1
|
Pezeshgi S, Ghaderi S, Mohammadi S, Karimi N, Ziaadini B, Mohammadi M, Fatehi F. Diffusion tensor imaging biomarkers and clinical assessments in amyotrophic lateral sclerosis (ALS) patients: an exploratory study. Ann Med Surg (Lond) 2024; 86:5080-5090. [PMID: 39239063 PMCID: PMC11374192 DOI: 10.1097/ms9.0000000000002332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 09/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Biomarkers are needed to improve diagnosis, gauge progression, and evaluate treatment. Diffusion tensor imaging (DTI) is a promising biomarker for detecting microstructural alterations in the white matter tracts. This study aimed to assess DTI metrics as biomarkers and to examine their relationship with clinical assessments in patients with ALS. Eleven patients with ALS and 21 healthy controls (HCs) underwent 3T MRI with DTI. DTI metrics, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD), were compared between key motor and extra-motor tract groups. Group comparisons and correlations between DTI metrics also correlated with clinical scores of disability (ALSFRS-R), muscle strength (dynamometry), and motor unit loss (MUNIX). Widespread differences were found between patients with ALS and HCs in DTI metrics, including decreased FA and increased diffusivity metrics. However, MD and RD are more sensitive metrics for detecting white matter changes in patients with ALS. Significant interhemispheric correlations between the tract DTI metrics were also observed. DTI metrics showed symmetry between the hemispheres and correlated with the clinical assessments. MD, RD, and AD increases significantly correlated with lower ALSFRS-R and MUNIX scores and weaker dynamometry results. DTI reveals microstructural damage along the motor and extra-motor regions in ALS patients. DTI metrics can serve as quantitative neuroimaging biomarkers for diagnosis, prognosis, monitoring of progression, and treatment. Combined analysis of imaging, electrodiagnostic, and functional biomarkers shows potential for characterizing disease pathophysiology and progression.
Collapse
Affiliation(s)
- Saharnaz Pezeshgi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital
| | - Narges Karimi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital
| | | | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital
- Department of Neurology, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
2
|
Baek S, Jang J, Jung HJ, Lee H, Choe Y. Advanced Immunolabeling Method for Optical Volumetric Imaging Reveals Dystrophic Neurites of Dopaminergic Neurons in Alzheimer's Disease Mouse Brain. Mol Neurobiol 2024; 61:3976-3999. [PMID: 38049707 PMCID: PMC11236860 DOI: 10.1007/s12035-023-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Optical brain clearing combined with immunolabeling is valuable for analyzing molecular tissue structures, including complex synaptic connectivity. However, the presence of aberrant lipid deposition due to aging and brain disorders poses a challenge for achieving antibody penetration throughout the entire brain volume. Herein, we present an efficient brain-wide immunolabeling method, the immuno-active clearing technique (iACT). The treatment of brain tissues with a zwitterionic detergent, specifically SB3-12, significantly enhanced tissue permeability by effectively mitigating lipid barriers. Notably, Quadrol treatment further refines the methodology by effectively eliminating residual detergents from cleared brain tissues, subsequently amplifying volumetric fluorescence signals. Employing iACT, we uncover disrupted axonal projections within the mesolimbic dopaminergic (DA) circuits in 5xFAD mice. Subsequent characterization of DA neural circuits in 5xFAD mice revealed proximal axonal swelling and misrouting of distal axonal compartments in proximity to amyloid-beta plaques. Importantly, these structural anomalies in DA axons correlate with a marked reduction in DA release within the nucleus accumbens. Collectively, our findings highlight the efficacy of optical volumetric imaging with iACT in resolving intricate structural alterations in deep brain neural circuits. Furthermore, we unveil the compromised integrity of DA pathways, contributing to the underlying neuropathology of Alzheimer's disease. The iACT technique thus holds significant promise as a valuable asset for advancing our understanding of complex neurodegenerative disorders and may pave the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Soonbong Baek
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Jaemyung Jang
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyun Jin Jung
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busanjin-gu, Busan, 47340, Republic of Korea
| | - Youngshik Choe
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea.
| |
Collapse
|
3
|
Kleinerova J, Tahedl M, Tan EL, Delaney S, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Chang KM, Finegan E, Bede P. Supra- and infra-tentorial degeneration patterns in primary lateral sclerosis: a multimodal longitudinal neuroradiology study. J Neurol 2024; 271:3239-3255. [PMID: 38438819 PMCID: PMC11136747 DOI: 10.1007/s00415-024-12261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is traditionally solely associated with progressive upper motor neuron dysfunction manifesting in limb spasticity, gait impairment, bulbar symptoms and pseudobulbar affect. Recent studies have described frontotemporal dysfunction in some patients resulting in cognitive manifestations. Cerebellar pathology is much less well characterised despite sporadic reports of cerebellar disease. METHODS A multi-timepoint, longitudinal neuroimaging study was conducted to characterise the evolution of both intra-cerebellar disease burden and cerebro-cerebellar connectivity. The volumes of deep cerebellar nuclei, cerebellar cortical volumes, cerebro-cerebellar structural and functional connectivity were assessed longitudinally in a cohort of 43 individuals with PLS. RESULTS Cerebello-frontal, -temporal, -parietal, -occipital and cerebello-thalamic structural disconnection was detected at baseline based on radial diffusivity (RD) and cerebello-frontal decoupling was also evident based on fractional anisotropy (FA) alterations. Functional connectivity changes were also detected in cerebello-frontal, parietal and occipital projections. Volume reductions were identified in the vermis, anterior lobe, posterior lobe, and crura. Among the deep cerebellar nuclei, the dorsal dentate was atrophic. Longitudinal follow-up did not capture statistically significant progressive changes. Significant primary motor cortex atrophy and inter-hemispheric transcallosal degeneration were also captured. CONCLUSIONS PLS is not only associated with upper motor neuron dysfunction, but cerebellar cortical volume loss and deep cerebellar nuclear atrophy can also be readily detected. In addition to intra-cerebellar disease burden, cerebro-cerebellar connectivity alterations also take place. Our data add to the evolving evidence of widespread neurodegeneration in PLS beyond the primary motor regions. Cerebellar dysfunction in PLS is likely to exacerbate bulbar, gait and dexterity impairment and contribute to pseudobulbar affect.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Siobhan Delaney
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
4
|
