1
|
Huang Y, Li C, Cai R, Lin T, Chen W. Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation for post-stroke dysfunction: a Bayesian model-based network meta-analysis of RCTs. Neurol Sci 2024:10.1007/s10072-024-07918-6. [PMID: 39707110 DOI: 10.1007/s10072-024-07918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This research aims to comprehensively assess the efficacy of intermittent theta-burst stimulation (iTBS) vs. high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) in post-stroke dysfunction. MATERIALS AND METHODS Until January 2024, extensive electronic database searches were conducted (PubMed, Embase, Cochrane Library, Web of Science, etc.). Fugl-Meyer Assessment for Upper Extremities (FMA-UE) was used to assess upper limb (UL) dysfunction; post-stroke dysphagia (PSD) was identified by Standardized Swallowing Assessment (SSA), Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS), and Penetration/Aspiration Scale (PAS). Results were analyzed by network meta-analysis (NMA), and the mean difference (MD) and 95% confidence intervals (95% CI) were also reported. We conducted a descriptive analysis due to the inability to synthesize data on post-stroke cognitive impairment (PSCI). RESULTS 19 studies were included for NMA analysis. For UL disorder, the efficacy of treatments was ranked as HF-rTMS [MD (95%CI):3.00 (1.69,4.31)], iTBS [MD (95%CI): 2.16 (0.84, 3.50)], and sham stimulation (reference). For PSD, the efficacy of treatment to reduce scores of FEDSS or SSA were iTBS [FEDSS, MD (95%CI): -0.80 (-1.13, -0.47); SSA, MD (95%CI): -3.37 (-4.36, -2.38)], HF-rTMS [FEDSS, MD (95%CI): -0.43 (-0.76, -0.10); SSA, MD (95%CI): -2.62 (-3.91, -1.35)], and sham stimulation(reference). Descriptive analysis of PSCI found that both iTBS and HF-rTMS were effective in improving PSCI. CONCLUSIONS HF-rTMS demonstrates superior efficacy in UL dysfunction, while iTBS is more effective in PSD. Clinicians should carefully evaluate the type and severity of post-stroke dysfunction in each patient to select the most appropriate treatment.
Collapse
Affiliation(s)
- Yanbing Huang
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Caihui Li
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Rongda Cai
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Tianlai Lin
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Quanzhou First Hospital Affiliated to Fujian Medical University, No.250 East Street, Licheng District, Quanzhou, Fujian Province, 362000, China.
| | - Weiwen Chen
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Quanzhou First Hospital Affiliated to Fujian Medical University, No.250 East Street, Licheng District, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
2
|
Hong W, Liu Z, Zhang X, Li M, Yu Z, Wang Y, Wang M, Wu Y, Fang S, Yang B, Xu R, Zhao Z. Distance-related functional reorganization predicts motor outcome in stroke patients. BMC Med 2024; 22:247. [PMID: 38886774 PMCID: PMC11184708 DOI: 10.1186/s12916-024-03435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Analyzing distance-dependent functional connectivity density (FCD) yields valuable insights into patterns of brain activity. Nevertheless, whether alterations of FCD in non-acute stroke patients are associated with the anatomical distance between brain regions remains unclear. This study aimed to explore the distance-related functional reorganization in non-acute stroke patients following left and right hemisphere subcortical lesions, and its relationship with clinical assessments. METHODS In this study, we used resting-state fMRI to calculate distance-dependent (i.e., short- and long-range) FCD in 25 left subcortical stroke (LSS) patients, 22 right subcortical stroke (RSS) patients, and 39 well-matched healthy controls (HCs). Then, we compared FCD differences among the three groups and assessed the correlation between FCD alterations and paralyzed motor function using linear regression analysis. RESULTS Our findings demonstrated that the left inferior frontal gyrus displayed distance-independent FCD changes, while the bilateral supplementary motor area, cerebellum, and left middle occipital gyrus exhibited distance-dependent FCD alterations in two patient subgroups compared with HCs. Furthermore, we observed a positive correlation between increased FCD in the bilateral supplementary motor area and the motor function of lower limbs, and a negative correlation between increased FCD in the left inferior frontal gyrus and the motor function of both upper and lower limbs across all stroke patients. These associations were validated by using a longitudinal dataset. CONCLUSIONS The FCD in the cerebral and cerebellar cortices shows distance-related changes in non-acute stroke patients with motor dysfunction, which may serve as potential biomarkers for predicting motor outcomes after stroke. These findings enhance our comprehension of the neurobiological mechanisms driving non-acute stroke. TRIAL REGISTRATION All data used in the present study were obtained from a research trial registered with the ClinicalTrials.gov database (NCT05648552, registered 05 December 2022, starting from 01 January 2022).
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zaixing Liu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhixuan Yu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxin Wang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Minmin Wang
- School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310014, China
| | - Yanan Wu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengjie Fang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Bo Yang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Gureev AP, Sadovnikova IS, Chernyshova EV, Tsvetkova AD, Babenkova PI, Nesterova VV, Krutskikh EP, Volodina DE, Samoylova NA, Andrianova NV, Silachev DN, Plotnikov EY. Beta-Hydroxybutyrate Mitigates Sensorimotor and Cognitive Impairments in a Photothrombosis-Induced Ischemic Stroke in Mice. Int J Mol Sci 2024; 25:5710. [PMID: 38891898 PMCID: PMC11172083 DOI: 10.3390/ijms25115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The consequences of stroke include cognitive deficits and sensorimotor disturbances, which are largely related to mitochondrial impairments in the brain. In this work, we have shown that the mimetic of the ketogenic diet beta-hydroxybutyrate (βHB) can improve neurological brain function in stroke. At 3 weeks after photothrombotic stroke, mice receiving βHB with drinking water before and after surgery recovered faster in terms of sensorimotor functions assessed by the string test and static rods and cognitive functions assessed by the Morris water maze. At the same time, the βHB-treated mice had lower expression of some markers of astrocyte activation and inflammation (Gfap, Il-1b, Tnf). We hypothesize that long-term administration of βHB promotes the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway, which leads to increased expression of antioxidant genes targeting mitochondria and genes involved in signaling pathways necessary for the maintenance of synaptic plasticity. βHB partially maintained mitochondrial DNA (mtDNA) integrity during the first days after photothrombosis. However, in the following three weeks, the number of mtDNA damages increased in all experimental groups, which coincided with a decrease in Ogg1 expression, which plays an important role in mtDNA repair. Thus, we can assume that βHB is not only an important metabolite that provides additional energy to brain tissue during recovery from stroke under conditions of mitochondrial damage but also an important signaling molecule that supports neuronal plasticity and reduces neuroinflammation.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Ekaterina V. Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Arina D. Tsvetkova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Polina I. Babenkova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Veronika V. Nesterova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Ekaterina P. Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Daria E. Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Natalia A. Samoylova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
4
|
Raghavan P. Top-Down and Bottom-Up Mechanisms of Motor Recovery Poststroke. Phys Med Rehabil Clin N Am 2024; 35:235-257. [PMID: 38514216 DOI: 10.1016/j.pmr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Stroke remains a leading cause of disability. Motor recovery requires the interaction of top-down and bottom-up mechanisms, which reinforce each other. Injury to the brain initiates a biphasic neuroimmune process, which opens a window for spontaneous recovery during which the brain is particularly sensitive to activity. Physical activity during this sensitive period can lead to rapid recovery by potentiating anti-inflammatory and neuroplastic processes. On the other hand, lack of physical activity can lead to early closure of the sensitive period and downstream changes in muscles, such as sarcopenia, muscle stiffness, and reduced cardiovascular capacity, and blood flow that impede recovery.
Collapse
Affiliation(s)
- Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Dahms C, Noll A, Wagner F, Schmidt A, Brodoehl S, Klingner CM. Connecting the dots: Motor and default mode network crossroads in post-stroke motor learning deficits. Neuroimage Clin 2024; 42:103601. [PMID: 38579595 PMCID: PMC11004993 DOI: 10.1016/j.nicl.2024.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies. OBJECTIVE This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain. METHODS We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity. RESULTS Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN. CONCLUSIONS Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.
Collapse
Affiliation(s)
- Christiane Dahms
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany.
| | - Alexander Noll
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Franziska Wagner
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Alexander Schmidt
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Carsten M Klingner
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| |
Collapse
|
6
|
Huang L, Yi L, Huang H, Zhan S, Chen R, Yue Z. Corticospinal tract: a new hope for the treatment of post-stroke spasticity. Acta Neurol Belg 2024; 124:25-36. [PMID: 37704780 PMCID: PMC10874326 DOI: 10.1007/s13760-023-02377-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Stroke is the third leading cause of death and disability worldwide. Post-stroke spasticity (PSS) is the most common complication of stroke but represents only one of the many manifestations of upper motor neuron syndrome. As an upper motor neuron, the corticospinal tract (CST) is the only direct descending motor pathway that innervates the spinal motor neurons and is closely related to the recovery of limb function in patients with PSS. Therefore, promoting axonal remodeling in the CST may help identify new therapeutic strategies for PSS. In this review, we outline the pathological mechanisms of PSS, specifically their relationship with CST, and therapeutic strategies for axonal regeneration of the CST after stroke. We found it to be closely associated with astroglial scarring produced by astrocyte activation and its secretion of neurotrophic factors, mainly after the onset of cerebral ischemia. We hope that this review offers insight into the relationship between CST and PSS and provides a basis for further studies.
