes WH, Maas MC, Meijer FJA, Deinum J, Riksen NP, Tuladhar AM, de Leeuw FE. The Hyperintense study: Assessing the effects of induced blood pressure increase and decrease on MRI markers of cerebral small vessel disease: Study rationale and protocol. Eur Stroke J 2022; 7:331-338. [PMID: 36082259 PMCID: PMC9446329 DOI: 10.1177/23969873221100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Neuroimaging markers of cerebral small vessel disease (SVD) are common in
older individuals, but the pathophysiological mechanisms causing these
lesions remain poorly understood. Although hypertension is a major risk
factor for SVD, the direct causal effects of increased blood pressure are
unknown. The Hyperintense study is designed to examine cerebrovascular and
structural abnormalities, possibly preceding SVD, in young adults with
hypertension. These patients undergo a diagnostic work-up that requires
patients to temporarily discontinue their antihypertensive agents, often
leading to an increase in blood pressure followed by a decrease once
effective medication is restarted. This allows examination of the effects of
blood pressure increase and decrease on the cerebral small vessels. Methods: Hyperintense is a prospective observational cohort study in 50 hypertensive
adults (18–55 years) who will temporarily discontinue antihypertensive
medication for diagnostic purposes. MRI and clinical data is collected at
four timepoints: before medication withdrawal (baseline), once
antihypertensives are largely or completely withdrawn
(T = 1), when patients have restarted medication
(T = 2) and reached target blood pressure and 1 year
later (T = 3). The 3T MRI protocol includes conventional
structural sequences and advanced techniques to assess various aspects of
microvascular integrity, including blood-brain barrier function using
Dynamic Contrast Enhanced MRI, white matter integrity, and microperfusion.
Clinical assessments include motor and cognitive examinations and blood
sampling. Discussion: The Hyperintense study will improve the understanding of the
pathophysiological mechanisms following hypertension that may cause SVD.
This knowledge can ultimately help to identify new targets for treatment of
SVD, aimed at prevention or limiting disease progression.
Collapse
Affiliation(s)
- Esther Janssen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Esmée Verburgt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost JA de Jong
- School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Roy PC Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Walter H Backes
- School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marnix C Maas
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick JA Meijer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Pflanz CP, Tozer DJ, Harshfield EL, Tay J, Farooqi S, Markus HS. Central obesity is selectively associated with cerebral gray matter atrophy in 15,634 subjects in the UK Biobank. Int J Obes (Lond) 2022; 46:1059-1067. [PMID: 35145215 PMCID: PMC9050590 DOI: 10.1038/s41366-021-00992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/20/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Obesity is a risk factor for both cardiovascular disease and dementia, but the mechanisms underlying this association are not fully understood. We examined associations between obesity, including estimates of central obesity using different modalities, with brain gray matter (GM) volume in the UK Biobank, a large population-based cohort study. METHODS To determine relationships between obesity and the brain we used brain MRI, abdominal MRI, dual-energy X-ray absorptiometry (DXA), and bioelectric whole-body impedance. We determined whether obesity was associated with any change in brain gray matter (GM) and white matter (WM) volumes, and brain network efficiency derived from the structural connectome (wiring of the brain) as determined from diffusion-tensor MRI tractography. Using Waist-Hip Ratio (WHR), abdominal MRI and DXA we determined whether any associations were primarily with central rather than peripheral obesity, and whether associations were mediated by known cardiovascular risk factors. We analyzed brain MRI data from 15,634. RESULTS We found that central obesity, was associated with decreased GM volume (anthropometric data: p = 6.7 × 10-16, DXA: p = 8.3 × 10-81, abdominal MRI: p = 0.0006). Regional associations were found between central obesity and with specific GM subcortical nuclei (thalamus, caudate, pallidum, nucleus accumbens). In contrast, no associations were found with WM volume or structure, or brain network efficiency. The effects of central obesity on GM volume were not mediated by C-reactive protein or blood pressure, glucose, lipids. CONCLUSIONS Central body-fat distribution rather than the overall body-fat percentage is associated with gray matter changes in people with obesity. Further work is required to identify the factors that mediate the association between central obesity and GM atrophy.
