1
|
Loubinoux I, Lafuma M, Rigal J, Colitti N, Albucher JF, Raposo N, Planton M, Olivot JM, Chollet F. Diffusion tensor imaging and gray matter volumetry to evaluate cerebral remodeling processes after a pure motor stroke: a longitudinal study. J Neurol 2024; 271:6876-6887. [PMID: 39223359 PMCID: PMC11447101 DOI: 10.1007/s00415-024-12648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/05/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Clinical factors are not sufficient to fix a prognosis of recovery after stroke. Pyramidal tract or alternate motor fiber (aMF: reticulo-, rubrospinal pathways and transcallosal fibers) integrity and remodeling processes assessable by diffusion tensor MRI (DTI) and voxel-based morphometry (VBM) may be of interest. The primary objective was to study longitudinal cortical brain changes using VBM and longitudinal corticospinal tract changes using DTI during the first 4 months after lacunar cerebral infarction. The second objective was to determine which changes were correlated to clinical improvement. METHODS Twenty-one patients with deep brain ischemic infarct with pure motor deficit (NIHSS score ≥ 2) were recruited at Purpan Hospital and included. Motor deficit was measured [Nine peg hole test (NPHT), dynamometer (DYN), Hand-Tapping Test (HTT)], and a 3T MRI scan (VBM and DTI) was performed during the acute and subacute phases. RESULTS White matter changes: corticospinal fractional anisotropy (FACST) was significantly reduced at follow-up (approximately 4 months) on the lesion side. FAr (FA ratio in affected/unaffected hemispheres) in the corona radiata was correlated to the motor performance at the NPHT, DYN, and HTT at follow-up. The presence of aMFs was not associated with the extent of recovery. Grey matter changes: VBM showed significant increased cortical thickness in the ipsilesional premotor cortex at follow-up. VBM changes in the anterior cingulum positively correlated with improvement in motor measures between baseline and follow-up. DISCUSSION To our knowledge, this study is original because is a longitudinal study combining VBM and DTI during the first 4 months after stroke in a series of patients selected on pure motor deficit. Our data would suggest that good recovery relies on spared CST fibers, probably from the premotor cortex, rather than on the aMF in this group with mild motor deficit. The present study suggests that VBM and FACST could provide reliable biomarkers of post-stroke atrophy, reorganization, plasticity and recovery. CLINICALTRIALS GOV IDENTIFIER NCT01862172, registered May 24, 2013.
Collapse
Affiliation(s)
| | - Marie Lafuma
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
- Neurology Department, Toulouse, France
| | - Julien Rigal
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
- Neurology Department, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
- Neurology Department, Toulouse, France
| | - Nicolas Raposo
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
- Neurology Department, Toulouse, France
| | - Mélanie Planton
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
- Neurology Department, Toulouse, France
| | - Jean-Marc Olivot
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
- Neurology Department, Toulouse, France
| | - François Chollet
- Toulouse NeuroImaging Center (ToNIC), Toulouse, France
- Neurology Department, Toulouse, France
| |
Collapse
|
2
|
Weigel K, Klingner CM, Brodoehl S, Wagner F, Schwab M, Güllmar D, Mayer TE, Güttler FV, Teichgräber U, Gaser C. Normative connectome-based analysis of sensorimotor deficits in acute subcortical stroke. Front Neurosci 2024; 18:1400944. [PMID: 39184327 PMCID: PMC11344269 DOI: 10.3389/fnins.2024.1400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The interrelation between acute ischemic stroke, persistent disability, and uncertain prognosis underscores the need for improved methods to predict clinical outcomes. Traditional approaches have largely focused on analysis of clinical metrics, lesion characteristics, and network connectivity, using techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI). However, these methods are not routinely used in acute stroke diagnostics. This study introduces an innovative approach that not only considers the lesion size in relation to the National Institutes of Health Stroke Scale (NIHSS score), but also evaluates the impact of disrupted fibers and their connections to cortical regions by introducing a disconnection value. By identifying fibers traversing the lesion and estimating their number within predefined regions of interest (ROIs) using a normative connectome atlas, our method bypasses the need for individual DTI scans. In our analysis of MRI data (T1 and T2) from 51 patients with acute or subacute subcortical stroke presenting with motor or sensory deficits, we used simple linear regression to assess the explanatory power of lesion size and disconnection value on NIHSS score. Subsequent hierarchical multiple linear regression analysis determined the incremental value of disconnection metrics over lesion size alone in relation to NIHSS score. Our results showed that models incorporating the disconnection value accounted for more variance than those based solely on lesion size (lesion size explained 44% variance, disconnection value 60%). Furthermore, hierarchical regression revealed a significant improvement (p < 0.001) in model fit when adding the disconnection value, confirming its critical role in stroke assessment. Our approach, which integrates a normative connectome to quantify disconnections to cortical regions, provides a significant improvement in assessing the current state of stroke impact compared to traditional measures that focus on lesion size. This is achieved by taking into account the lesion's location and the connectivity of the affected white matter tracts, providing a more comprehensive assessment of stroke severity as reflected in the NIHSS score. Future research should extend the validation of this approach to larger and more diverse populations, with a focus on refining its applicability to clinical assessment and long-term outcome prediction.