Collapse
Affiliation(s)
- Linxing Huang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lizhen Yi
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huiyuan Huang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sheng Zhan
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruixue Chen
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zenghui Yue
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
7
|
Qi Y, Xu Y, Wang H, Wang Q, Li M, Han B, Liu H. Network Reorganization for Neurophysiological and Behavioral Recovery Following Stroke. Cent Nerv Syst Agents Med Chem 2024; 24:117-128. [PMID: 38299298 DOI: 10.2174/0118715249277597231226064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Stroke continues to be the main cause of motor disability worldwide. While rehabilitation has been promised to improve recovery after stroke, efficacy in clinical trials has been mixed. We need to understand the cortical recombination framework to understand how biomarkers for neurophysiological reorganized neurotechnologies alter network activity. Here, we summarize the principles of the movement network, including the current evidence of changes in the connections and function of encephalic regions, recovery from stroke and the therapeutic effects of rehabilitation. Overall, improvements or therapeutic effects in limb motor control following stroke are correlated with the effects of interhemispheric competition or compensatory models of the motor supplementary cortex. This review suggests that future research should focus on cross-regional communication and provide fundamental insights into further treatment and rehabilitation for post-stroke patients.
Collapse
Affiliation(s)
- Yuan Qi
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Yujie Xu
- Chengde Medical College Affiliated Hospital, Chengde, Hebei, CN, China
| | - Huailu Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Qiujia Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Haijie Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| |
Collapse
|
8
|
Isakova EV, Kotov SV, Guts ES, Zenina VA. [Possibilities of mirror therapy in cognitive rehabilitation after stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:64-71. [PMID: 39166936 DOI: 10.17116/jnevro202412408264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The review provides a brief overview of the history of the development of mirror therapy. Current data on the putative mechanisms of mirror therapy as well as the theory of mirror neurons are presented. The authors describe the implementation of the effects of mirror therapy in motor rehabilitation after stroke, including motor imagination or mental simulation of actions, strengthening of spatial attention and self-perception, activation of the ipsilateral corticospinal tract, reorganization of neuronal networks that influence the state of structurally intact but functionally inactive neurons. The authors reflected the prerequisites for the use of mirror therapy in the rehabilitation of cognitive impairment in poststroke patients. The results of current clinical studies and case reports of the use of mirror therapy for the rehabilitation of speech and non-speech cognitive disorders, and neglect syndrome after stroke are presented.
Collapse
Affiliation(s)
- E V Isakova
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - S V Kotov
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - E S Guts
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V A Zenina
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| |
Collapse
|
9
|
Tang Z, Liu T, Liu Y, Han K, Su W, Zhao J, Chi Q, Zhang X, Zhang H. Different doses of intermittent theta burst stimulation for upper limb motor dysfunction after stroke: a study protocol for a randomized controlled trial. Front Neurosci 2023; 17:1259872. [PMID: 37869516 PMCID: PMC10585036 DOI: 10.3389/fnins.2023.1259872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Background Upper limb motor recovery is one of the important goals of stroke rehabilitation. Intermittent theta burst stimulation (iTBS), a new type of repetitive transcranial magnetic stimulation (rTMS), is considered a potential therapy. However, there is still no consensus on the efficacy of iTBS for upper limb motor dysfunction after stroke. Stimulus dose may be an important factor affecting the efficacy of iTBS. Therefore, we aim to investigate and compare the effects and neural mechanisms of three doses of iTBS on upper limb motor recovery in stroke patients, and our hypothesis is that the higher the dose of iTBS, the greater the improvement in upper limb motor function. Methods This prospective, randomized, controlled trial will recruit 56 stroke patients with upper limb motor dysfunction. All participants will be randomized in a 1:1:1:1 ratio to receive 21 sessions of 600 pulses active iTBS, 1,200 pulses active iTBS, 1,800 pulses active iTBS, or 1,800 pulses sham iTBS in addition to conventional rehabilitation training. The primary outcome is the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score from baseline to end of intervention, and the secondary outcomes are the Wolf Motor Function Test (WMFT), Grip Strength (GS), Modified Barthel Index (MBI), and Stroke Impact Scale (SIS). The FMA-UE, MBI, and SIS are assessed pre-treatment, post-treatment, and at the 3-weeks follow-up. The WMFT, GS, and resting-state functional magnetic resonance imaging (rs-fMRI) data will be obtained pre- and post-treatment. Discussion The iTBS intervention in this study protocol is expected to be a potential method to promote upper limb motor recovery after stroke, and the results may provide supportive evidence for the optimal dose of iTBS intervention.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Tianhao Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jingdu Zhao
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Qianqian Chi
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Qi F, Nitsche MA, Ren X, Wang D, Wang L. Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective. Front Neurol 2023; 14:1156987. [PMID: 37497013 PMCID: PMC10367110 DOI: 10.3389/fneur.2023.1156987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Stroke is a central nervous system disease that causes structural lesions and functional impairments of the brain, resulting in varying types, and degrees of dysfunction. The bimodal balance-recovery model (interhemispheric competition model and vicariation model) has been proposed as the mechanism of functional recovery after a stroke. We analyzed how combinations of motor observation treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can be taken as accessorial physical therapy methods on symptom reduction of stroke patients. We suggest that top-down and bottom-up stimulation techniques combined with action observation treatment synergistically might develop into valuable physical therapy strategies in neurorehabilitation after stroke. We explored how TES or TMS intervention over the contralesional hemisphere or the lesioned hemisphere combined with PES or PMS of the paretic limbs during motor observation followed by action execution have super-additive effects to potentiate the effect of conventional treatment in stroke patients. The proposed paradigm could be an innovative and adjunctive approach to potentiate the effect of conventional rehabilitation treatment, especially for those patients with severe motor deficits.
Collapse
Affiliation(s)
- Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Duanwei Wang
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
11
|
Peng X, Baker-Vogel B, Sarhan M, Short EB, Zhu W, Liu H, Kautz S, Badran BW. Left or right ear? A neuroimaging study using combined taVNS/fMRI to understand the interaction between ear stimulation target and lesion location in chronic stroke. Brain Stimul 2023; 16:1144-1153. [PMID: 37517466 DOI: 10.1016/j.brs.2023.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/29/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Implanted vagus nerve stimulation (VNS) and transcutaneous auricular VNS (taVNS) have been primarily administered clinically to the unilateral-left vagus nerve. This left-only convention has proved clinically beneficial in brain disorders. However, in stroke survivors, the presence of a lesion in the brain may complicate VNS-mediated signaling, and it is important to understand the laterality effects of VNS in stroke survivors to optimize the intervention. OBJECTIVE To understand whether taVNS delivered to different ear targets relative to the lesion (ipsilesional vs contralesional vs bilateral vs sham) impacts blood oxygenation level dependent (BOLD) signal propagation in stroke survivors. METHODS We enrolled 20 adults with a prior history of stroke. Each participant underwent a single visit, during which taVNS was delivered concurrently during functional magnetic resonance imaging (fMRI) acquisition. Each participant received three discrete active stimulation conditions (ipsilesional, contralesional, bilateral) and one sham condition in a randomized order. Stimulation-related BOLD signal changes in the active conditions were compared to sham conditions to understand the interaction taVNS and laterality effects. RESULTS All active taVNS conditions deactivated the contralesional default mode network related regions compared to sham, however only ipsilesional taVNS enhanced the activations in the ipsilesional visuomotor and secondary visual cortex. Furthermore, we reveal an interaction in task activations between taVNS and cortical visuomotor areas, where ipsilesional taVNS significantly increased ipsilesional visuomotor activity and decreased contralesional visuomotor activity compared to sham. CONCLUSION Laterality of taVNS relative to the lesion is a critical factor in optimizing taVNS in a stroke population, with ipsilesional stimulation providing largest direct brain activation and should be explored further when designing taVNS studies in neurorehabilitation.