Collapse
Affiliation(s)
- Chris-Patrick Pflanz
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Daniel J Tozer
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Eric L Harshfield
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jonathan Tay
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Welcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Hugh S Markus
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
18
|
Kim WSH, Luciw NJ, Atwi S, Shirzadi Z, Dolui S, Detre JA, Nasrallah IM, Swardfager W, Bryan RN, Launer LJ, MacIntosh BJ. Associations of white matter hyperintensities with networks of gray matter blood flow and volume in midlife adults: A coronary artery risk development in young adults magnetic resonance imaging substudy. Hum Brain Mapp 2022; 43:3680-3693. [PMID: 35429100 PMCID: PMC9294299 DOI: 10.1002/hbm.25876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
White matter hyperintensities (WMHs) are emblematic of cerebral small vessel disease, yet effects on the brain have not been well characterized at midlife. Here, we investigated whether WMH volume is associated with brain network alterations in midlife adults. Two hundred and fifty‐four participants from the Coronary Artery Risk Development in Young Adults study were selected and stratified by WMH burden into Lo‐WMH (mean age = 50 ± 3.5 years) and Hi‐WMH (mean age = 51 ± 3.7 years) groups of equal size. We constructed group‐level covariance networks based on cerebral blood flow (CBF) and gray matter volume (GMV) maps across 74 gray matter regions. Through consensus clustering, we found that both CBF and GMV covariance networks partitioned into modules that were largely consistent between groups. Next, CBF and GMV covariance network topologies were compared between Lo‐ and Hi‐WMH groups at global (clustering coefficient, characteristic path length, global efficiency) and regional (degree, betweenness centrality, local efficiency) levels. At the global level, there were no between‐group differences in either CBF or GMV covariance networks. In contrast, we found between‐group differences in the regional degree, betweenness centrality, and local efficiency of several brain regions in both CBF and GMV covariance networks. Overall, CBF and GMV covariance analyses provide evidence that WMH‐related network alterations are present at midlife.
Collapse
Affiliation(s)
- William S. H. Kim
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
- Hurvitz Brain Sciences Program Sunnybrook Research Institute Toronto Ontario Canada
| | - Nicholas J. Luciw
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
- Hurvitz Brain Sciences Program Sunnybrook Research Institute Toronto Ontario Canada
| | - Sarah Atwi
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
- Hurvitz Brain Sciences Program Sunnybrook Research Institute Toronto Ontario Canada
| | - Zahra Shirzadi
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
- Hurvitz Brain Sciences Program Sunnybrook Research Institute Toronto Ontario Canada
| | - Sudipto Dolui
- Center for Functional Neuroimaging University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Neurology University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Radiology University of Pennsylvania Philadelphia Pennsylvania USA
| | - John A. Detre
- Center for Functional Neuroimaging University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Neurology University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Radiology University of Pennsylvania Philadelphia Pennsylvania USA
| | - Ilya M. Nasrallah
- Department of Radiology University of Pennsylvania Philadelphia Pennsylvania USA
| | - Walter Swardfager
- Hurvitz Brain Sciences Program Sunnybrook Research Institute Toronto Ontario Canada
- Canadian Partnership for Stroke Recovery Sunnybrook Research Institute Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Toronto Rehabilitation Institute, University Health Network Toronto Ontario Canada
- Dr. Sandra Black Centre for Brain Resilience & Recovery Sunnybrook Research Institute Toronto Ontario Canada
| | - Robert Nick Bryan
- Department of Diagnostic Medicine University of Texas Austin Texas USA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Science National Institute on Aging Bethesda Maryland USA
| | - Bradley J. MacIntosh
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
- Hurvitz Brain Sciences Program Sunnybrook Research Institute Toronto Ontario Canada
- Canadian Partnership for Stroke Recovery Sunnybrook Research Institute Toronto Ontario Canada
- Dr. Sandra Black Centre for Brain Resilience & Recovery Sunnybrook Research Institute Toronto Ontario Canada
| |
Collapse
|
19
|
Pan C, Li G, Sun W, Miao J, Qiu X, Lan Y, Wang Y, Wang H, Zhu Z, Zhu S. Neural Substrates of Poststroke Depression: Current Opinions and Methodology Trends. Front Neurosci 2022; 16:812410. [PMID: 35464322 PMCID: PMC9019549 DOI: 10.3389/fnins.2022.812410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Poststroke depression (PSD), affecting about one-third of stroke survivors, exerts significant impact on patients’ functional outcome and mortality. Great efforts have been made since the 1970s to unravel the neuroanatomical substrate and the brain-behavior mechanism of PSD. Thanks to advances in neuroimaging and computational neuroscience in the past two decades, new techniques for uncovering the neural basis of symptoms or behavioral deficits caused by focal brain damage have been emerging. From the time of lesion analysis to the era of brain networks, our knowledge and understanding of the neural substrates for PSD are increasing. Pooled evidence from traditional lesion analysis, univariate or multivariate lesion-symptom mapping, regional structural and functional analyses, direct or indirect connectome analysis, and neuromodulation clinical trials for PSD, to some extent, echoes the frontal-limbic theory of depression. The neural substrates of PSD may be used for risk stratification and personalized therapeutic target identification in the future. In this review, we provide an update on the recent advances about the neural basis of PSD with the clinical implications and trends of methodology as the main features of interest.