Silva-Hucha S, Fernández de Sevilla ME, Humphreys KM, Benson FE, Franco JM, Pozo D, Pastor AM, Morcuende S. VEGF expression disparities in brainstem motor neurons of the SOD1 G93A ALS model: Correlations with neuronal vulnerability. Neurotherapeutics 2024; 21:e00340. [PMID: 38472048 PMCID: PMC11070718 DOI: 10.1016/j.neurot.2024.e00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease characterized by severe muscle weakness mainly due to degeneration and death of motor neurons. A peculiarity of the neurodegenerative processes is the variable susceptibility among distinct neuronal populations, exemplified by the contrasting resilience of motor neurons innervating the ocular motor system and the more vulnerable facial and hypoglossal motor neurons. The crucial role of vascular endothelial growth factor (VEGF) as a neuroprotective factor in the nervous system is well-established since a deficit of VEGF has been related to motoneuronal degeneration. In this study, we investigated the survival of ocular, facial, and hypoglossal motor neurons utilizing the murine SOD1G93A ALS model at various stages of the disease. Our primary objective was to determine whether the survival of the different brainstem motor neurons was linked to disparate VEGF expression levels in resilient and susceptible motor neurons throughout neurodegeneration. Our findings revealed a selective loss of motor neurons exclusively within the vulnerable nuclei. Furthermore, a significantly higher level of VEGF was detected in the more resistant motor neurons, the extraocular ones. We also examined whether TDP-43 dynamics in the brainstem motor neuron of SOD mice was altered. Our data suggests that the increased VEGF levels observed in extraocular motor neurons may potentially underlie their resistance during the neurodegenerative processes in ALS in a TDP-43-independent manner. Our work might help to better understand the underlying mechanisms of selective vulnerability of motor neurons in ALS.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Cell and Developmental Biology, University College London, Medawar Building, Gower Street, London WC1E 6BT, UK
| | | | - Kirsty M Humphreys
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jaime M Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla Medical School, 41009 Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
5
|
Khamaysa M, Lefort M, Pélégrini-Issac M, Lackmy-Vallée A, Mendili MME, Preuilh A, Devos D, Bruneteau G, Salachas F, Lenglet T, Amador MM, Le Forestier N, Hesters A, Gonzalez J, Rolland AS, Desnuelle C, Chupin M, Querin G, Georges M, Morelot-Panzini C, Marchand-Pauvert V, Pradat PF. Quantitative brainstem and spinal MRI in amyotrophic lateral sclerosis: implications for predicting noninvasive ventilation needs. J Neurol 2024; 271:1235-1246. [PMID: 37910250 DOI: 10.1007/s00415-023-12045-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Respiratory complications resulting from motor neurons degeneration are the primary cause of death in amyotrophic lateral sclerosis (ALS). Predicting the need for non-invasive ventilation (NIV) in ALS is important for advance care planning and clinical trial design. The aim of this study was to assess the potential of quantitative MRI at the brainstem and spinal cord levels to predict the need for NIV during the first six months after diagnosis. METHODS Forty-one ALS patients underwent MRI and spirometry shortly after diagnosis. The need for NIV was monitored according to French health guidelines for 6 months. The performance of four regression models based on: clinical variables, brainstem structures volumes, cervical spinal measurements, and combined variables were compared to predict the need for NIV within this period. RESULTS Both the clinical model (R2 = 0.28, AUC = 0.85, AICc = 42.67, BIC = 49.8) and the brainstem structures' volumes model (R2 = 0.30, AUC = 0.85, AICc = 40.13, BIC = 46.99) demonstrated good predictive performance. In addition, cervical spinal cord measurements model similar performance (R2 = 0.338, AUC = 0.87, AICc = 37.99, BIC = 44.49). Notably, the combined model incorporating predictors from all three models yielded the best performance (R2 = 0.60, AUC = 0.959, AICc = 36.38, BIC = 44.8). These findings are supported by observed positive correlations between brainstem volumes, cervical (C4/C7) cross-sectional area, and spirometry-measured lung volumes. CONCLUSIONS Our study shows that brainstem volumes and spinal cord area are promising measures to predict respiratory intervention needs in ALS.
Collapse
Affiliation(s)
- M Khamaysa
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - M Lefort
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - M Pélégrini-Issac
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - A Lackmy-Vallée
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - M M El Mendili
- APHM, Hôpital Timone, CEMEREM, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - A Preuilh
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - D Devos
- Département de Neurologie, Centre Référent SLA, CHU de Lille, Centre LICEND COEN, ACT4-ALS-MND network, Lille, France
- Départment de Pharmacologie Médicale, Université de Lille, INSERM UMRS_1172 LilNCog, CHU de Lille, Centre LICEND COEN, ACT4-ALS-MND network, Lille, France
| | - G Bruneteau
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
| | - F Salachas
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
| | - T Lenglet
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Faculté de Médecine de Nice, Département de Neurologie, Université Cote d'Azur, Nice, France
- Département de Neurophysiologie, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Md M Amador
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
| | - N Le Forestier
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Département de Recherche en Éthique, EA 1610: Etudes des Sciences et Techniques, Université Paris Sud/Paris Saclay, Paris, France
| | - A Hesters
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
| | - J Gonzalez
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Sorbonne Université, Paris, France
| | - A-S Rolland
- Départment de Pharmacologie Médicale, Université de Lille, INSERM UMRS_1172 LilNCog, CHU de Lille, Centre LICEND COEN, ACT4-ALS-MND network, Lille, France
| | - C Desnuelle
- Faculté de Médecine de Nice, Département de Neurologie, Université Cote d'Azur, Nice, France
| | - M Chupin
- CATI, Plateforme d'Imagerie Neurologique Multicentrique, Paris, France
| | - G Querin
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre Référent Pour les Maladies Neuromusculaires Rares, Paris, France
- Institut de Myologie, Plateforme d'essais cliniques I-Motion, Hôpital Pitié-Salpêtrière, Paris, France
| | - M Georges
- Département des Maladies Respiratoires et Soins Intensifs, Centre de Référence pour les Maladies Pulmonaires Rares, Hôpital Universitaire de Dijon-Bourgogne, Dijon, France
- Université de Bourgogne Franche-Comté, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS 1234 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - C Morelot-Panzini
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Sorbonne Université, Paris, France
- Service de Pneumologie (Département R3S), Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - V Marchand-Pauvert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - P-F Pradat
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France.
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry, Londonderry, UK.