Collapse
Affiliation(s)
- Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA; Deparment of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Brenna Baker-Vogel
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA; Deparment of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Mutaz Sarhan
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA; Deparment of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Edward B Short
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA; Deparment of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hesheng Liu
- Deparment of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Changping Laboratory, Beijing, China
| | - Steven Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA; Deparment of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
12
|
Karakis R, Gurkahraman K, Mitsis GD, Boudrias MH. DEEP LEARNING PREDICTION OF MOTOR PERFORMANCE IN STROKE INDIVIDUALS USING NEUROIMAGING DATA. J Biomed Inform 2023; 141:104357. [PMID: 37031755 DOI: 10.1016/j.jbi.2023.104357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/24/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023]
Abstract
The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
Collapse
Affiliation(s)
- Rukiye Karakis
- Department of Software Engineering, Faculty of Technology, Sivas Cumhuriyet University, Turkey
| | - Kali Gurkahraman
- Department of Computer Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Turkey
| | - Georgios D Mitsis
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; BRAIN Laboratory, Jewish Rehabilitation Hospital, Site of Centre for Interdisciplinary Research of Greater Montreal (CRIR) and CISSS-Laval, QC, Canada.
| |
Collapse
|
13
|
Altered static and dynamic functional network connectivity in post-stroke cognitive impairment. Neurosci Lett 2023; 799:137097. [PMID: 36716911 DOI: 10.1016/j.neulet.2023.137097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Post-stroke cognitive impairment (PSCI) is a common symptom following brain stroke, yet the mechanisms remain unknown. This study aimed to investigate alterations of static and dynamic functional network connectivity (sFNC and dFNC) in PSCI patients. We prospectively recruited 17 PSCI patients and 24 Healthy controls (HC). Restingstate fMRI (rs-fMRI) and Mini-Mental State Examination (MMSE) were performed. Independent component analysis combined with sliding-window and K-means clustering approach were applied to examine the FNC among 11 resting-state networks: auditory network (AUDN), left executive control network (lECN), language network (LN), precuneus network (PCUN), right executive control network (rECN), salience network (SN), visuospatial network (VN), dorsal default mode network (dDMN), higher visual network (hVIS), primary visual network (pVIS), and ventral mode network (vDMN). The FNC and dynamic indices (fraction time, mean dwell time, transition number) were calculated. Static and dynamic measures were compared between two groups and the correlation between clinical and imaging indicators was analyzed. For sFNC, PSCI group showed decreased interactions in dDMN-vDMN, vDMN-SN, dDMN-hVIS, AUDN-rECN, and AUDN-VN. For dFNC, we derived 3 states of FNC that occurred repeatedly. Significant group differences were found, including decreased interactions in the AUDN-VN, AUDN-pVIS in state 2 and dDMN-VN in state 3. The mean dwell time in PSCI group was longer in state 1, and negatively correlated with MMSE score. These results demonstrated that PSCI patients are characterized with altered sFNC and dFNC, which could help us explore the neural mechanisms of the PSCI from a new perspective.
Collapse
|
14
|
Bian R, Huo M, Liu W, Mansouri N, Tanglay O, Young I, Osipowicz K, Hu X, Zhang X, Doyen S, Sughrue ME, Liu L. Connectomics underlying motor functional outcomes in the acute period following stroke. Front Aging Neurosci 2023; 15:1131415. [PMID: 36875697 PMCID: PMC9975347 DOI: 10.3389/fnagi.2023.1131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Objective Stroke remains the number one cause of morbidity in many developing countries, and while effective neurorehabilitation strategies exist, it remains difficult to predict the individual trajectories of patients in the acute period, making personalized therapies difficult. Sophisticated and data-driven methods are necessary to identify markers of functional outcomes. Methods Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI (rsfMRI), and diffusion weighted scans were obtained from 79 patients following stroke. Sixteen models were constructed to predict performance across six tests of motor impairment, spasticity, and activities of daily living, using either whole-brain structural or functional connectivity. Feature importance analysis was also performed to identify brain regions and networks associated with performance in each test. Results The area under the receiver operating characteristic curve ranged from 0.650 to 0.868. Models utilizing functional connectivity tended to have better performance than those utilizing structural connectivity. The Dorsal and Ventral Attention Networks were among the top three features in several structural and functional models, while the Language and Accessory Language Networks were most commonly implicated in structural models. Conclusions Our study highlights the potential of machine learning methods combined with connectivity analysis in predicting outcomes in neurorehabilitation and disentangling the neural correlates of functional impairments, though further longitudinal studies are necessary.
Collapse
Affiliation(s)
- Rong Bian
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Huo
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | | | | - Xiaorong Hu
- Xijia Medical Technology Company Limited, Shenzhen, China
| | - Xia Zhang
- Xijia Medical Technology Company Limited, Shenzhen, China.,International Joint Research Center on Precision Brain Medicine, Xidian Group Hospital, Xi'an, China
| | | | - Michael E Sughrue
- Omniscient Neurotechnology, Sydney, NSW, Australia.,International Joint Research Center on Precision Brain Medicine, Xidian Group Hospital, Xi'an, China
| | - Li Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Peng J, Su J, Song L, Lv Q, Gao Y, Chang J, Zhang H, Zou Y, Chen X. Altered Functional Activity and Functional Connectivity of Seed Regions Based on ALFF Following Acupuncture Treatment in Patients with Stroke Sequelae with Unilateral Limb Numbness. Neuropsychiatr Dis Treat 2023; 19:233-245. [PMID: 36744205 PMCID: PMC9890273 DOI: 10.2147/ndt.s391616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Limb numbness is a frequent symptom of post-stroke somatosensory dysfunction, which may be alleviated by non-invasive therapy such as acupuncture. However, the precise mechanism via acupuncture remains unknown. The goal of this study was to investigate how the amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) changed between stroke patients with limb numbness and healthy people, as well as how acupuncture might work. METHODS 24 stroke sequelae patients with unilateral limb numbness and 14 matched healthy controls were enrolled in the study. The patients with limb numbness received acupuncture therapy three days a week for four weeks. We mainly assessed the clinical outcomes via the visual analogue scale (VAS). In addition, fMRI data from patients with unilateral limb numbness at baseline and after treatment (4th week) were collected, as well as data from healthy controls at baseline. RESULTS Compared with the healthy subjects, the patient group demonstrated significantly decreased ALFF in several brain regions, mainly associated with the sensorimotor network (SMN) and default mode network (DMN), including left superior frontal gyrus (SFG), right temporal fusiform cortex (TFC), right middle frontal gyrus (MFG), bilateral middle temporal gyrus (MTG), right putamen (PUT), right precentral gyrus (preCG), right planum polare (PP), and left supplementary motor area (SMA). These regions were chosen as the seeds for investigating the FC alteration induced by acupuncture. Several sensorimotor-related brain regions were activated by acupuncture, and the FC of the left supramarginal gyrus (SMG) with right MTG, as well as brain-stem, cerebellum vermis 9 with right MFG showed enhancement following acupuncture in the patient group, which had a significant correlation with clinical outcomes. CONCLUSION Acupuncture treatment may be used to stimulate brain areas associated with somatosensory processing and to strengthen the FC of sensorimotor and cognitive brain networks in order to achieve therapeutic effect.
Collapse
Affiliation(s)
- Jing Peng
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiaming Su
- Department of Nephrology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Lei Song
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qiuyi Lv
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Gao
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jingling Chang
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hua Zhang
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yihuai Zou
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xing Chen
- Department of Brain Function Examination, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
16
|
Zuo L, Dong Y, Hu Y, Xiang X, Liu T, Zhou J, Shi J, Wang Y. Clinical Features, Brain-Structure Changes, and Cognitive Impairment in Basal Ganglia Infarcts: A Pilot Study. Neuropsychiatr Dis Treat 2023; 19:1171-1180. [PMID: 37197329 PMCID: PMC10184853 DOI: 10.2147/ndt.s384726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Stroke has been considered to raise the risk of dementia in several studies, but the relationship between brain structural changes and poststroke cognitive impairment (PSCI) is unclear. Methods In this study, 23 PSCI patients with basal ganglia infarcts after 2 weeks and 29 age-matched controls underwent magnetic resonance imaging measuring cortical thickness and volume changes, as well as neuropsychological tests. CI was derived from a performance score <1.5 standard deviations for normally distributed scores. We compared Z scores in different cognitive domains and cortical thickness and volumes in two groups. Multiple linear regressions were used to investigate the relationship between cortical thickness and volumes and neuropsychological tests. Results A majority of PSCI patients were in their 50s (55.19±8.52 years). PSCI patients exhibited significantly decreased Z scores in multiple domains, such as memory, language, visuomotor speed, and attention/executive function. The volumes of the middle posterior corpus callosum, middle anterior corpus callosum, and hippocampus in PSCI patients were markedly lower than controls. The thickness of the right inferior temporal cortex and insula were significantly smaller than controls. It found that the reduced right hippocampus was related to executive dysfunction. Hippocampus dysfunction may be involved in language impairment (p<0.05) in PSCI patients with basal ganglia infarcts. Conclusion These findings demonstrated that brain structure changed after ischemic stroke, and different gray-matter structural changes could lead to specific cognitive decline in PSCI patients with basal ganglia infarcts. Atrophy of the right hippocampus potentially serves as an imaging marker of early executive function of PSCI.