Collapse
Affiliation(s)
- Karolin Weigel
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Franziska Wagner
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Thomas E. Mayer
- Section Neuroradiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Felix V. Güttler
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Pacchiano F, Tortora M, Criscuolo S, Jaber K, Acierno P, De Simone M, Tortora F, Briganti F, Caranci F. Artificial intelligence applied in acute ischemic stroke: from child to elderly. LA RADIOLOGIA MEDICA 2024; 129:83-92. [PMID: 37878222 PMCID: PMC10808481 DOI: 10.1007/s11547-023-01735-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
This review will summarize artificial intelligence developments in acute ischemic stroke in recent years and forecasts for the future. Stroke is a major healthcare concern due to its effects on the patient's quality of life and its dependence on the timing of the identification as well as the treatment. In recent years, attention increased on the use of artificial intelligence (AI) systems to help categorize, prognosis, and to channel these patients toward the right therapeutic procedure. Machine learning (ML) and in particular deep learning (DL) systems using convoluted neural networks (CNN) are becoming increasingly popular. Various studies over the years evaluated the use of these methods of analysis and prediction in the assessment of stroke patients, and at the same time, several applications and software have been developed to support the neuroradiologists and the stroke team to improve patient outcomes.
Collapse
Affiliation(s)
- Francesco Pacchiano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Mario Tortora
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Sabrina Criscuolo
- Pediatric University Department, Bambino Gesù Children Hospital, Rome, Italy
| | - Katya Jaber
- Department of Elektrotechnik und Informatik, Hochschule Bremen, Bremen, Germany
| | | | - Marta De Simone
- UOC Neuroradiology, AORN San Giuseppe Moscati, Avellino, Italy
| | - Fabio Tortora
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Francesco Briganti
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Ferdinando Caranci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
4
|
Shams B, Reisch K, Vajkoczy P, Lippert C, Picht T, Fekonja LS. Improved prediction of glioma-related aphasia by diffusion MRI metrics, machine learning, and automated fiber bundle segmentation. Hum Brain Mapp 2023. [PMID: 37318944 PMCID: PMC10365236 DOI: 10.1002/hbm.26393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.