- Institut pour la Recherche sur la Moelle Epinière et l'encephale (IRME), 15 rue Duranton, 75015, Paris, France.
| |
Collapse
|
6
|
Vacchiano V, Bonan L, Liguori R, Rizzo G. Primary Lateral Sclerosis: An Overview. J Clin Med 2024; 13:578. [PMID: 38276084 PMCID: PMC10816328 DOI: 10.3390/jcm13020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder which causes the selective deterioration of the upper motor neurons (UMNs), sparing the lower motor neuron (LMN) system. The clinical course is defined by a progressive motor disability due to muscle spasticity which typically involves lower extremities and bulbar muscles. Although classically considered a sporadic disease, some familiar cases and possible causative genes have been reported. Despite it having been recognized as a rare but distinct entity, whether it actually represents an extreme end of the motor neuron diseases continuum is still an open issue. The main knowledge gap is the lack of specific biomarkers to improve the clinical diagnostic accuracy. Indeed, the diagnostic imprecision, together with some uncertainty about overlap with UMN-predominant ALS and Hereditary Spastic Paraplegia (HSP), has become an obstacle to the development of specific therapeutic trials. In this study, we provided a comprehensive analysis of the existing literature, including neuropathological, clinical, neuroimaging, and neurophysiological features of the disease, and highlighting the controversies still unsolved in the differential diagnoses and the current diagnostic criteria. We also discussed the current knowledge gaps still present in both diagnostic and therapeutic fields when approaching this rare condition.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| | - Luigi Bonan
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Rocco Liguori
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Rizzo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| |
Collapse
|
7
|
Tan EL, Tahedl M, Lope J, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Chang KM, Finegan E, Bede P. Language deficits in primary lateral sclerosis: cortical atrophy, white matter degeneration and functional disconnection between cerebral regions. J Neurol 2024; 271:431-445. [PMID: 37759084 DOI: 10.1007/s00415-023-11994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is traditionally regarded as a pure upper motor neuron disorder, but recent cases series have highlighted cognitive deficits in executive and language domains. METHODS A single-centre, prospective neuroimaging study was conducted with comprehensive clinical and genetic profiling. The structural and functional integrity of language-associated brain regions and networks were systematically evaluated in 40 patients with PLS in comparison to 111 healthy controls. The structural integrity of the arcuate fascicle, frontal aslant tract, inferior occipito-frontal fascicle, inferior longitudinal fascicle, superior longitudinal fascicle and uncinate fascicle was evaluated. Functional connectivity between the supplementary motor region and the inferior frontal gyrus and connectivity between Wernicke's and Broca's areas was also assessed. RESULTS Cortical thickness reductions were observed in both Wernicke's and Broca's areas. Fractional anisotropy reduction was noted in the aslant tract and increased radical diffusivity (RD) identified in the aslant tract, arcuate fascicle and superior longitudinal fascicle in the left hemisphere. Functional connectivity was reduced along the aslant track, i.e. between the supplementary motor region and the inferior frontal gyrus, but unaffected between Wernicke's and Broca's areas. Cortical thickness alterations, structural and functional connectivity changes were also noted in the right hemisphere. CONCLUSIONS Disease-burden in PLS is not confined to motor regions, but there is also a marked involvement of language-associated tracts, networks and cortical regions. Given the considerably longer survival in PLS compared to ALS, the impact of language impairment on the management of PLS needs to be carefully considered.
Collapse
Affiliation(s)
- Ee Ling Tan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Marlene Tahedl
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Jasmin Lope
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
8
|
El Mendili MM, Verschueren A, Ranjeva JP, Guye M, Attarian S, Zaaraoui W, Grapperon AM. Association between brain and upper cervical spinal cord atrophy assessed by MRI and disease aggressiveness in amyotrophic lateral sclerosis. Neuroradiology 2023; 65:1395-1403. [PMID: 37458788 DOI: 10.1007/s00234-023-03191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE To study the relative contributions of brain and upper cervical spinal cord compartmental atrophy to disease aggressiveness in amyotrophic lateral sclerosis (ALS). METHODS Twenty-nine ALS patients and 24 age- and gender-matched healthy controls (HC) were recruited. Disease duration and the Revised-ALS Functional Rating Scale (ALSFRS-R) at baseline, 3- and 6-months follow-up were assessed. Patients were clinically differentiated into fast (n=13) and slow (n=16) progressors according to their ALSFRS-R progression rate. Brain grey (GM) and white matter, brainstem sub-structures volumes and spinal cord cross-sectional area (SC-CSA) at C1-C2 vertebral levels were measured from a 3D-T1-weighted MRI. RESULTS Fast progressors showed significant GM, medulla oblongata and SC atrophy compared to HC (p<0.001, p=0.013 and p=0.008) and significant GM atrophy compared to slow progressors (p=0.008). GM volume correlated with the ALSFRS-R progression rate (Rho/p=-0.487/0.007), the ALSFRS-R at 3-months (Rho/p=0.622/0.002), and ALSFRS-R at 6-months (Rho/p=0.407/0.039). Medulla oblongata volume and SC-CSA correlated with the ALSFRS-R at 3-months (Rho/p=0.510/0.015 and Rho/p=0.479/0.024). MRI measures showed high performance to discriminate between fast and slow progressors. CONCLUSION Our study suggests an association between compartmental atrophy and disease aggressiveness. This result is consistent with the combination of upper and lower motor neuron degeneration as the main driver of disease worsening and severity in ALS. Our study highlights the potential of brain and spinal cord atrophy measured by MRI as biomarker of disease aggressiveness signature.
Collapse
Affiliation(s)
- Mohamed Mounir El Mendili
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.
- Centre de Résonance Magnétique Biologique et Médicale, CRMBM-CEMEREM, UMR 7339 CNRS - Aix-Marseille Université, 27 Bd Jean Moulin, 13005, Marseille, France.