Collapse
Affiliation(s)
- Lijun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - YanHong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, 117597Singapore
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xianglong Xiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People’s Republic of China
| | - Jianxin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Yongjun Wang, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070, People’s Republic of China, Tel +86-010-59978350, Fax +86-010-59973383, Email
| |
Collapse
|
17
|
Fava-Felix PE, Bonome-Vanzelli SRC, Ribeiro FS, Santos FH. Systematic review on post-stroke computerized cognitive training: Unveiling the impact of confounding factors. Front Psychol 2022; 13:985438. [PMID: 36578681 PMCID: PMC9792177 DOI: 10.3389/fpsyg.2022.985438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Background Stroke is a highly incapacitating disease that can lead to disabilities due to cognitive impairment, physical, emotional, and social sequelae, and a decrease in the quality of life of those affected. Moreover, it has been suggested that cognitive reserve (patients' higher levels of education or having a skilled occupation), for instance, can promote faster cognitive recovery after a stroke. For this reason, this review aims to identify the cognitive, functional, and behavioral effects of computerized rehabilitation in patients aged 50 years or older who had a stroke, considering cognitive reserve proxies. Methods We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis-PRISMA, and performed the search for peer-reviewed randomized controlled trials without a date restriction on CINAHL, LILACS, PubMed, Scopus, and Web of Science databases were chosen. Results We screened 780 papers and found 19 intervention studies, but only 4 met the inclusion criteria and shared data. These studies included computerized tools for motor and cognitive rehabilitation in the experimental groups. In all studies, computerized training was combined with other interventions, such as standard therapy, occupational therapy, and aerobic exercises. There were 104 participants affected by ischemic or hemorrhagic stroke, predominantly male (57.69%), and all with cognitive impairment. Conclusion Despite a limited number of studies, varied methods and insufficient information available, schooling as a CR proxy combined with high-intensity computerized cognitive training was key to mediating cognitive improvement. The systematic review also identified that the associated ischemic stroke and shorter time of onset for rehabilitation contribute to the cognitive evolution of patients. Findings do not support a greater benefit of computerized cognitive training compared to conventional cognitive therapies. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=296193], identifier [CRD42022296193].
Collapse
Affiliation(s)
| | | | - Fabiana S. Ribeiro
- Department of Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Flávia H. Santos
- School of Psychology, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
19
|
Effect of Electroacupuncture on Short-Chain Fatty Acids in Peripheral Blood after Middle Cerebral Artery Occlusion/Reperfusion in Rats Based on Gas Chromatography–Mass Spectrometry. Mediators Inflamm 2022; 2022:3997947. [PMID: 36052308 PMCID: PMC9427317 DOI: 10.1155/2022/3997947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Previous fundamental and clinical research has shown that electroacupuncture (EA) at the acupoints of Quchi (LI11) and Zusanli (ST36) can successfully alleviate motor dysfunction following stroke. Additionally, it has been discovered that gut microbiota and their metabolites play an essential role in stroke. However, the relationship between the metabolites of gut microbiota and the efficacy of EA is still unclear. Therefore, the aim of this study was to evaluate the mechanism of EA at LI11 and ST36 in the treatment of motor dysfunction after middle cerebral artery occlusion/reperfusion (MCAO/R) in model rats by comparing the differences and correlation between different short-chain fatty acids (SCFAs) and the recovery of motor function. The results indicated that EA at LI11 and ST36 acupoints enhanced the neurological function, motor function, and infarct volume of MCAO/R rats. The levels of acetic acid, propionic acid, and total SCFAs were considerably lower in the MCAO/R group than in the sham group (P < 0.05). Acetic acid, propionic acid, and total SCFA concentrations were substantially higher in the MCAO/R + EA group than in the MCAO/R group (P < 0.05). Finally, Pearson correlation analysis revealed that the propionic acid concentration was substantially favorably connected with the duration on the rotarod (r = 0.633 and P < 0.05) and highly negatively correlated with the modified neurological severity score (mNSS) (r = −0.698 and P < 0.05) and the percentage of cerebral infarct volume (r = −0.729 and P < 0.05). Taken together, these findings indicate that the increase in propionic acid may be one of the mechanisms and targets of EA at LI11 and ST36 acupoints to improve poststroke motor dysfunction in MCAO/R rats.
Collapse
|
20
|
Zhan G, Chen S, Ji Y, Xu Y, Song Z, Wang J, Niu L, Bin J, Kang X, Jia J. EEG-Based Brain Network Analysis of Chronic Stroke Patients After BCI Rehabilitation Training. Front Hum Neurosci 2022; 16:909610. [PMID: 35832876 PMCID: PMC9271662 DOI: 10.3389/fnhum.2022.909610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022] Open
Abstract
Traditional rehabilitation strategies become difficult in the chronic phase stage of stroke prognosis. Brain–computer interface (BCI) combined with external devices may improve motor function in chronic stroke patients, but it lacks comprehensive assessments of neurological changes regarding functional rehabilitation. This study aimed to comprehensively and quantitatively investigate the changes in brain activity induced by BCI–FES training in patients with chronic stroke. We analyzed the EEG of two groups of patients with chronic stroke, one group received functional electrical stimulation (FES) rehabilitation training (FES group) and the other group received BCI combined with FES training (BCI–FES group). We constructed functional networks in both groups of patients based on direct directed transfer function (dDTF) and assessed the changes in brain activity using graph theory analysis. The results of this study can be summarized as follows: (i) after rehabilitation training, the Fugl–Meyer assessment scale (FMA) score was significantly improved in the BCI–FES group (p < 0.05), and there was no significant difference in the FES group. (ii) Both the global and local graph theory measures of the brain network of patients with chronic stroke in the BCI–FES group were improved after rehabilitation training. (iii) The node strength in the contralesional hemisphere and central region of patients in the BCI–FES group was significantly higher than that in the FES group after the intervention (p < 0.05), and a significant increase in the node strength of C4 in the contralesional sensorimotor cortex region could be observed in the BCI–FES group (p < 0.05). These results suggest that BCI–FES rehabilitation training can induce clinically significant improvements in motor function of patients with chronic stroke. It can improve the functional integration and functional separation of brain networks and boost compensatory activity in the contralesional hemisphere to a certain extent. The findings of our study may provide new insights into understanding the plastic changes of brain activity in patients with chronic stroke induced by BCI–FES rehabilitation training.
Collapse
Affiliation(s)
- Gege Zhan
- Laboratory for Neural Interface and Brain Computer Interface, State Key Laboratory of Medical Neurobiology, Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai Engineering Research Center of AI and Robotics, MOE Frontiers Center for Brain Science, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyun Ji
- Shanghai Jinshan Zhongren Geriatric Nursing Hospital, Shanghai, China
| | - Ying Xu
- Shanghai Jinshan Zhongren Geriatric Nursing Hospital, Shanghai, China
| | - Zuoting Song
- Laboratory for Neural Interface and Brain Computer Interface, State Key Laboratory of Medical Neurobiology, Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai Engineering Research Center of AI and Robotics, MOE Frontiers Center for Brain Science, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Junkongshuai Wang
- Laboratory for Neural Interface and Brain Computer Interface, State Key Laboratory of Medical Neurobiology, Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai Engineering Research Center of AI and Robotics, MOE Frontiers Center for Brain Science, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Lan Niu
- Ji Hua Laboratory, Foshan, China
| | | | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, State Key Laboratory of Medical Neurobiology, Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai Engineering Research Center of AI and Robotics, MOE Frontiers Center for Brain Science, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, China
- Ji Hua Laboratory, Foshan, China
- Yiwu Research Institute of Fudan University, Yiwu, China
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, China
- *Correspondence: Xiaoyang Kang
| | - Jie Jia
- Department of Rehabilitation Medicine, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
21
|
Gámez Santiago AB, Martínez Cáceres CM, Hernández-Morante JJ. Effectiveness of Intensively Applied Mirror Therapy in Older Patients with Post-Stroke Hemiplegia: A Preliminary Trial. Eur Neurol 2022; 85:291-299. [PMID: 35378544 DOI: 10.1159/000522413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The present work was carried out to determine the effectiveness of neuromuscular stimulation triggered by mirror therapy (MT) in older patients with post-stroke hemiplegia by two different intervention protocols, either intensively or spaced. METHODS A preliminary trial conducted on Spanish rehabilitation centres was conducted. Forty older patients (>70 years) with diagnosed post-stroke hemiplegia were randomly distributed to intensive intervention group (5 times/week for 6 weeks) or to spaced intervention group (3 times/week for 10 weeks), which underwent a similar number of MT sessions (n = 30). Muscle strength and activity were measured at baseline and at the end of treatment. Functional ability was also evaluated. RESULTS Although both interventions improved muscle activity parameters, intensive MT showed a significantly and statistically higher intervention effect on electromyographic activity (p < 0.001) and muscle strength (p < 0.001) than the spaced over time protocol. Attending to the Barthel Index scores, the effect on functionality was also greater in the intensive therapy group (p < 0.001), although the functional improvement measured by the Fugl-Meyer test was similar (p = 0.235). The effect of the interventions was independent of age and clinical antecedents. CONCLUSION Intensive MT appears to be more effective than a more spaced over time therapy; therefore, at least in the older adults, this treatment protocol should be recommended in the post-stroke recovery of these patients. Further studies will confirm with certainty whether this treatment is the most suitable guideline for to treat these patients.