Collapse
Affiliation(s)
- Boshra Shams
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Klara Reisch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam, Digital Engineering Faculty, Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
5
|
Li Q, Chi L, Zhao W, Wu L, Jiao C, Zheng X, Zhang K, Li X. Machine learning prediction of motor function in chronic stroke patients: a systematic review and meta-analysis. Front Neurol 2023; 14:1039794. [PMID: 37388543 PMCID: PMC10299899 DOI: 10.3389/fneur.2023.1039794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Background Recent studies have reported that machine learning (ML), with a relatively strong capacity for processing non-linear data and adaptive ability, could improve the accuracy and efficiency of prediction. The article summarizes the published studies on ML models that predict motor function 3-6 months post-stroke. Methods A systematic literature search was conducted in PubMed, Embase, Cochorane and Web of Science as of April 3, 2023 for studies on ML prediction of motor function in stroke patients. The quality of the literature was assessed using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A random-effects model was preferred for meta-analysis using R4.2.0 because of the different variables and parameters. Results A total of 44 studies were included in this meta-analysis, involving 72,368 patients and 136 models. Models were categorized into subgroups according to the predicted outcome Modified Rankin Scale cut-off value and whether they were constructed based on radiomics. C-statistics, sensitivity, and specificity were calculated. The random-effects model showed that the C-statistics of all models were 0.81 (95% CI: 0.79; 0.83) in the training set and 0.82 (95% CI: 0.80; 0.85) in the validation set. According to different Modified Rankin Scale cut-off values, C-statistics of ML models predicting Modified Rankin Scale>2(used most widely) in stroke patients were 0.81 (95% CI: 0.78; 0.84) in the training set, and 0.84 (95% CI: 0.81; 0.87) in the validation set. C-statistics of radiomics-based ML models in the training set and validation set were 0.81 (95% CI: 0.78; 0.84) and 0.87 (95% CI: 0.83; 0.90), respectively. Conclusion ML can be used as an assessment tool for predicting the motor function in patients with 3-6 months of post-stroke. Additionally, the study found that ML models with radiomics as a predictive variable were also demonstrated to have good predictive capabilities. This systematic review provides valuable guidance for the future optimization of ML prediction systems that predict poor motor outcomes in stroke patients. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022335260, identifier: CRD42022335260.
Collapse
Affiliation(s)
- Qinglin Li
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Lei Chi
- Department of Acupuncture, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weiying Zhao
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Lei Wu
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chuanxu Jiao
- Department of Neurorehabilitation, Taizhou Enze Medical Center Luqiao Hospital, Taizhou, Zhejiang, China
| | - Xue Zheng
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Kaiyue Zhang
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoning Li
- Department of Acupuncture, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Moulton E, Valabregue R, Piotin M, Marnat G, Saleme S, Lapergue B, Lehericy S, Clarencon F, Rosso C. Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging. J Cereb Blood Flow Metab 2023; 43:198-209. [PMID: 36169033 PMCID: PMC9903217 DOI: 10.1177/0271678x221129230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78-0.87]) than lesion volume (0.78 [0.73-0.83]) and ASPECTS (0.77 [0.71-0.83]) (p < 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82-0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59-0.73]) than lesion volume (0.48 [0.40-0.56]) and ASPECTS (0.50 [0.41-0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.
Collapse
Affiliation(s)
- Eric Moulton
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France
| | - Michel Piotin
- Department of Diagnostic and Interventional Neuroradiology, Rothschild Foundation, Paris, France
| | - Gaultier Marnat
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Bordeaux, Bordeaux, France
| | - Suzana Saleme
- Diagnostic and Interventional Neuroradiology, University Hospital of Limoges, Limoges, France
| | - Bertrand Lapergue
- Department of Stroke Center and Diagnostic and Interventional Neuroradiology, University of Versailles and Saint Quentin en Yvelines, Foch Hospital, Suresnes, France
| | - Stephane Lehericy
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France
- AP-HP Service de Neuroradiologie diagnostique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Frederic Clarencon
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP Service de Neuroradiologie interventionelle Hôpital Pitié-Salpêtrière, Paris, France
- ICM iCRIN team: STAR (Stroke Therapy And Registries)
| | - Charlotte Rosso
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- ICM iCRIN team: STAR (Stroke Therapy And Registries)
- AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Bonkhoff AK, Grefkes C. Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence. Brain 2022; 145:457-475. [PMID: 34918041 PMCID: PMC9014757 DOI: 10.1093/brain/awab439] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Stroke ranks among the leading causes for morbidity and mortality worldwide. New and continuously improving treatment options such as thrombolysis and thrombectomy have revolutionized acute stroke treatment in recent years. Following modern rhythms, the next revolution might well be the strategic use of the steadily increasing amounts of patient-related data for generating models enabling individualized outcome predictions. Milestones have already been achieved in several health care domains, as big data and artificial intelligence have entered everyday life. The aim of this review is to synoptically illustrate and discuss how artificial intelligence approaches may help to compute single-patient predictions in stroke outcome research in the acute, subacute and chronic stage. We will present approaches considering demographic, clinical and electrophysiological data, as well as data originating from various imaging modalities and combinations thereof. We will outline their advantages, disadvantages, their potential pitfalls and the promises they hold with a special focus on a clinical audience. Throughout the review we will highlight methodological aspects of novel machine-learning approaches as they are particularly crucial to realize precision medicine. We will finally provide an outlook on how artificial intelligence approaches might contribute to enhancing favourable outcomes after stroke.