| | - Annie Verschueren
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Shahram Attarian
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Aude-Marie Grapperon
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| |
Collapse
|
9
|
Tahedl M, Tan EL, Chipika RH, Hengeveld JC, Vajda A, Doherty MA, McLaughlin RL, Siah WF, Hardiman O, Bede P. Brainstem-cortex disconnection in amyotrophic lateral sclerosis: bulbar impairment, genotype associations, asymptomatic changes and biomarker opportunities. J Neurol 2023:10.1007/s00415-023-11682-6. [PMID: 37022479 DOI: 10.1007/s00415-023-11682-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Bulbar dysfunction is a cardinal feature of ALS with important quality of life and management implications. The objective of this study is the longitudinal evaluation of a large panel imaging metrics pertaining to bulbar dysfunction, encompassing cortical measures, structural and functional cortico-medullary connectivity indices and brainstem metrics. METHODS A standardised, multimodal imaging protocol was implemented with clinical and genetic profiling to systematically appraise the biomarker potential of specific metrics. A total of 198 patients with ALS and 108 healthy controls were included. RESULTS Longitudinal analyses revealed progressive structural and functional disconnection between the motor cortex and the brainstem over time. Cortical thickness reduction was an early feature on cross-sectional analyses with limited further progression on longitudinal follow-up. Receiver operating characteristic analyses of the panel of MR metrics confirmed the discriminatory potential of bulbar imaging measures between patients and controls and area-under-the-curve values increased significantly on longitudinal follow-up. C9orf72 carriers exhibited lower brainstem volumes, lower cortico-medullary structural connectivity and faster cortical thinning. Sporadic patients without bulbar symptoms, already exhibit significant brainstem and cortico-medullary connectivity alterations. DISCUSSION Our results indicate that ALS is associated with multi-level integrity change from cortex to brainstem. The demonstration of significant corticobulbar alterations in patients without bulbar symptoms confirms considerable presymptomatic disease burden in sporadic ALS. The systematic assessment of radiological measures in a single-centre academic study helps to appraise the diagnostic and monitoring utility of specific measures for future clinical and clinical trial applications.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | | | - Alice Vajda
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - We Fong Siah
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
10
|
Pérez-Millan A, Borrego-Écija S, van Swieten JC, Jiskoot L, Moreno F, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Tiraboschi P, Seelaar H, Langheinrich T, Rohrer JD, Sala-Llonch R, Sánchez-Valle R. Loss of brainstem white matter predicts onset and motor neuron symptoms in C9orf72 expansion carriers: a GENFI study. J Neurol 2023; 270:1573-1586. [PMID: 36443488 DOI: 10.1007/s00415-022-11435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES The C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD) and/or motor neuron disease (MND). Corticospinal degeneration has been described in post-mortem neuropathological studies in these patients, especially in those with MND. We used MRI to analyze white matter (WM) volumes in presymptomatic and symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in predicting the onset of symptoms. METHODS We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 suffering from FTD and 11 from MND, and 75 non-carriers from the Genetic Frontotemporal dementia Initiative (GENFI). All subjects underwent T1-MRI acquisition. We used FreeSurfer to estimate the volume proportion of WM in the brainstem regions (midbrain, pons, and medulla oblongata). We calculated group differences with ANOVA tests and performed linear and non-linear regressions to assess group-by-age interactions. RESULTS A reduced WM ratio was found in all brainstem subregions in symptomatic carriers compared to both noncarriers and pre-symptomatic carriers. Within symptomatic carriers, MND patients presented a lower ratio in pons and medulla oblongata compared with FTD patients. No differences were found between presymptomatic carriers and non-carriers. Clinical severity was negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss than non-carriers, with MND patients showing significantly more atrophy in pons and medulla oblongata. DISCUSSION We find consistent brainstem WM loss in C9orf72 symptomatic carriers with differences related to the clinical phenotype supporting the use of brainstem measures as neuroimaging biomarkers for disease tracking.
Collapse
Affiliation(s)
- Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lize Jiskoot
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Département des Sciences Neurologiques, Clinique Interdisciplinaire de Mémoire, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Department of Geriatric Medicine and Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière (DMU Neurosciences Paris 6), Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière (DMU Neurosciences Paris 6), Paris, France
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND, Lille, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
| | | | - Harro Seelaar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tobias Langheinrich
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Roser Sala-Llonch
- Department of Biomedicine, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain.
| | | |
Collapse
|
11
|
Hippocampal Metabolic Alterations in Amyotrophic Lateral Sclerosis: A Magnetic Resonance Spectroscopy Study. Life (Basel) 2023; 13:life13020571. [PMID: 36836928 PMCID: PMC9965919 DOI: 10.3390/life13020571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) has been overwhelmingly applied to motor regions to date and our understanding of frontotemporal metabolic signatures is relatively limited. The association between metabolic alterations and cognitive performance in also poorly characterised. MATERIAL AND METHODS In a multimodal, prospective pilot study, the structural, metabolic, and diffusivity profile of the hippocampus was systematically evaluated in patients with ALS. Patients underwent careful clinical and neurocognitive assessments. All patients were non-demented and exhibited normal memory performance. 1H-MRS spectra of the right and left hippocampi were acquired at 3.0T to determine the concentration of a panel of metabolites. The imaging protocol also included high-resolution T1-weighted structural imaging for subsequent hippocampal grey matter (GM) analyses and diffusion tensor imaging (DTI) for the tractographic evaluation of the integrity of the hippocampal perforant pathway zone (PPZ). RESULTS ALS patients exhibited higher hippocampal tNAA, tNAA/tCr and tCho bilaterally, despite the absence of volumetric and PPZ diffusivity differences between the two groups. Furthermore, superior memory performance was associated with higher hippocampal tNAA/tCr bilaterally. Both longer symptom duration and greater functional disability correlated with higher tCho levels. CONCLUSION Hippocampal 1H-MRS may not only contribute to a better academic understanding of extra-motor disease burden in ALS, but given its sensitive correlations with validated clinical metrics, it may serve as practical biomarker for future clinical and clinical trial applications. Neuroimaging protocols in ALS should incorporate MRS in addition to standard structural, functional, and diffusion sequences.
Collapse
|
12
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
13
|
Chipika RH, Mulkerrin G, Pradat PF, Murad A, Ango F, Raoul C, Bede P. Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration. Neural Regen Res 2022; 17:2335-2341. [PMID: 35535867 PMCID: PMC9120698 DOI: 10.4103/1673-5374.336139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition. The clinical picture is dominated by upper and lower motor neuron degeneration, but extra-motor pathology is increasingly recognized, including cerebellar pathology. Post-mortem and neuroimaging studies primarily focus on the characterization of supratentorial disease, despite emerging evidence of cerebellar degeneration in amyotrophic lateral sclerosis. Cardinal clinical features of amyotrophic lateral sclerosis, such as dysarthria, dysphagia, cognitive and behavioral deficits, saccade abnormalities, gait impairment, respiratory weakness and pseudobulbar affect are likely to be exacerbated by co-existing cerebellar pathology. This review summarizes in vivo and post mortem evidence for cerebellar degeneration in amyotrophic lateral sclerosis. Structural imaging studies consistently capture cerebellar grey matter volume reductions, diffusivity studies readily detect both intra-cerebellar and cerebellar peduncle white matter alterations and functional imaging studies commonly report increased functional connectivity with supratentorial regions. Increased functional connectivity is commonly interpreted as evidence of neuroplasticity representing compensatory processes despite the lack of post-mortem validation. There is a scarcity of post-mortem studies focusing on cerebellar alterations, but these detect pTDP-43 in cerebellar nuclei. Cerebellar pathology is an overlooked facet of neurodegeneration in amyotrophic lateral sclerosis despite its contribution to a multitude of clinical symptoms, widespread connectivity to spinal and supratentorial regions and putative role in compensating for the degeneration of primary motor regions.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Grainne Mulkerrin
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Aizuri Murad
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabrice Ango
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
14
|
Mulkerrin G, França MC, Lope J, Tan EL, Bede P. Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers. Expert Rev Mol Diagn 2022; 22:745-760. [PMID: 36042576 DOI: 10.1080/14737159.2022.2118048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION : Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts which helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED : Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION : A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically unconfirmed or admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation, and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of innovative methodological approaches have also be identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicentre initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.