Collapse
|
22
|
Li J, Cheng L, Chen S, Zhang J, Liu D, Liang Z, Li H. Functional Connectivity Changes in Multiple-Frequency Bands in Acute Basal Ganglia Ischemic Stroke Patients: A Machine Learning Approach. Neural Plast 2022; 2022:1560748. [PMID: 35356364 PMCID: PMC8958111 DOI: 10.1155/2022/1560748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Several functional magnetic resonance imaging (fMRI) studies have investigated the resting-state functional connectivity (rs-FC) changes in the primary motor cortex (M1) in patients with acute basal ganglia ischemic stroke (BGIS). However, the frequency-specific FC changes of M1 in acute BGIS patients are still unclear. Our study was aimed at exploring the altered FC of M1 in three frequency bands and the potential features as biomarkers for the identification by using a support vector machine (SVM). Methods We included 28 acute BGIS patients and 42 healthy controls (HCs). Seed-based FC of two regions of interest (ROI, bilateral M1s) were calculated in conventional, slow-5, and slow-4 frequency bands. The abnormal voxel-wise FC values were defined as the features for SVM in different frequency bands. Results In the ipsilesional M1, the acute BGIS patients exhibited decreased FC with the right lingual gyrus in the conventional and slow-4 frequency band. Besides, the acute BGIS patients showed increased FC with the right medial superior frontal gyrus (SFGmed) in the conventional and slow-5 frequency band and decreased FC with the left lingual gyrus in the slow-5 frequency band. In the contralesional M1, the BGIS patients showed lower FC with the right SFGmed in the conventional frequency band. The higher FC values with the right lingual gyrus and left SFGmed were detected in the slow-4 frequency band. In the slow-5 frequency band, the BGIS patients showed decreased FC with the left calcarine sulcus. SVM results showed that the combined features (slow-4+slow-5) had the highest accuracy in classification prediction of acute BGIS patients, with an area under curve (AUC) of 0.86. Conclusion Acute BGIS patients had frequency-specific alterations in FC; SVM is a promising method for exploring these frequency-dependent FC alterations. The abnormal brain regions might be potential targets for future researchers in the rehabilitation and treatment of stroke patients.
Collapse
Affiliation(s)
- Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Shijian Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
23
|
Duan YJ, Hua XY, Zheng MX, Wu JJ, Xing XX, Li YL, Xu JG. Corticocortical paired associative stimulation for treating motor dysfunction after stroke: study protocol for a randomised sham-controlled double-blind clinical trial. BMJ Open 2022; 12:e053991. [PMID: 35027421 PMCID: PMC8762140 DOI: 10.1136/bmjopen-2021-053991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Stroke survivors can have a high disability rate with low quality of daily life, resulting in a heavy burden on family and society. Transcranial magnetic stimulation has been widely applied to brain injury repair, neurological disease treatment, cognition and emotion regulation and so on. However, there is still much to be desired in the theories of using these neuromodulation techniques to treat stroke-caused hemiplegia. It is generally recognised that synaptic plasticity is an important basis for functional repair after brain injury. This study protocol aims to examine the corticocortical paired associative stimulation (ccPAS) for inducing synaptic plasticity to rescue the paralysed after stroke. METHODS AND ANALYSIS The current study is designed as a 14-week double-blind randomised sham-controlled clinical trial, composed of 2-week intervention and 12-week follow-up. For the study, 42 patients who had a stroke aged 40-70 will be recruited, who are randomly assigned either to the ccPAS intervention group, or to the control group at a 1:1 ratio, hence an equal number each. In the intervention group, ccPAS is practised in conjunction with the conventional rehabilitation treatment, and in the control group, the conventional rehabilitation treatment is administered with sham stimulation. A total of 10 interventions will be made, 5 times a week for 2 weeks. The same assessors are supposed to evaluate the participants' motor function at four time points of the baseline (before 10 interventions), treatment ending (after 10 interventions), and two intervals of follow-up (1 and 3 months later, respectively). The Fugl-Meyer Assessment Upper Extremity is used for the primary outcomes. The secondary outcomes include changes in the assessment of Action Research Arm Test (ARAT), Modified Barthel Index (MBI), electroencephalogram (EEG) and functional MRI data. The adverse events are to be recorded throughout the study. ETHICS AND DISSEMINATION This study was approved by the Medical Ethics Committee of Yueyang Hospital. All ethical work was performed in accordance with the Helsinki declaration. Written informed consent was obtained from all individual participants included in the study. Study findings will be disseminated in the printed media. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry: ChiCTR2000036685.
Collapse
Affiliation(s)
- Yu-Jie Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Nasrallah FA, Mohamed AZ, Yap HK, Lai HS, Yeow CH, Lim JH. Effect of proprioceptive stimulation using a soft robotic glove on motor activation and brain connectivity in stroke survivors. J Neural Eng 2021; 18:066049. [PMID: 34933283 DOI: 10.1088/1741-2552/ac456c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Soft-robotic-assisted training may improve motor function during post-stroke recovery, but the underlying physiological changes are not clearly understood. We applied a single-session of intensive proprioceptive stimulation to stroke survivors using a soft robotic glove to delineate its short-term influence on brain functional activity and connectivity. APPROACH In this study, we utilized task-based and resting-state functional magnetic resonance imaging (fMRI) to characterize the changes in different brain networks following a soft robotic intervention. Nine stroke patients with hemiplegic upper limb engaged in resting-state and motor-task fMRI. The motor tasks comprised two conditions: active movement of fingers (active task) and glove-assisted active movement using a robotic glove (glove-assisted task), both with visual instruction. Each task was performed using bilateral hands simultaneously or the affected hand only. The same set of experiments was repeated following a 30-minute treatment of continuous passive motion (CPM) using a robotic glove. MAIN RESULTS On simultaneous bimanual movement, increased activation of supplementary motor area (SMA) and primary motor area (M1) were observed after CPM treatment compared to the pre-treatment condition, both in active and glove-assisted task. However, when performing the tasks solely using the affected hand, the phenomena of increased activity were not observed either in active or glove-assisted task. The comparison of the resting-state fMRI between before and after CPM showed the connectivity of the supramarginal gyrus and SMA was increased in the somatosensory network and salience network. SIGNIFICANCE This study demonstrates how passive motion exercise activates M1 and SMA in the post-stroke brain. The effective proprioceptive motor integration seen in bimanual exercise in contrast to the unilateral affected hand exercise suggests that the unaffected hemisphere might reconfigure connectivity to supplement damaged neural networks in the affected hemisphere. The somatosensory modulation rendered by the intense proprioceptive stimulation would affect the motor learning process in stroke survivors.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- The University of Queensland Queensland Brain Institute, The University of Queensland, Brisbane, Saint Lucia, Queensland, 4072, AUSTRALIA
| | - Abdalla Z Mohamed
- The University of Queensland Queensland Brain Institute, The University of Queensland, Brisbane, Australia., Saint Lucia, Queensland, 4072, AUSTRALIA
| | - Hong Kai Yap
- Roceso Technologies, 83 Science Park Dr #04-01, Singapore, 118258, SINGAPORE
| | - Hwa Sen Lai
- National University of Singapore, Biomedical Engineering, Singapore, 119260, SINGAPORE
| | - Chen-Hua Yeow
- National University of Singapore, Biomedical Engineering, Singapore, 119260, SINGAPORE
| | - Jeong Hoon Lim
- School of Medicine, Medicine, National University of Singapore, NUHS Tower block level 10 1E, Kent Ridge Road, Singapore, Singapore, 119228, SINGAPORE
| |
Collapse
|
25
|
Serban CA, Barborica A, Roceanu AM, Mindruta I, Ciurea J, Pâslaru AC, Zăgrean AM, Zăgrean L, Moldovan M. A method to assess the default EEG macrostate and its reactivity to stimulation. Clin Neurophysiol 2021; 134:50-64. [PMID: 34973517 DOI: 10.1016/j.clinph.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/23/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The default mode network (DMN) is deactivated by stimulation. We aimed to assess the DMN reactivity impairment by routine EEG recordings in stroke patients with impaired consciousness. METHODS Binocular light flashes were delivered at 1 Hz in 1-minute epochs, following a 1-minute baseline (PRE). The EEG was decomposed in a series of binary oscillatory macrostates by topographic spectral clustering. The most deactivated macrostate was labeled the default EEG macrostate (DEM). Its reactivity (DER) was quantified as the decrease in DEM occurrence probability during stimulation. A normalized DER index (DERI) was calculated as DER/PRE. The measures were compared between 14 healthy controls and 32 comatose patients under EEG monitoring following an acute stroke. RESULTS The DEM was mapped to the posterior DMN hubs. In the patients, these DEM source dipoles were 3-4 times less frequent and were associated with an increased theta activity. Even in a reduced 6-channel montage, a DER below 6.26% corresponding to a DERI below 0.25 could discriminate the patients with sensitivity and specificity well above 80%. CONCLUSION The method detected the DMN impairment in post-stroke coma patients. SIGNIFICANCE The DEM and its reactivity to stimulation could be useful to monitor the DMN function at bedside.