Collapse
Affiliation(s)
- Anna K Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Grefkes
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Shafaat O, Bernstock JD, Shafaat A, Yedavalli VS, Elsayed G, Gupta S, Sotoudeh E, Sair HI, Yousem DM, Sotoudeh H. Leveraging artificial intelligence in ischemic stroke imaging. J Neuroradiol 2021; 49:343-351. [PMID: 33984377 DOI: 10.1016/j.neurad.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Artificial intelligence (AI) is having a disruptive and transformative effect on clinical medicine. Prompt clinical diagnosis and imaging are critical for minimizing the morbidity and mortality associated with ischemic strokes. Clinicians must understand the current strengths and limitations of AI to provide optimal patient care. Ischemic stroke is one of the medical fields that have been extensively evaluated by artificial intelligence. Presented herein is a review of artificial intelligence applied to clinical management of stroke, geared toward clinicians. In this review, we explain the basic concept of AI and machine learning. This review is without coding and mathematical details and targets the clinicians involved in stroke management without any computer or mathematics' background. Here the AI application in ischemic stroke is summarized and classified into stroke imaging (automated diagnosis of brain infarction, automated ASPECT score calculation, infarction segmentation), prognosis prediction, and patients' selection for treatment.
Collapse
Affiliation(s)
- Omid Shafaat
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Amir Shafaat
- Department of Mechanical Engineering, Arak University of Technology, Daneshgah St, 38181-41167 Arak, Iran.
| | - Vivek S Yedavalli
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, 1960 6th Ave. S., Birmingham, AL 35233, USA.
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Ehsan Sotoudeh
- Department of Surgery, Iranian Hospital in Dubai, P.O.BOX: 2330, Al-Wasl Road, Dubai 2330, UAE.
| | - Haris I Sair
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA; Radiology Artificial Intelligence Lab (RAIL), Malone Center for Engineering in Healthcare, Johns Hopkins University Whiting School of Engineering, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | - David M Yousem
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| | - Houman Sotoudeh
- Department of Radiology, University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Bonkhoff AK, Schirmer MD, Bretzner M, Etherton M, Donahue K, Tuozzo C, Nardin M, Giese A, Wu O, D. Calhoun V, Grefkes C, Rost NS. Abnormal dynamic functional connectivity is linked to recovery after acute ischemic stroke. Hum Brain Mapp 2021; 42:2278-2291. [PMID: 33650754 PMCID: PMC8046120 DOI: 10.1002/hbm.25366] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the current study was to explore the whole-brain dynamic functional connectivity patterns in acute ischemic stroke (AIS) patients and their relation to short and long-term stroke severity. We investigated resting-state functional MRI-based dynamic functional connectivity of 41 AIS patients two to five days after symptom onset. Re-occurring dynamic connectivity configurations were obtained using a sliding window approach and k-means clustering. We evaluated differences in dynamic patterns between three NIHSS-stroke severity defined groups (mildly, moderately, and severely affected patients). Furthermore, we built Bayesian hierarchical models to evaluate the predictive capacity of dynamic connectivity and examine the interrelation with clinical measures, such as white matter hyperintensity lesions. Finally, we established correlation analyses between dynamic connectivity and AIS severity as well as 90-day neurological recovery (ΔNIHSS). We identified three distinct dynamic connectivity configurations acutely post-stroke. More severely affected patients spent significantly more time in a configuration that was characterized by particularly strong connectivity and isolated processing of functional brain domains (three-level ANOVA: p < .05, post hoc t tests: p < .05, FDR-corrected). Configuration-specific time estimates possessed predictive capacity of stroke severity in addition to the one of clinical measures. Recovery, as indexed by the realized change of the NIHSS over time, was significantly linked to the dynamic connectivity between bilateral intraparietal lobule and left angular gyrus (Pearson's r = -.68, p = .003, FDR-corrected). Our findings demonstrate transiently increased isolated information processing in multiple functional domains in case of severe AIS. Dynamic connectivity involving default mode network components significantly correlated with recovery in the first 3 months poststroke.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
- Cognitive NeuroscienceInstitute of Neuroscience and Medicine (INM‐3), Research Centre JuelichJuelichGermany