Collapse
Affiliation(s)
| | - Marcondes C França
- Department of Neurology, The State University of Campinas, São Paulo, Brazil
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland.,Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
15
|
Murphy ER, Thompson R, Osman KL, Haxton C, Brothers M, Lee L, Warncke K, Smith CL, Keilholz AN, Hamad A, Golzy M, Bunyak F, Ma L, Nichols NL, Lever TE. A Strength Endurance Exercise Paradigm Mitigates Deficits in Hypoglossal-Tongue Axis Function, Strength, and Structure in a Rodent Model of Hypoglossal Motor Neuron Degeneration. Front Neurosci 2022; 16:869592. [PMID: 35844238 PMCID: PMC9279620 DOI: 10.3389/fnins.2022.869592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
The tongue plays a crucial role in the swallowing process, and impairment can lead to dysphagia, particularly in motor neuron diseases (MNDs) resulting in hypoglossal-tongue axis degeneration (e.g., amyotrophic lateral sclerosis and progressive bulbar palsy). This study utilized our previously established inducible rodent model of dysphagia due to targeted degeneration of the hypoglossal-tongue axis. This model was created by injecting cholera toxin B conjugated to saporin (CTB-SAP) into the genioglossus muscle of the tongue base for retrograde transport to the hypoglossal (XII) nucleus via the hypoglossal nerve, which provides the sole motor control of the tongue. Our goal was to investigate the effect of high-repetition/low-resistance tongue exercise on tongue function, strength, and structure in four groups of male rats: (1) control + sham exercise (n = 13); (2) control + exercise (n = 10); (3) CTB-SAP + sham exercise (n = 13); and (4) CTB-SAP + exercise (n = 12). For each group, a custom spout with adjustable lick force requirement for fluid access was placed in the home cage overnight on days 4 and 6 post-tongue injection. For the two sham exercise groups, the lick force requirement was negligible. For the two exercise groups, the lick force requirement was set to ∼40% greater than the maximum voluntary lick force for individual rats. Following exercise exposure, we evaluated the effect on hypoglossal-tongue axis function (via videofluoroscopy), strength (via force-lickometer), and structure [via Magnetic Resonance Imaging (MRI) of the brainstem and tongue in a subset of rats]. Results showed that sham-exercised CTB-SAP rats had significant deficits in lick rate, swallow timing, and lick force. In exercised CTB-SAP rats, lick rate and lick force were preserved; however, swallow timing deficits persisted. MRI revealed corresponding degenerative changes in the hypoglossal-tongue axis that were mitigated by tongue exercise. These collective findings suggest that high-repetition/low-resistance tongue exercise in our model is a safe and effective treatment to prevent/diminish signs of hypoglossal-tongue axis degeneration. The next step is to leverage our rat model to optimize exercise dosing parameters and investigate corresponding treatment mechanisms of action for future translation to MND clinical trials.
Collapse
Affiliation(s)
- Erika R. Murphy
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
| | - Rebecca Thompson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Kate L. Osman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Chandler Haxton
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Margaret Brothers
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
| | - Li Lee
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Kristen Warncke
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Catherine L. Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Amy N. Keilholz
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Ali Hamad
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Mojgan Golzy
- Biostatistics Unit, Department of Family and Community Medicine, University of Missouri, Columbia, MO, United States
| | - Filiz Bunyak
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Lixin Ma
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Nicole L. Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- *Correspondence: Nicole L. Nichols,
| | - Teresa E. Lever
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Teresa E. Lever,
| |
Collapse
|
16
|
Bede P, Chang KM, Tan EL. Machine-learning in motor neuron diseases: Prospects and pitfalls. Eur J Neurol 2022; 29:2555-2556. [PMID: 35699315 PMCID: PMC9546434 DOI: 10.1111/ene.15443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Electronics and Computer Science, University of Southampton, Southampton, UK
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
McKenna MC, Tahedl M, Lope J, Chipika RH, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, McLaughlin RL, Hardiman O, Hutchinson S, Bede P. Mapping cortical disease-burden at individual-level in frontotemporal dementia: implications for clinical care and pharmacological trials. Brain Imaging Behav 2022; 16:1196-1207. [PMID: 34882275 PMCID: PMC9107414 DOI: 10.1007/s11682-021-00523-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 01/25/2023]
Abstract
Imaging studies of FTD typically present group-level statistics between large cohorts of genetically, molecularly or clinically stratified patients. Group-level statistics are indispensable to appraise unifying radiological traits and describe genotype-associated signatures in academic studies. However, in a clinical setting, the primary objective is the meaningful interpretation of imaging data from individual patients to assist diagnostic classification, inform prognosis, and enable the assessment of progressive changes compared to baseline scans. In an attempt to address the pragmatic demands of clinical imaging, a prospective computational neuroimaging study was undertaken in a cohort of patients across the spectrum of FTD phenotypes. Cortical changes were evaluated in a dual pipeline, using standard cortical thickness analyses and an individualised, z-score based approach to characterise subject-level disease burden. Phenotype-specific patterns of cortical atrophy were readily detected with both methodological approaches. Consistent with their clinical profiles, patients with bvFTD exhibited orbitofrontal, cingulate and dorsolateral prefrontal atrophy. Patients with ALS-FTD displayed precentral gyrus involvement, nfvPPA patients showed widespread cortical degeneration including insular and opercular regions and patients with svPPA exhibited relatively focal anterior temporal lobe atrophy. Cortical atrophy patterns were reliably detected in single individuals, and these maps were consistent with the clinical categorisation. Our preliminary data indicate that standard T1-weighted structural data from single patients may be utilised to generate maps of cortical atrophy. While the computational interpretation of single scans is challenging, it offers unrivalled insights compared to visual inspection. The quantitative evaluation of individual MRI data may aid diagnostic classification, clinical decision making, and assessing longitudinal changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Institute for Psychology, University of Regensburg, Regensburg, Germany
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
18
|
Medulla oblongata volume as a promising predictor of survival in amyotrophic lateral sclerosis. Neuroimage Clin 2022; 34:103015. [PMID: 35561555 PMCID: PMC9111981 DOI: 10.1016/j.nicl.2022.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
Abstract
Brainstem volumes reflect the disease severity expressed as ALSFRS-r (total score and its bulbar and spinal subscores). Medulla oblongata volume demonstrated a significant accuracy to discriminate long and short survivors ALS patients. Brainstem volumes may reflect the impairment of corticospinal and corticobulbar tracts as well as lower bulbar motor neurons. Furthermore, medulla oblongata could be used as an early predictor of survival in ALS patients.