Collapse
Affiliation(s)
- Cosmin-Andrei Serban
- Physics Department, University of Bucharest, Romania; Termobit Prod SRL, Bucharest, Romania; FHC Inc, Bowdoin, ME, USA.
| | - Andrei Barborica
- Physics Department, University of Bucharest, Romania; Termobit Prod SRL, Bucharest, Romania; FHC Inc, Bowdoin, ME, USA.
| | | | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania.
| | - Jan Ciurea
- Department of Neurosurgery, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania.
| | - Alexandru C Pâslaru
- Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zăgrean
- Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Moldovan
- Termobit Prod SRL, Bucharest, Romania; Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Neuroscience, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
26
|
Ursino M, Ricci G, Astolfi L, Pichiorri F, Petti M, Magosso E. A Novel Method to Assess Motor Cortex Connectivity and Event Related Desynchronization Based on Mass Models. Brain Sci 2021; 11:brainsci11111479. [PMID: 34827478 PMCID: PMC8615480 DOI: 10.3390/brainsci11111479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of motor cortex connectivity is of great value in cognitive neuroscience, in order to provide a better understanding of motor organization and its alterations in pathological conditions. Traditional methods provide connectivity estimations which may vary depending on the task. This work aims to propose a new method for motor connectivity assessment based on the hypothesis of a task-independent connectivity network, assuming nonlinear behavior. The model considers six cortical regions of interest (ROIs) involved in hand movement. The dynamics of each region is simulated using a neural mass model, which reproduces the oscillatory activity through the interaction among four neural populations. Parameters of the model have been assigned to simulate both power spectral densities and coherences of a patient with left-hemisphere stroke during resting condition, movement of the affected, and movement of the unaffected hand. The presented model can simulate the three conditions using a single set of connectivity parameters, assuming that only inputs to the ROIs change from one condition to the other. The proposed procedure represents an innovative method to assess a brain circuit, which does not rely on a task-dependent connectivity network and allows brain rhythms and desynchronization to be assessed on a quantitative basis.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
- Correspondence:
| | - Giulia Ricci
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy; (L.A.); (M.P.)
- Fondazione Santa Lucia, IRCCS Via Ardeatina 306/354, 00179 Roma, Italy;
| | | | - Manuela Petti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy; (L.A.); (M.P.)
- Fondazione Santa Lucia, IRCCS Via Ardeatina 306/354, 00179 Roma, Italy;
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
| |
Collapse
|
27
|
Aamodt EB, Schellhorn T, Stage E, Sanjay AB, Logan PE, Svaldi DO, Apostolova LG, Saltvedt I, Beyer MK. Predicting the Emergence of Major Neurocognitive Disorder Within Three Months After a Stroke. Front Aging Neurosci 2021; 13:705889. [PMID: 34489676 PMCID: PMC8418065 DOI: 10.3389/fnagi.2021.705889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 01/20/2023] Open
Abstract
Background: Neurocognitive disorder (NCD) is common after stroke, with major NCD appearing in about 10% of survivors of a first-ever stroke. We aimed to classify clinical- and imaging factors related to rapid development of major NCD 3 months after a stroke, so as to examine the optimal composition of factors for predicting rapid development of the disorder. We hypothesized that the prediction would mainly be driven by neurodegenerative as opposed to vascular brain changes. Methods: Stroke survivors from five Norwegian hospitals were included from the "Norwegian COgnitive Impairment After STroke" (Nor-COAST) study. A support vector machine (SVM) classifier was trained to distinguish between patients who developed major NCD 3 months after the stroke and those who did not. Potential predictor factors were based on previous literature and included both vascular and neurodegenerative factors from clinical and structural magnetic resonance imaging findings. Cortical thickness was obtained via FreeSurfer segmentations, and volumes of white matter hyperintensities (WMH) and stroke lesions were semi-automatically gathered using FSL BIANCA and ITK-SNAP, respectively. The predictive value of the classifier was measured, compared between classifier models and cross-validated. Results: Findings from 227 stroke survivors [age = 71.7 (11.3), males = (56.4%), stroke severity NIHSS = 3.8 (4.8)] were included. The best predictive accuracy (AUC = 0.876) was achieved by an SVM classifier with 19 features. The model with the fewest number of features that achieved statistically comparable accuracy (AUC = 0.850) was the 8-feature model. These features ranked by their weighting were; stroke lesion volume, WMH volume, left occipital and temporal cortical thickness, right cingulate cortical thickness, stroke severity (NIHSS), antiplatelet medication intake, and education. Conclusion: The rapid (<3 months) development of major NCD after stroke is possible to predict with an 87.6% accuracy and seems dependent on both neurodegenerative and vascular factors, as well as aspects of the stroke itself. In contrast to previous literature, we also found that vascular changes are more important than neurodegenerative ones. Although possible to predict with relatively high accuracy, our findings indicate that the development of rapid onset post-stroke NCD may be more complex than earlier suggested.
Collapse
Affiliation(s)
- Eva Birgitte Aamodt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Till Schellhorn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Edwin Stage
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Apoorva Bharthur Sanjay
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paige E Logan
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Diana Otero Svaldi
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Liana G Apostolova
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Geriatrics, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mona Kristiansen Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Maniar YM, Peck KK, Jenabi M, Gene M, Holodny AI. Functional MRI Shows Altered Deactivation and a Corresponding Decrease in Functional Connectivity of the Default Mode Network in Patients with Gliomas. AJNR Am J Neuroradiol 2021; 42:1505-1512. [PMID: 33985945 DOI: 10.3174/ajnr.a7138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE The default mode network normally decreases in activity during externally directed tasks. Although default mode network connectivity is disrupted in numerous brain pathologies, default mode network deactivation has not been studied in patients with brain tumors. We investigated default mode network deactivation with language task-based fMRI by measuring the anticorrelation of a critical default mode network node, the posterior cingulate cortex, in patients with gliomas and controls; furthermore, we examined default mode network functional connectivity in these patients with task-based and resting-state fMRI. MATERIALS AND METHODS In 10 healthy controls and 30 patients with gliomas, the posterior cingulate cortex was identified on task-based fMRI and was used as an ROI to create connectivity maps from task-based and resting-state fMRI data. We compared the average correlation in each default mode network region between patients and controls for each correlation map and stratified patients by tumor location, hemisphere, and grade. RESULTS Patients with gliomas (P = .001) and, in particular, patients with tumors near the posterior default mode network (P < .001) showed less posterior cingulate cortex anticorrelation in task-based fMRI than controls. Patients with both left- and right-hemisphere tumors, as well as those with grade IV tumors, showed significantly lower posterior cingulate cortex anticorrelation than controls (P = .02, .03, and <.001, respectively). Functional connectivity in each default mode network region was not significantly different between task-based and resting-state maps. CONCLUSIONS Task-based fMRI showed impaired deactivation of the default mode network in patients with gliomas. The functional connectivity of the default mode network in both task-based and resting-state fMRI in patients with gliomas using the posterior cingulate cortex identified in task-based fMRI as an ROI for seed-based correlation analysis has strong overlap.