Collapse
|
20
|
Hu Y, Yang Y, Hou X, Zhou Y, Nie S. The influence of white matter hyperintensities severity on functional brain activity in cerebral small vessel disease: An rs-fMRI study. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:1213-1227. [PMID: 36120754 DOI: 10.3233/xst-221218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate relationships between the severity of white matter hyperintensities (WMH), functional brain activity, and cognition in cerebral small vessel disease (CSVD) based on resting-state functional magnetic resonance imaging (rs-fMRI) data. METHODS A total of 103 subjects with CSVD were included. The amplitude of low frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity (FC) and their graph properties were applied to explore the influence of WMH burden on functional brain activity. We also investigated whether there are correlations between different functional brain characteristics and cognitive assessments. Finally, we selected disease-related rs-fMRI features in combination with ensemble learning to classify CSVD patients with low WMH load and with high WMH load. RESULTS The high WMH load group demonstrated significantly abnormal functional brain activity based on rs-MRI data, relative to the low WMH load group. ALFF and graph properties in specific brain regions were significantly correlated with patients' cognitive assessments in CSVD. Moreover, altered rs-fMRI signal can help predict the severity of WMH in CSVD patients with an overall accuracy of 92.23%. CONCLUSIONS This study provided a comprehensive analysis and evidence for a pattern of altered functional brain activity under different WMH load in CSVD based on rs-fMRI data, enabling accurately individual prediction of status of WMH.
Collapse
Affiliation(s)
- Ying Hu
- Institute of Medical Imaging Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Yang
- Institute of Medical Imaging Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xuewen Hou
- Institute of Medical Imaging Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengdong Nie
- Institute of Medical Imaging Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Cai M, Jacob MA, Norris DG, de Leeuw FE, Tuladhar AM. Longitudinal relation between structural network efficiency, cognition, and gait in cerebral small vessel disease. J Gerontol A Biol Sci Med Sci 2021; 77:554-560. [PMID: 34459914 PMCID: PMC8893255 DOI: 10.1093/gerona/glab247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Background To investigate changes in gait performance over time and how these changes are associated with the decline in structural network efficiency and cognition in older patients with cerebral small vessel disease (SVD). Methods In a prospective, single-center cohort with 217 older participants with SVD, we performed 1.5T MRI scans, cognitive tests, and gait assessments evaluated by Timed UP and Go (TUG) test twice over 4 years. We reconstructed the white matter network for each subject based on diffusion tensor imaging tractography, followed by graph-theoretical analyses to compute the global efficiency. Conventional MRI markers for SVD, that is, white matter hyperintensity (WMH) volume, number of lacunes, and microbleeds, were assessed. Results Baseline global efficiency was not related to changes in gait performance, while decline in global efficiency over time was significantly associated with gait decline (ie, increase in TUG time), independent of conventional MRI markers for SVD. Neither baseline cognitive performance nor cognitive decline was associated with gait decline. Conclusions We found that disruption of the white matter structural network was associated with gait decline over time, while the effect of cognitive decline was not. This suggests that structural network disruption has an important role in explaining the pathophysiology of gait decline in older patients with SVD, independent of cognitive decline.