Background Unconventional magnetic resonance imaging studies of the brainstem have recently acquired a growing interest in amyotrophic lateral sclerosis (ALS) pathology since they provide a unique opportunity to evaluate motor tract degeneration and bulbar lower motor neuron involvement. The aim of this study was to investigate the role of brainstem structures as accurate biomarkers of disease severity and predictors of survival. Materials and Methods A total of 60 ALS patients and 30 healthy controls subjects (CS) were recruited in this study. Patients were divided in two subgroups according to the onset of the disease: 42 spinal (S-ALS) and 18 bulbar (B-ALS). All subjects underwent 3D-structural MRI. Brainstem volume both of the entire cohort of ALS patients and S-ALS and B-ALS onset were compared with those of CS. In addition the two ALS subgroups were tested for differences in brainstem volumes. Volumetric, vertex-wise, and voxel-based approaches were implemented to assess correlations between MR structural features and clinical characteristics expressed as ALSFRS-r and its bulbar (ALSFSR-r-B) and spinal subscores (ALSFSR-r-S). ROC curves were performed to test the accuracy of midbrain, pons, and medulla oblongata volumes able to discriminate patients dichotomized into long and short survivors by using Two-Steps cluster analysis. Univariate and multivariate survival analyses were carried out to test the prognostic role of brainstem structures’ volume, trichotomized by applying a k-means clustering algorithm. Results Both the entire cohort of ALS patients and B-ALS and S-ALS showed significant lower volumes of both medulla oblongata and pons compared to CS. Furthermore, B-ALS showed a significant lower volume of medulla oblongata, compared to S-ALS. Lower score of ALSFRS-r correlated to atrophy in the anterior compartment of midbrain, pons, and medulla oblongata, as well as in the posterior portion of only this latter region. ALSFSR-r-S positively correlated with shape deformation and density reduction of the anterior portion of the entire brainstem, along the corticospinal tracts. ALSFSR-r-B instead showed a positive correlation with shape deformation of the floor of the fourth ventricle in the medulla oblongata and the crus cerebri in the midbrain. Only medulla oblongata volume demonstrated a significant accuracy to discriminate long and short survivors ALS patients (ROC AUC 0.76, p < 0.001). Univariate and multivariate analysis confirmed the survival predictive role of the medulla oblongata (log rank test p: 0.003). Discussions Our findings suggest that brainstem volume may reflect the impairment of corticospinal and corticobulbar tracts as well as lower bulbar motor neurons. Furthermore, medulla oblongata could be used as an early predictor of survival in ALS patients.
Collapse
|
19
|
Abidi M, Pradat PF, Termoz N, Couillandre A, Bede P, de Marco G. Motor imagery in amyotrophic lateral Sclerosis: An fMRI study of postural control. Neuroimage Clin 2022; 35:103051. [PMID: 35598461 PMCID: PMC9127212 DOI: 10.1016/j.nicl.2022.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/02/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022]
Abstract
ALS is associated with postural control impairment. DCM and PEB frameworks help to characterize connectivity patterns during gait. Clinical manifestations of ALS are underpinned by selective network dysfunction. Altered BG-SMA and SMA-PPC connectivity are observed during imagined gait in ALS. Enhanced BG-cerebellar connectivity may represent functional adaptation.
Background The functional reorganization of brain networks sustaining gait is poorly characterized in amyotrophic lateral sclerosis (ALS) despite ample evidence of progressive disconnection between brain regions. The main objective of this fMRI study is to assess gait imagery-specific networks in ALS patients using dynamic causal modeling (DCM) complemented by parametric empirical Bayes (PEB) framework. Method Seventeen lower motor neuron predominant (LMNp) ALS patients, fourteen upper motor neuron predominant (UMNp) ALS patients and fourteen healthy controls participated in this study. Each subject performed a dual motor imagery task: normal and precision gait. The Movement Imagery Questionnaire (MIQ-rs) and imagery time (IT) were used to evaluate gait imagery in each participant. In a neurobiological computational model, the circuits involved in imagined gait and postural control were investigated by modelling the relationship between normal/precision gait and connection strengths. Results Behavioral results showed significant increase in IT in UMNp patients compared to healthy controls (Pcorrected < 0.05) and LMNp (Pcorrected < 0.05). During precision gait, healthy controls activate the model's circuits involved in the imagined gait and postural control. In UMNp, decreased connectivity (inhibition) from basal ganglia (BG) to supplementary motor area (SMA) and from SMA to posterior parietal cortex (PPC) is observed. Contrary to healthy controls, DCM detects no cerebellar-PPC connectivity in neither UMNp nor LMNp ALS. During precision gait, bilateral connectivity (excitability) between SMA and BG is observed in the LMNp group contrary to UMNp and healthy controls. Conclusions Our findings demonstrate the utility of implementing both DCM and PEB to characterize connectivity patterns in specific patient phenotypes. Our approach enables the identification of specific circuits involved in postural deficits, and our findings suggest a putative excitatory–inhibitory imbalance. More broadly, our data demonstrate how clinical manifestations are underpinned by network-specific disconnection phenomena in ALS.
Collapse
Affiliation(s)
- Malek Abidi
- LINP2 Laboratory, UPL, Paris Nanterre University, France; COMUE Paris Lumières University, France
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France; Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Biomedical Sciences Research Institute, Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry, UK
| | - Nicolas Termoz
- LINP2 Laboratory, UPL, Paris Nanterre University, France; COMUE Paris Lumières University, France
| | - Annabelle Couillandre
- LINP2 Laboratory, UPL, Paris Nanterre University, France; Université Paris-Saclay,CIAMS, Orsay, France
| | - Peter Bede
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France; Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Giovanni de Marco
- LINP2 Laboratory, UPL, Paris Nanterre University, France; COMUE Paris Lumières University, France.
| |
Collapse
|
20
|
Bede P, Lope J. Biomarker development in Amyotrophic Lateral Sclerosis: challenges and viable strategies. Eur J Neurol 2022; 29:1867-1868. [PMID: 35467797 DOI: 10.1111/ene.15372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
21
|
Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes. J Neurol 2022; 269:4404-4413. [PMID: 35333981 PMCID: PMC9294023 DOI: 10.1007/s00415-022-11081-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with considerable clinical heterogeneity spanning from diverse disability profiles, differences in UMN/LMN involvement, divergent progression rates, to variability in frontotemporal dysfunction. A multitude of classification frameworks and staging systems have been proposed based on clinical and neuropsychological characteristics, but disease subtypes are seldom defined based on anatomical patterns of disease burden without a prior clinical stratification. A prospective research study was conducted with a uniform imaging protocol to ascertain disease subtypes based on preferential cerebral involvement. Fifteen brain regions were systematically evaluated in each participant based on a comprehensive panel of cortical, subcortical and white matter integrity metrics. Using min–max scaled composite regional integrity scores, a two-step cluster analysis was conducted. Two radiological clusters were identified; 35.5% of patients belonging to ‘Cluster 1’ and 64.5% of patients segregating to ‘Cluster 2’. Subjects in Cluster 1 exhibited marked frontotemporal change. Predictor ranking revealed the following hierarchy of anatomical regions in decreasing importance: superior lateral temporal, inferior frontal, superior frontal, parietal, limbic, mesial inferior temporal, peri-Sylvian, subcortical, long association fibres, commissural, occipital, ‘sensory’, ‘motor’, cerebellum, and brainstem. While the majority of imaging studies first stratify patients based on clinical criteria or genetic profiles to describe phenotype- and genotype-associated imaging signatures, a data-driven approach may identify distinct disease subtypes without a priori patient categorisation. Our study illustrates that large radiology datasets may be potentially utilised to uncover disease subtypes associated with unique genetic, clinical or prognostic profiles.