Collapse
Affiliation(s)
- Y M Maniar
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - K K Peck
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medical Physics (K.K.P.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - M Jenabi
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - M Gene
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - A I Holodny
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (A.I.H.), Weill Medical College of Cornell University, New York, New York
- Department of Neuroscience (A.I.H.), Weill-Cornell Graduate School of the Medical Sciences, New York, New York
| |
Collapse
|
29
|
Guidali G, Roncoroni C, Bolognini N. Paired associative stimulations: Novel tools for interacting with sensory and motor cortical plasticity. Behav Brain Res 2021; 414:113484. [PMID: 34302877 DOI: 10.1016/j.bbr.2021.113484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
In the early 2000s, a novel non-invasive brain stimulation protocol, the paired associative stimulation (PAS), was introduced, allowing to induce and investigate Hebbian associative plasticity within the humans' motor system, with patterns resembling spike-timing-dependent plasticity properties found in cellular models. Since this evidence, PAS efficacy has been proved in healthy, and to a lesser extent, in clinical populations. Recently, novel 'modified' protocols targeting sensorimotor and crossmodal networks appeared in the literature. In the present work, we have reviewed recent advances using these 'modified' PAS protocols targeting sensory and motor cortical networks. To better categorize them, we propose a novel classification according to the nature of the peripheral and cortical stimulations (i.e., within-system, cross-systems, and cortico-cortical PAS). For each protocol of the categories mentioned above, we describe and discuss their main features, how they have been used to study and promote brain plasticity, and their advantages and disadvantages. Overall, current evidence suggests that these novel non-invasive brain stimulation protocols represent very promising tools to study the plastic properties of humans' sensorimotor and crossmodal networks, both in the healthy and in the damaged central nervous system.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Camilla Roncoroni
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
30
|
Ghai S, Maso FD, Ogourtsova T, Porxas AX, Villeneuve M, Penhune V, Boudrias MH, Baillet S, Lamontagne A. Neurophysiological Changes Induced by Music-Supported Therapy for Recovering Upper Extremity Function after Stroke: A Case Series. Brain Sci 2021; 11:brainsci11050666. [PMID: 34065395 PMCID: PMC8161385 DOI: 10.3390/brainsci11050666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Music-supported therapy (MST) follows the best practice principles of stroke rehabilitation and has been proven to instigate meaningful enhancements in motor recovery post-stroke. The existing literature has established that the efficacy and specificity of MST relies on the reinforcement of auditory-motor functional connectivity in related brain networks. However, to date, no study has attempted to evaluate the underlying cortical network nodes that are key to the efficacy of MST post-stroke. In this case series, we evaluated changes in connectivity within the auditory-motor network and changes in upper extremity function following a 3-week intensive piano training in two stroke survivors presenting different levels of motor impairment. Connectivity was assessed pre- and post-training in the α- and the β-bands within the auditory-motor network using magnetoencephalography while participants were passively listening to a standardized melody. Changes in manual dexterity, grip strength, movement coordination, and use of the upper extremity were also documented in both stroke survivors. After training, an increase in the clinical measures was accompanied by enhancements in connectivity between the auditory and motor network nodes for both the α- and the β-bands, especially in the affected hemisphere. These neurophysiological changes associated with the positive effects of post-stroke MST on motor outcomes delineate a path for a larger scale clinical trial.
Collapse
Affiliation(s)
- Shashank Ghai
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
- Correspondence:
| | - Fabien Dal Maso
- Laboratory of Simulation and Movement Modelling, School of Kinesiology and Physical Activity, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage, Montréal, QC H7N 0A5, Canada
| | - Tatiana Ogourtsova
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| | - Alba-Xifra Porxas
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montreal, QC H3A 0C3, Canada;
| | - Myriam Villeneuve
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| | - Virginia Penhune
- Department of Psychology, Concordia University, Montreal, QC H3G 1M8, Canada;
- Laboratory for Brain Music and Sound (BRAMS), Centre for Research in Brain, Language and Music, Montreal, QC H2V 2S9, Canada
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada;
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| |
Collapse
|
31
|
Cheng HJ, Ng KK, Qian X, Ji F, Lu ZK, Teo WP, Hong X, Nasrallah FA, Ang KK, Chuang KH, Guan C, Yu H, Chew E, Zhou JH. Task-related brain functional network reconfigurations relate to motor recovery in chronic subcortical stroke. Sci Rep 2021; 11:8442. [PMID: 33875691 PMCID: PMC8055891 DOI: 10.1038/s41598-021-87789-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke leads to both regional brain functional disruptions and network reorganization. However, how brain functional networks reconfigure as task demand increases in stroke patients and whether such reorganization at baseline would facilitate post-stroke motor recovery are largely unknown. To address this gap, brain functional connectivity (FC) were examined at rest and motor tasks in eighteen chronic subcortical stroke patients and eleven age-matched healthy controls. Stroke patients underwent a 2-week intervention using a motor imagery-assisted brain computer interface-based (MI-BCI) training with or without transcranial direct current stimulation (tDCS). Motor recovery was determined by calculating the changes of the upper extremity component of the Fugl-Meyer Assessment (FMA) score between pre- and post-intervention divided by the pre-intervention FMA score. The results suggested that as task demand increased (i.e., from resting to passive unaffected hand gripping and to active affected hand gripping), patients showed greater FC disruptions in cognitive networks including the default and dorsal attention networks. Compared to controls, patients had lower task-related spatial similarity in the somatomotor-subcortical, default-somatomotor, salience/ventral attention-subcortical and subcortical-subcortical connections, suggesting greater inefficiency in motor execution. Importantly, higher baseline network-specific FC strength (e.g., dorsal attention and somatomotor) and more efficient brain network reconfigurations (e.g., somatomotor and subcortical) from rest to active affected hand gripping at baseline were related to better future motor recovery. Our findings underscore the importance of studying functional network reorganization during task-free and task conditions for motor recovery prediction in stroke.
Collapse
Affiliation(s)
- Hsiao-Ju Cheng
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Kwun Kei Ng
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Qian
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fang Ji
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhong Kang Lu
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Wei Peng Teo
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Xin Hong
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
| | - Fatima Ali Nasrallah
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
- School of Computer Science and Engineering, Nanyang Technology University, Singapore, Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technology University, Singapore, Singapore
| | - Haoyong Yu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Effie Chew
- Division of Neurology/Rehabilitation Medicine, National University Hospital, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore.
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Tahir Foundation Building (MD1), 12 Science Drive 2, #13-05C, Singapore, 117549, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
32
|
D'Imperio D, Romeo Z, Maistrello L, Durgoni E, Della Pietà C, De Filippo De Grazia M, Meneghello F, Turolla A, Zorzi M. Sensorimotor, Attentional, and Neuroanatomical Predictors of Upper Limb Motor Deficits and Rehabilitation Outcome after Stroke. Neural Plast 2021; 2021:8845685. [PMID: 33868400 PMCID: PMC8035034 DOI: 10.1155/2021/8845685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
The rehabilitation of motor deficits following stroke relies on both sensorimotor and cognitive abilities, thereby involving large-scale brain networks. However, few studies have investigated the integration between motor and cognitive domains, as well as its neuroanatomical basis. In this retrospective study, upper limb motor responsiveness to technology-based rehabilitation was examined in a sample of 29 stroke patients (18 with right and 11 with left brain damage). Pretreatment sensorimotor and attentional abilities were found to influence motor recovery. Training responsiveness increased as a function of the severity of motor deficits, whereas spared attentional abilities, especially visuospatial attention, supported motor improvements. Neuroanatomical analysis of structural lesions and white matter disconnections showed that the poststroke motor performance was associated with putamen, insula, corticospinal tract, and frontoparietal connectivity. Motor rehabilitation outcome was mainly associated with the superior longitudinal fasciculus and partial involvement of the corpus callosum. The latter findings support the hypothesis that motor recovery engages large-scale brain networks that involve cognitive abilities and provides insight into stroke rehabilitation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Department of General Psychology and Padova Neuroscience Center, University of Padova, Italy
| |
Collapse
|
33
|
Birle C, Slavoaca D, Balea M, Livint Popa L, Muresanu I, Stefanescu E, Vacaras V, Dina C, Strilciuc S, Popescu BO, Muresanu DF. Cognitive function: holarchy or holacracy? Neurol Sci 2020; 42:89-99. [PMID: 33070201 DOI: 10.1007/s10072-020-04737-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Cognition is the most complex function of the brain. When exploring the inner workings of cognitive processes, it is crucial to understand the complexity of the brain's dynamics. This paper aims to describe the integrated framework of the cognitive function, seen as the result of organization and interactions between several systems and subsystems. We briefly describe several organizational concepts, spanning from the reductionist hierarchical approach, up to the more dynamic theory of open complex systems. The homeostatic regulation of the mechanisms responsible for cognitive processes is showcased as a dynamic interplay between several anticorrelated mechanisms, which can be found at every level of the brain's organization, from molecular and cellular level to large-scale networks (e.g., excitation-inhibition, long-term plasticity-long-term depression, synchronization-desynchronization, segregation-integration, order-chaos). We support the hypothesis that cognitive function is the consequence of multiple network interactions, integrating intricate relationships between several systems, in addition to neural circuits.