Collapse
Affiliation(s)
- Mengfei Cai
- Department of Neurology, Radboud University Medical Center; Donders Institute for Brain, Cognition, and Behaviour, Nijmegen; The Netherlands
| | - Mina A Jacob
- Department of Neurology, Radboud University Medical Center; Donders Institute for Brain, Cognition, and Behaviour, Nijmegen; The Netherlands
| | - David G Norris
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud University Medical Center; Donders Institute for Brain, Cognition, and Behaviour, Nijmegen; The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Radboud University Medical Center; Donders Institute for Brain, Cognition, and Behaviour, Nijmegen; The Netherlands
| |
Collapse
|
22
|
Schulz M, Malherbe C, Cheng B, Thomalla G, Schlemm E. Functional connectivity changes in cerebral small vessel disease - a systematic review of the resting-state MRI literature. BMC Med 2021; 19:103. [PMID: 33947394 PMCID: PMC8097883 DOI: 10.1186/s12916-021-01962-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a common neurological disease present in the ageing population that is associated with an increased risk of dementia and stroke. Damage to white matter tracts compromises the substrate for interneuronal connectivity. Analysing resting-state functional magnetic resonance imaging (fMRI) can reveal dysfunctional patterns of brain connectivity and contribute to explaining the pathophysiology of clinical phenotypes in CSVD. MATERIALS AND METHODS This systematic review provides an overview of methods and results of recent resting-state functional MRI studies in patients with CSVD. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, a systematic search of the literature was performed. RESULTS Of 493 studies that were screened, 44 reports were identified that investigated resting-state fMRI connectivity in the context of cerebral small vessel disease. The risk of bias and heterogeneity of results were moderate to high. Patterns associated with CSVD included disturbed connectivity within and between intrinsic brain networks, in particular the default mode, dorsal attention, frontoparietal control, and salience networks; decoupling of neuronal activity along an anterior-posterior axis; and increases in functional connectivity in the early stage of the disease. CONCLUSION The recent literature provides further evidence for a functional disconnection model of cognitive impairment in CSVD. We suggest that the salience network might play a hitherto underappreciated role in this model. Low quality of evidence and the lack of preregistered multi-centre studies remain challenges to be overcome in the future.
Collapse
Affiliation(s)
- Maximilian Schulz
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Caroline Malherbe
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Eckhard Schlemm
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Luppi AI, Craig MM, Coppola P, Peattie ARD, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Stamatakis EA. Preserved fractal character of structural brain networks is associated with covert consciousness after severe brain injury. Neuroimage Clin 2021; 30:102682. [PMID: 34215152 PMCID: PMC8102619 DOI: 10.1016/j.nicl.2021.102682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
Self-similarity is ubiquitous throughout natural phenomena, including the human brain. Recent evidence indicates that fractal dimension of functional brain networks, a measure of self-similarity, is diminished in patients diagnosed with disorders of consciousness arising from severe brain injury. Here, we set out to investigate whether loss of self-similarity is observed in the structural connectome of patients with disorders of consciousness. Using diffusion MRI tractography from N = 11 patients in a minimally conscious state (MCS), N = 10 patients diagnosed with unresponsive wakefulness syndrome (UWS), and N = 20 healthy controls, we show that fractal dimension of structural brain networks is diminished in DOC patients. Remarkably, we also show that fractal dimension of structural brain networks is preserved in patients who exhibit evidence of covert consciousness by performing mental imagery tasks during functional MRI scanning. These results demonstrate that differences in fractal dimension of structural brain networks are quantitatively associated with chronic loss of consciousness induced by severe brain injury, highlighting the close connection between structural organisation of the human brain and its ability to support cognitive function.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom.
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| |
Collapse
|
24
|
Cognition mediates the relation between structural network efficiency and gait in small vessel disease. NEUROIMAGE-CLINICAL 2021; 30:102667. [PMID: 33887698 PMCID: PMC8082689 DOI: 10.1016/j.nicl.2021.102667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/05/2023]
Abstract
Cerebral small vessel disease (SVD), including white matter hyperintensities (WMH), microbleeds, lacunes, was related to gait disturbances, while the underlying mechanism is unclear. Here, we investigated the relation between structural network efficiency, cognition and gait performance in 272 elderly subjects with SVD. All participants underwent 1.5 T MRI, gait and neuropsychological assessment. Conventional MRI markers for SVD, i.e. WMH volume, number of lacunes and microbleeds, were assessed. Diffusion tensor imaging-based tractography was used to reconstruct the brain network for each individual, followed by graph-theoretical analyses to compute the well-established network measure, global efficiency. We found that lower global efficiency was associated with worse gait performance, including slower gait speed and shorter stride length, independent of conventional MRI markers for SVD. This association was partly mediated via cognitive function. We identified subnetworks of white matter connections associated with gait and cognition, characterized by dominant involvement of frontal tracts. Our findings suggest that network disruption is associated with gait disturbances through cognitive dysfunction in elderly with SVD. Gait is a highly cognitive process and the crucial role of cognition should be considered when investigating gait disturbances in the elderly with SVD.