| | - Markus D. Schirmer
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of Population Health SciencesGerman Centre for Neurodegenerative Diseases (DZNE)Germany
| | - Martin Bretzner
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
- Neurosciences and CognitionUniversity of LilleLilleFrance
| | - Mark Etherton
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Kathleen Donahue
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Carissa Tuozzo
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Marco Nardin
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Anne‐Katrin Giese
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | - Christian Grefkes
- Cognitive NeuroscienceInstitute of Neuroscience and Medicine (INM‐3), Research Centre JuelichJuelichGermany
- Department of NeurologyUniversity Hospital CologneCologneGermany
| | - Natalia S. Rost
- J. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
10
|
Zhu G, Jiang B, Chen H, Tong E, Xie Y, Faizy TD, Heit JJ, Zaharchuk G, Wintermark M. Artificial Intelligence and Stroke Imaging. Neuroimaging Clin N Am 2020; 30:479-492. [DOI: 10.1016/j.nic.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sirsat MS, Fermé E, Câmara J. Machine Learning for Brain Stroke: A Review. J Stroke Cerebrovasc Dis 2020; 29:105162. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/29/2022] Open
|
12
|
Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling. Cortex 2020; 126:49-62. [DOI: 10.1016/j.cortex.2020.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023]
|
13
|
Moulton E, Magno S, Valabregue R, Amor-Sahli M, Pires C, Lehéricy S, Leger A, Samson Y, Rosso C. Acute Diffusivity Biomarkers for Prediction of Motor and Language Outcome in Mild-to-Severe Stroke Patients. Stroke 2019; 50:2050-2056. [DOI: 10.1161/strokeaha.119.024946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Purpose—
Early severity of stroke symptoms—especially in mild-to-severe stroke patients—are imperfect predictors of long-term motor and aphasia outcome. Motor function and language processing heavily rely on the preservation of important white matter fasciculi in the brain. Axial diffusivity (AD) from the diffusion tensor imaging model has repeatedly shown to accurately reflect acute axonal damage and is thus optimal to probe the integrity of important white matter bundles and their relationship with long-term outcome. Our aim was to investigate the independent prognostic value of the AD of white matter tracts in the motor and language network evaluated at 24 hours poststroke for motor and aphasia outcome at 3 months poststroke.
Methods—
Seventeen (motor cohort) and 28 (aphasia cohort) thrombolyzed patients with initial mild-to-severe stroke underwent a diffusion tensor imaging sequence at 24 hours poststroke. Motor and language outcome were evaluated at 3 months poststroke with a composite motor score and the aphasia handicap scale. We first used stepwise regression to determine which classic (age, initial motor or aphasia severity, and lesion volume) and imaging (ratio of affected/unaffected AD of motor and language fasciculi) factors were related to outcome. Second, to determine the specificity of our a priori choices of fasciculi, we performed voxel-based analyses to determine if the same, additional, or altogether new regions were associated with long-term outcome.
Results—
The ratio of AD in the corticospinal tract was the sole predictor of long-term motor outcome, and the ratio of AD in the arcuate fasciculus—along with age and initial aphasia severity—was an independent predictor of 3-month aphasia outcome. White matter regions overlapping with these fasciculi naturally emerged in the corresponding voxel-based analyses.
Conclusions—
AD of the corticospinal tract and arcuate fasciculus are effective biomarkers of long-term motor and aphasia outcome, respectively.
Collapse
Affiliation(s)
- Eric Moulton
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
| | - Serena Magno
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
| | - Romain Valabregue
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France (S.L., R.V.)
| | - Melika Amor-Sahli
- Department of Neuroradiology, AP-HP (M.A.-S., S.L.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Christine Pires
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France (S.L., R.V.)
- ICM team Movement Investigation and Therapeutics (S.L., C.R.)
- Department of Neuroradiology, AP-HP (M.A.-S., S.L.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Leger
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Yves Samson
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Rosso
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- ICM team Movement Investigation and Therapeutics (S.L., C.R.)
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|