Collapse
Affiliation(s)
- Codruta Birle
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Dana Slavoaca
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania. .,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.
| | - Maria Balea
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Livia Livint Popa
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ioana Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Emanuel Stefanescu
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Vitalie Vacaras
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Constantin Dina
- Department of Clinical Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Bogdan Ovidiu Popescu
- Department of Radiology, Faculty of Medicine, "Ovidius" University, Constanta, Romania
| | - Dafin F Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| |
Collapse
|
34
|
Yao G, Li J, Liu S, Wang J, Cao X, Li X, Cheng L, Chen H, Xu Y. Alterations of Functional Connectivity in Stroke Patients With Basal Ganglia Damage and Cognitive Impairment. Front Neurol 2020; 11:980. [PMID: 33013648 PMCID: PMC7511868 DOI: 10.3389/fneur.2020.00980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Stroke with basal ganglia damage (SBG) is a neurological disorder characterized by cognitive impairment. The neurobiological mechanism of cognitive impairment in stroke patients with basal ganglia damage (SBG patients) remains unclear. This study aimed to explore the underlying neurobiological mechanism of cognitive impairment in SBG patients using resting-state functional magnetic resonance imaging (rs-fMRI). Methods: The differences in functional connectivity (FC) between 14 SBG patients (average age: 61.00 ± 7.45 years) and 21 healthy controls (HC) (average age: 60.67 ± 6.95 years) were examined using voxel-mirrored homotopic connectivity (VMHC) and degree centrality (DC). Moreover, we compared the cognitive functions of SBG patients with HC using the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) and Wechsler Memory Scale (WMS). Results: Full-scale intelligence quotient (FIQ) (t = 2.810, p < 0.010) and memory quotient (MQ) (t = 2.920, p < 0.010) scores of SBG patients were significantly lower than those of HC. Compared with HC, significantly decreased VMHC values in the bilateral angular gyrus, supramarginal gyrus, inferior frontal gyrus, middle temporal gyrus, hippocampus, precuneus, precentral gyrus, and middle occipital gyrus and decreased DC values in the right supramarginal gyrus, bilateral angular gyrus, and right postcentral gyrus were observed in SBG patients. Moreover, the VMHC values in the angular gyrus, inferior frontal gyrus, supramarginal gyrus, and middle temporal gyrus and the DC values in the right supramarginal gyrus were significantly correlated with cognitive functions in all participants. Conclusion: Our findings may provide a neural basis for cognitive impairments in SBG patients. Furthermore, local abnormalities of functional networks and interhemispheric interaction deficits may provide new ideas and insights for understanding and treating SBG patients' cognitive impairments.
Collapse
Affiliation(s)
- Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Xiaohua Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Long Cheng
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Boccuni L, Meyer S, D'cruz N, Kessner SS, Marinelli L, Trompetto C, Peeters A, Van Pesch V, Duprez T, Sunaert S, Feys H, Thijs V, Nieuwboer A, Verheyden G. Premotor dorsal white matter integrity for the prediction of upper limb motor impairment after stroke. Sci Rep 2019; 9:19712. [PMID: 31873186 PMCID: PMC6928144 DOI: 10.1038/s41598-019-56334-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
Corticospinal tract integrity after stroke has been widely investigated through the evaluation of fibres descending from the primary motor cortex. However, about half of the corticospinal tract is composed by sub-pathways descending from premotor and parietal areas, to which damage may play a more specific role in motor impairment and recovery, particularly post-stroke. Therefore, the main aim of this study was to investigate lesion load within corticospinal tract sub-pathways as predictors of upper limb motor impairment after stroke. Motor impairment (Fugl-Meyer Upper Extremity score) was evaluated in 27 participants at one week and six months after stroke, together with other clinical and demographic data. Neuroimaging data were obtained within the first week after stroke. Univariate regression analysis indicated that among all neural correlates, lesion load within premotor fibres explained the most variance in motor impairment at six months (R2 = 0.44, p < 0.001). Multivariable regression analysis resulted in three independent, significant variables explaining motor impairment at six months; Fugl-Meyer Upper Extremity score at one week, premotor dorsal fibre lesion load at one week, and age below or above 70 years (total R2 = 0.81; p < 0.001). Early examination of premotor dorsal fibre integrity may be a promising biomarker of upper limb motor impairment after stroke.
Collapse
Affiliation(s)
- Leonardo Boccuni
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium. .,University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy.
| | - Sarah Meyer
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Nicholas D'cruz
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Simon S Kessner
- University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg, Germany
| | - Lucio Marinelli
- University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy
| | - Carlo Trompetto
- University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy
| | - André Peeters
- Cliniques Universitaires Saint-Luc, Department of Neurology, Brussels, Belgium
| | - Vincent Van Pesch
- Cliniques Universitaires Saint-Luc, Department of Neurology, Brussels, Belgium
| | - Thierry Duprez
- Cliniques Universitaires Saint-Luc, Department of Radiology, Brussels, Belgium
| | - Stefan Sunaert
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Leuven, Belgium
| | - Hilde Feys
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, Stroke Division, Melbourne, Australia.,Austin Health, Department of Neurology, Melbourne, Australia
| | - Alice Nieuwboer
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Geert Verheyden
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| |
Collapse
|
36
|
Larivière S, Xifra-Porxas A, Kassinopoulos M, Niso G, Baillet S, Mitsis GD, Boudrias MH. Functional and effective reorganization of the aging brain during unimanual and bimanual hand movements. Hum Brain Mapp 2019; 40:3027-3040. [PMID: 30866155 DOI: 10.1002/hbm.24578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 02/03/2023] Open
Abstract
Motor performance decline observed during aging is linked to changes in brain structure and function, however, the precise neural reorganization associated with these changes remains largely unknown. We investigated the neurophysiological correlates of this reorganization by quantifying functional and effective brain network connectivity in elderly individuals (n = 11; mean age = 67.5 years), compared to young adults (n = 12; mean age = 23.7 years), while they performed visually-guided unimanual and bimanual handgrips inside the magnetoencephalography (MEG) scanner. Through a combination of principal component analysis and Granger causality, we observed age-related increases in functional and effective connectivity in whole-brain, task-related motor networks. Specifically, elderly individuals demonstrated (i) greater information flow from contralateral parietal and ipsilateral secondary motor regions to the left primary motor cortex during the unimanual task and (ii) decreased interhemispheric temporo-frontal communication during the bimanual task. Maintenance of motor performance and task accuracy in elderly was achieved by hyperactivation of the task-specific motor networks, reflecting a possible mechanism by which the aging brain recruits additional resources to counteract known myelo- and cytoarchitectural changes. Furthermore, resting-state sessions acquired before and after each motor task revealed that both older and younger adults maintain the capacity to adapt to task demands via network-wide increases in functional connectivity. Collectively, our study consolidates functional connectivity and directionality of information flow in systems-level cortical networks during aging and furthers our understanding of neuronal flexibility in motor processes.
Collapse
Affiliation(s)
- Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Alba Xifra-Porxas
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada
| | - Michalis Kassinopoulos
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada
| | - Guiomar Niso
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Biomedical Image Technologies, Technical University of Madrid and CIBER-BBN, Madrid, Spain
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, Québec, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Québec, Canada
| |
Collapse
|
37
|
Larivière S, Vos de Wael R, Paquola C, Hong SJ, Mišić B, Bernasconi N, Bernasconi A, Bonilha L, Bernhardt BC. Microstructure-Informed Connectomics: Enriching Large-Scale Descriptions of Healthy and Diseased Brains. Brain Connect 2018; 9:113-127. [PMID: 30079754 DOI: 10.1089/brain.2018.0587] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rapid advances in neuroimaging and network science have produced powerful tools and measures to appreciate human brain organization at multiple spatial and temporal scales. It is now possible to obtain increasingly meaningful representations of whole-brain structural and functional brain networks and to formally assess macroscale principles of network topology. In addition to its utility in characterizing healthy brain organization, individual variability, and life span-related changes, there is high promise of network neuroscience for the conceptualization and, ultimately, management of brain disorders. In the current review, we argue for a science of the human brain that, while strongly embracing macroscale connectomics, also recommends awareness of brain properties derived from meso- and microscale resolutions. Such features include MRI markers of tissue microstructure, local functional properties, as well as information from nonimaging domains, including cellular, genetic, or chemical data. Integrating these measures with connectome models promises to better define the individual elements that constitute large-scale networks, and clarify the notion of connection strength among them. By enriching the description of large-scale networks, this approach may improve our understanding of fundamental principles of healthy brain organization. Notably, it may also better define the substrate of prevalent brain disorders, including stroke, autism, as well as drug-resistant epilepsies that are each characterized by intriguing interactions between local anomalies and network-level perturbations.
Collapse
Affiliation(s)
- Sara Larivière
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos de Wael
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Seok-Jun Hong
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,2 NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bratislav Mišić
- 3 Network Neuroscience Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- 2 NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- 2 NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Leonardo Bonilha
- 4 Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Boris C Bernhardt
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|