Collapse
|
25
|
Gesierich B, Tuladhar AM, ter Telgte A, Wiegertjes K, Konieczny MJ, Finsterwalder S, Hübner M, Pirpamer L, Koini M, Abdulkadir A, Franzmeier N, Norris DG, Marques JP, zu Eulenburg P, Ewers M, Schmidt R, de Leeuw F, Duering M. Alterations and test-retest reliability of functional connectivity network measures in cerebral small vessel disease. Hum Brain Mapp 2020; 41:2629-2641. [PMID: 32087047 PMCID: PMC7294060 DOI: 10.1002/hbm.24967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
While structural network analysis consolidated the hypothesis of cerebral small vessel disease (SVD) being a disconnection syndrome, little is known about functional changes on the level of brain networks. In patients with genetically defined SVD (CADASIL, n = 41) and sporadic SVD (n = 46), we independently tested the hypothesis that functional networks change with SVD burden and mediate the effect of disease burden on cognitive performance, in particular slowing of processing speed. We further determined test-retest reliability of functional network measures in sporadic SVD patients participating in a high-frequency (monthly) serial imaging study (RUN DMC-InTENse, median: 8 MRIs per participant). Functional networks for the whole brain and major subsystems (i.e., default mode network, DMN; fronto-parietal task control network, FPCN; visual network, VN; hand somatosensory-motor network, HSMN) were constructed based on resting-state multi-band functional MRI. In CADASIL, global efficiency (a graph metric capturing network integration) of the DMN was lower in patients with high disease burden (standardized beta = -.44; p [corrected] = .035) and mediated the negative effect of disease burden on processing speed (indirect path: std. beta = -.20, p = .047; direct path: std. beta = -.19, p = .25; total effect: std. beta = -.39, p = .02). The corresponding analyses in sporadic SVD showed no effect. Intraclass correlations in the high-frequency serial MRI dataset of the sporadic SVD patients revealed poor test-retest reliability and analysis of individual variability suggested an influence of age, but not disease burden, on global efficiency. In conclusion, our results suggest that changes in functional connectivity networks mediate the effect of SVD-related brain damage on cognitive deficits. However, limited reliability of functional network measures, possibly due to age-related comorbidities, impedes the analysis in elderly SVD patients.
Collapse
Affiliation(s)
- Benno Gesierich
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Anil Man Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Annemieke ter Telgte
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Kim Wiegertjes
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marek J. Konieczny
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Sofia Finsterwalder
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Mathias Hübner
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Lukas Pirpamer
- Department of NeurologyMedical University of GrazGrazAustria
| | - Marisa Koini
- Department of NeurologyMedical University of GrazGrazAustria
| | - Ahmed Abdulkadir
- University Hospital of Old Age Psychiatry, Universitäre Psychiatrische Dienste (UPD) BernUniversity of BernBernSwitzerland
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - David G. Norris
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - José P. Marques
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Peter zu Eulenburg
- German Center for Vertigo and Balance DisordersUniversity HospitalMunichGermany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | | | - Frank‐Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
26
|
Ripp I, Stadhouders T, Savio A, Goldhardt O, Cabello J, Calhoun V, Riedl V, Hedderich D, Diehl-Schmid J, Grimmer T, Yakushev I. Integrity of Neurocognitive Networks in Dementing Disorders as Measured with Simultaneous PET/Functional MRI. J Nucl Med 2020; 61:1341-1347. [PMID: 32358091 DOI: 10.2967/jnumed.119.234930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Functional MRI (fMRI) studies have reported altered integrity of large-scale neurocognitive networks (NCNs) in dementing disorders. However, findings on the specificity of these alterations in patients with Alzheimer disease (AD) and behavioral-variant frontotemporal dementia (bvFTD) are still limited. Recently, NCNs have been successfully captured using PET with 18F-FDG. Methods: Network integrity was measured in 72 individuals (38 male) with mild AD or bvFTD, and in healthy controls, using a simultaneous resting-state fMRI and 18F-FDG PET. Indices of network integrity were calculated for each subject, network, and imaging modality. Results: In either modality, independent-component analysis revealed 4 major NCNs: anterior default-mode network (DMN), posterior DMN, salience network, and right central executive network (CEN). In fMRI data, the integrity of the posterior DMN was found to be significantly reduced in both patient groups relative to controls. In the AD group the anterior DMN and CEN appeared to be additionally affected. In PET data, only the integrity of the posterior DMN in patients with AD was reduced, whereas 3 remaining networks appeared to be affected only in patients with bvFTD. In a logistic regression analysis, the integrity of the anterior DMN as measured with PET alone accurately differentiated between the patient groups. A correlation between indices of 2 imaging modalities was low overall. Conclusion: FMRI and 18F-FDG PET capture partly different aspects of network integrity. A higher disease specificity for NCNs as derived from PET data supports metabolic connectivity imaging as a promising diagnostic tool.