Collapse
|
22
|
Finegan E, Siah WF, Li Hi Shing S, Chipika RH, Hardiman O, Bede P. Cerebellar degeneration in primary lateral sclerosis: an under-recognized facet of PLS. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:542-553. [PMID: 34991421 DOI: 10.1080/21678421.2021.2023188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
While primary lateral sclerosis (PLS) has traditionally been regarded as a pure upper motor neuron disorder, recent clinical, neuroimaging and postmortem studies have confirmed significant extra-motor involvement. Sporadic reports have indicated that in addition to the motor cortex and corticospinal tracts, the cerebellum may also be affected in PLS. Cerebellar manifestations are difficult to ascertain in PLS as the clinical picture is dominated by widespread upper motor neuron signs. The likely contribution of cerebellar dysfunction to gait disturbance, falls, pseudobulbar affect and dysarthria may be overlooked in the context of progressive spasticity. The objective of this study is the comprehensive characterization of cerebellar gray and white matter degeneration in PLS using multiparametric quantitative neuroimaging methods to systematically evaluate each cerebellar lobule and peduncle. Forty-two patients with PLS and 117 demographically-matched healthy controls were enrolled in a prospective MRI study. Complementary volumetric and voxelwise analyses revealed focal cerebellar alterations instead of global cerebellar atrophy. Bilateral gray matter volume reductions were observed in lobules III, IV and VIIb. Significant diffusivity alterations within the superior cerebellar peduncle indicate disruption of the main cerebellar outflow tracts. These findings suggest that the considerable intra-cerebellar disease-burden is coupled with concomitant cerebro-cerebellar connectivity disruptions. While cerebellar dysfunction is challenging to demonstrate clinically, cerebellar pathology is likely to be a significant contributor to disability in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Murad A, Hardiman O, Bede P. Imaging data reveal divergent longitudinal trajectories in PLS, ALS and poliomyelitis survivors: Group-level and single-subject traits. Data Brief 2021; 39:107484. [PMID: 34901337 PMCID: PMC8640870 DOI: 10.1016/j.dib.2021.107484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Imaging profiles from a longitudinal single-centre motor neuron disease study are presented. A standardized T1-weighted MRI protocol was implemented to characterise cortical disease burden trajectories across the UMN (upper motor neuron) - LMN (lower motor neuron) spectrum of motor neuron diseases (MNDs) (Tahedl et al., 2021). Patients with amyotrophic lateral sclerosis (ALS n = 61), patients with primary lateral sclerosis (PLS n = 23) and poliomyelitis survivors (PMS n = 45) were included. Up to four longitudinal scans were available for each patient, separated by an inter-scan-interval of four months. Individual and group-level cortical thickness profiles were appraised using a normalisation procedure with reference to subject-specific control groups. A z-scoring approach was utilised, where each patients' cortex was first segmented into 1000 cortical regions, and then rated as 'thin', 'thick', or 'comparable' to the corresponding region of a demographically-matched control cohort. Fractions of significantly 'thin' and 'thick' patches were calculated across the entire cerebral vertex as well as in specific brain regions, such as the motor cortex, parietal, frontal and temporal cortices. This approach allows the characterisation of disease burden in individual subjects as well as at a group-level, both cross-sectionally and longitudinally. The presented framework may aid the interpretation of individual cortical disease burden in other patient cohorts.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland.,Department of Psychiatry and Psychotherapy and Institute for Psychology, University of Regensburg, Germany
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
24
|
Li Hi Shing S, Bede P. The neuroradiology of upper motor neuron degeneration: PLS, HSP, ALS. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:1-3. [PMID: 34894929 DOI: 10.1080/21678421.2021.1951293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Eisen A, Bede P. The strength of corticomotoneuronal drive underlies ALS split phenotypes and reflects early upper motor neuron dysfunction. Brain Behav 2021; 11:e2403. [PMID: 34710283 PMCID: PMC8671797 DOI: 10.1002/brb3.2403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Split phenotypes, (split hand, elbow, leg, and foot), are probably unique to ALS, and are characterized by having a shared peripheral input of both affected and unaffected muscles. This implies an anatomical origin rostral to the spinal cord, primarily within the cerebral cortex. Therefore, split phenotypes are a potential marker of ALS upper motor neuron pathology. However, to date, reports documenting upper motor neuron dysfunction in split phenotypes have been limited to using transcranial magnetic stimulation and cortical threshold tracking techniques. Here, we consider several other potential methodologies that could confirm a primary upper motor neuron pathology in split phenotypes. METHODS We review the potential of: 1. measuring the compound excitatory post-synaptic potential recorded from a single activated motor unit, 2. cortical-muscular coherence, and 3. new advanced modalities of neuroimaging (high-resolution imaging protocols, ultra-high field MRI platforms [7T], and novel Non-Gaussian diffusion models). CONCLUSIONS We propose that muscles involved in split phenotypes are those functionally involved in the human motor repertoire used particularly in complex activities. Their anterior horn cells receive the strongest corticomotoneuronal input. This is also true of the weakest muscles that are the earliest to be affected in ALS. Descriptions of split hand in non-ALS cases and proposals that peripheral nerve or muscle dysfunction may be causative are contentious. Only a few carefully controlled cases of each form of split phenotype, using upper motor neuron directed methodologies, are necessary to prove our postulate.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, British Columbia, Canada
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
26
|
Ahmed RM, Bocchetta M, Todd EG, Tse NY, Devenney EM, Tu S, Caga J, Hodges JR, Halliday GM, Irish M, Kiernan MC, Piguet O, Rohrer JD. Tackling clinical heterogeneity across the amyotrophic lateral sclerosis-frontotemporal dementia spectrum using a transdiagnostic approach. Brain Commun 2021; 3:fcab257. [PMID: 34805999 PMCID: PMC8599039 DOI: 10.1093/braincomms/fcab257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