Collapse
Affiliation(s)
- Isabelle Ripp
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Stadhouders
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandre Savio
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Vince Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico.,Mind Research Network and LBERI, Albuquerque, New Mexico
| | - Valentin Riedl
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and.,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dennis Hedderich
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany .,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, Dichgans M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol 2019; 73:3326-3344. [PMID: 31248555 PMCID: PMC6719789 DOI: 10.1016/j.jacc.2019.04.034] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Cognitive impairment associated with aging has emerged as one of the major public health challenges of our time. Although Alzheimer's disease is the leading cause of clinically diagnosed dementia in Western countries, cognitive impairment of vascular etiology is the second most common cause and may be the predominant one in East Asia. Furthermore, alterations of the large and small cerebral vasculature, including those affecting the microcirculation of the subcortical white matter, are key contributors to the clinical expression of cognitive dysfunction caused by other pathologies, including Alzheimer's disease. This scientific expert panel provides a critical appraisal of the epidemiology, pathobiology, neuropathology, and neuroimaging of vascular cognitive impairment and dementia, and of current diagnostic and therapeutic approaches. Unresolved issues are also examined to shed light on new basic and clinical research avenues that may lead to mitigating one of the most devastating human conditions.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université Paris Descartes, Paris, France
| | - Sarah T Pendlebury
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and the University of Oxford, Oxford, United Kingdom
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
28
|
Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, Kim HJ, Lyoo CH, Cho H, Finsterwalder S, Duering M, Seo SW, Ewers M. Functional connectivity associated with tau levels in ageing, Alzheimer's, and small vessel disease. Brain 2019; 142:1093-1107. [PMID: 30770704 PMCID: PMC6439332 DOI: 10.1093/brain/awz026] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
In Alzheimer's disease, tau pathology spreads hierarchically from the inferior temporal lobe throughout the cortex, ensuing cognitive decline and dementia. Similarly, circumscribed patterns of pathological tau have been observed in normal ageing and small vessel disease, suggesting a spatially ordered distribution of tau pathology across normal ageing and different diseases. In vitro findings suggest that pathological tau may spread 'prion-like' across neuronal connections in an activity-dependent manner. Supporting this notion, functional brain networks show a spatial correspondence to tau deposition patterns. However, it remains unclear whether higher network-connectivity facilitates tau propagation. To address this, we included 55 normal aged elderly (i.e. cognitively normal, amyloid-negative), 50 Alzheimer's disease patients (i.e. amyloid-positive) covering the preclinical to dementia spectrum, as well as 36 patients with pure (i.e. amyloid-negative) vascular cognitive impairment due to small vessel disease. All subjects were assessed with AV1451 tau-PET and resting-state functional MRI. Within each group, we computed atlas-based resting-state functional MRI functional connectivity across 400 regions of interest covering the entire neocortex. Using the same atlas, we also assessed within each group the covariance of tau-PET levels among the 400 regions of interest. We found that higher resting-state functional MRI assessed functional connectivity between any given region of interest pair was associated with higher covariance in tau-PET binding in corresponding regions of interest. This result was consistently found in normal ageing, Alzheimer's disease and vascular cognitive impairment. In particular, inferior temporal tau-hotspots, as defined by highest tau-PET uptake, showed high predictive value of tau-PET levels in functionally closely connected regions of interest. These associations between functional connectivity and tau-PET uptake were detected regardless of presence of dementia symptoms (mild cognitive impairment or dementia), amyloid deposition (as assessed by amyloid-PET) or small vessel disease. Our findings suggest that higher functional connectivity between brain regions is associated with shared tau-levels, supporting the view of prion-like tau spreading facilitated by neural activity.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Yeshin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Alexander Damm
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hana Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sofia Finsterwalder
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
- Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | | |
Collapse
|
29
|
Tay J, Tuladhar AM, Hollocks MJ, Brookes RL, Tozer DJ, Barrick TR, Husain M, de Leeuw FE, Markus HS. Apathy is associated with large-scale white matter network disruption in small vessel disease. Neurology 2019; 92:e1157-e1167. [PMID: 30737341 PMCID: PMC6511108 DOI: 10.1212/wnl.0000000000007095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To investigate whether white matter network disruption underlies the pathogenesis of apathy, but not depression, in cerebral small vessel disease (SVD). METHODS Three hundred thirty-one patients with SVD from the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) study completed measures of apathy and depression and underwent structural MRI. Streamlines reflecting underlying white matter fibers were reconstructed with diffusion tensor tractography. First, path analysis was used to determine whether network measures mediated associations between apathy and radiologic markers of SVD. Next, we examined differences in whole-brain network measures between participants with only apathy, only depression, and comorbid apathy and depression and a control group free of neuropsychiatric symptoms. Finally, we examined regional network differences associated with apathy. RESULTS Path analysis demonstrated that network disruption mediated the relationship between apathy and SVD markers. Patients with apathy, compared to all other groups, were impaired on whole-brain measures of network density and efficiency. Regional network analyses in both the apathy subgroup and the entire sample revealed that apathy was associated with impaired connectivity in premotor and cingulate regions. CONCLUSIONS Our results suggest that apathy, but not depression, is associated with white matter tract disconnection in SVD. The subnetworks delineated suggest that apathy may be driven by damage to white matter networks underlying action initiation and effort-based decision making.
Collapse
Affiliation(s)
- Jonathan Tay
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK.
| | - Anil M Tuladhar
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| | - Matthew J Hollocks
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| | - Rebecca L Brookes
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| | - Daniel J Tozer
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| | - Thomas R Barrick
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| | - Masud Husain
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| | - Frank-Erik de Leeuw
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| | - Hugh S Markus
- From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK
| |
Collapse
|
30
|
Raja R, Rosenberg G, Caprihan A. Review of diffusion MRI studies in chronic white matter diseases. Neurosci Lett 2019; 694:198-207. [PMID: 30528980 PMCID: PMC6380179 DOI: 10.1016/j.neulet.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
Diffusion MRI studies characterizing the changes in white matter (WM) due to vascular cognitive impairment, which includes all forms of small vessel disease are reviewed. We reviewed the usefulness of diffusion methods in discriminating the affected WM regions and its relation to cognitive impairment. These studies were categorized based on the diffusion MRI techniques used. The most common method was the diffusion tensor imaging, whereas other methods included diffusion weighted imaging, diffusion kurtosis imaging, intravoxel incoherent motion, and studies based on diffusion tractography. The diffusion measures showed correlation with cognitive scores and disease progression, with mean diffusivity being the most robust parameter. Future studies should focus on incorporating multi-compartment and higher order diffusion models, which can handle the presence of multiple and crossing fibers inside a voxel.
Collapse
Affiliation(s)
- Rajikha Raja
- The MIND Research Network, Albuquerque, NM, United States.
| | - Gary Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | | |
Collapse
|
31
|
Farhat NS, Theiss R, Santini T, Ibrahim TS, Aizenstein HJ. Neuroimaging of Small Vessel Disease in Late-Life Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:95-115. [PMID: 31705491 PMCID: PMC6939470 DOI: 10.1007/978-981-32-9721-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebral small vessel disease is associated with late-life depression, cognitive impairment, executive dysfunction, distress, and loss of life for older adults. Late-life depression is becoming a substantial public health burden, and a considerable number of older adults presenting to primary care have significant clinical depression. Even though white matter hyperintensities are linked with small vessel disease, white matter hyperintensities are nonspecific to small vessel disease and can co-occur with other brain diseases. Advanced neuroimaging techniques at the ultrahigh field magnetic resonance imaging are enabling improved characterization, identification of cerebral small vessel disease and are elucidating some of the mechanisms that associate small vessel disease with late-life depression.
Collapse
Affiliation(s)
- Nadim S Farhat
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Theiss
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Howard J Aizenstein
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|