The disease syndromes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) display considerable clinical, genetic and pathological overlap, yet mounting evidence indicates substantial differences in progression and survival. To date, there has been limited examination of how profiles of brain atrophy might differ between clinical phenotypes. Here, we address this longstanding gap in the literature by assessing cortical and subcortical grey and white matter volumes on structural MRI in a large cohort of 209 participants. Cognitive and behavioural changes were assessed using the Addenbrooke’s Cognitive Examination and the Cambridge Behavioural Inventory. Relative to 58 controls, behavioural variant FTD (n = 58) and ALS–FTD (n = 41) patients displayed extensive atrophy of frontoinsular, cingulate, temporal and motor cortices, with marked subcortical atrophy targeting the hippocampus, amygdala, thalamus and striatum, with atrophy further extended to the brainstem, pons and cerebellum in the latter group. At the other end of the spectrum, pure-ALS patients (n = 52) displayed considerable frontoparietal atrophy, including right insular and motor cortices and pons and brainstem regions. Subcortical regions included the bilateral pallidum and putamen, but to a lesser degree than in the ALS–FTD and behavioural variant FTD groups. Across the spectrum the most affected region in all three groups was the insula, and specifically the anterior part (76–90% lower than controls). Direct comparison of the patient groups revealed disproportionate temporal atrophy and widespread subcortical involvement in ALS–FTD relative to pure-ALS. In contrast, pure-ALS displayed significantly greater parietal atrophy. Both behavioural variant FTD and ALS–FTD were characterized by volume decrease in the frontal lobes relative to pure-ALS. The motor cortex and insula emerged as differentiating structures between clinical syndromes, with bilateral motor cortex atrophy more pronounced in ALS–FTD compared with pure-ALS, and greater left motor cortex and insula atrophy relative to behavioural variant FTD. Taking a transdiagnostic approach, we found significant associations between abnormal behaviour and volume loss in a predominantly frontoinsular network involving the amygdala, striatum and thalamus. Our findings demonstrate the presence of distinct atrophy profiles across the ALS–FTD spectrum, with key structures including the motor cortex and insula. Notably, our results point to subcortical involvement in the origin of behavioural disturbances, potentially accounting for the marked phenotypic variability typically observed across the spectrum.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2050, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E, UK
| | - Nga Yan Tse
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Emma M Devenney
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jashelle Caga
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Muireann Irish
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2050, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Olivier Piguet
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E, UK
| |
Collapse
|
27
|
Kocar TD, Müller HP, Ludolph AC, Kassubek J. Feature selection from magnetic resonance imaging data in ALS: a systematic review. Ther Adv Chronic Dis 2021; 12:20406223211051002. [PMID: 34729157 PMCID: PMC8521429 DOI: 10.1177/20406223211051002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece that allows for the useful integration of multiparametric MRI data into a diagnostic classifier. The major challenges in developing ML classifiers for ALS are limited data quantity and a suboptimal sample to feature ratio which can be addressed by sound feature selection. Methods: We conducted a systematic review to collect MRI biomarkers that could be used as features by searching the online database PubMed for entries in the recent 4 years that contained cross-sectional neuroimaging data of subjects with ALS and an adequate control group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for each MRI modality that indicated which brain regions were most commonly reported. Results: Our search resulted in 151 studies with a total of 221 datasets. In summary, our findings highly resembled generally accepted neuropathological patterns of ALS, with degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal, and subcortical structures, consistent with the neuropathological four-stage model of the propagation of pTDP-43 in ALS. Conclusions: These insights are discussed with respect to their potential for MRI feature selection for future ML-based neuroimaging classifiers in ALS. The integration of multiparametric MRI including DTI, volumetric, and texture data using ML may be the best approach to generate a diagnostic neuroimaging tool for ALS.
Collapse
Affiliation(s)
- Thomas D Kocar
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
28
|
Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Hardiman O, Bede P. Propagation patterns in motor neuron diseases: Individual and phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of MNDs. Neurobiol Aging 2021; 109:78-87. [PMID: 34656922 DOI: 10.1016/j.neurobiolaging.2021.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Motor neuron diseases encompass a divergent group of conditions with considerable differences in clinical manifestations, survival, and genetic vulnerability. One of the key aspects of clinical heterogeneity is the preferential involvement of upper (UMN) and lower motor neurons (LMN). While longitudinal imaging patters are relatively well characterized in ALS, progressive cortical changes in UMN,- and LMN-predominant conditions are seldom evaluated. Accordingly, the objective of this study is the juxtaposition of longitudinal trajectories in 3 motor neuron phenotypes; a UMN-predominant syndrome (PLS), a mixed UMN-LMN condition (ALS), and a lower motor neuron condition (poliomyelitis survivors). A standardized imaging protocol was implemented in a prospective, multi-timepoint longitudinal study with a uniform follow-up interval of 4 months. Forty-five poliomyelitis survivors, 61 patients with amyotrophic lateral sclerosis (ALS), and 23 patients with primary lateral sclerosis (PLS) were included. Cortical thickness alterations were evaluated in a dual analysis pipeline, using standard cortical thickness analyses, and a z-score-based individualized approach. Our results indicate that PLS patients exhibit rapidly progressive cortical thinning primarily in motor regions; ALS patients show cortical atrophy in both motor and extra-motor regions, while poliomyelitis survivors exhibit cortical thickness gains in a number of cerebral regions. Our findings suggest that dynamic cortical changes in motor neuron diseases may depend on relative UMN and/or LMN involvement, and increased cortical thickness in LMN-predominant conditions may represent compensatory, adaptive processes.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Psychiatry and Psychotherapy and Institute for Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
29
|
Ratti E, Domoto-Reilly K, Caso C, Murphy A, Brickhouse M, Hochberg D, Makris N, Cudkowicz ME, Dickerson BC. Regional prefrontal cortical atrophy predicts specific cognitive-behavioral symptoms in ALS-FTD. Brain Imaging Behav 2021; 15:2540-2551. [PMID: 33587281 PMCID: PMC8862734 DOI: 10.1007/s11682-021-00456-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Amyotrophic Lateral Sclerosis-Frontotemporal Dementia (ALS-FTD) may present typical behavioral variant FTD symptoms. This study aims to determine whether profile and severity of cognitive-behavioral symptoms in ALS/ALS-FTD are predicted by regional cortical atrophy. The hypothesis is that executive dysfunction can be predicted by dorsolateral prefrontal cortical (dlPFC) atrophy, apathy by dorsomedial PFC (dmPFC) and anterior cingulate cortical (ACC) atrophy, disinhibition by orbitofrontal cortical (OFC) atrophy. 3.0 Tesla MRI scans were acquired from 22 people with ALS or ALS-FTD. Quantitative cortical thickness analysis was performed with FreeSurfer. A priori-defined regions of interest (ROI) were used to measure cortical thickness in each participant and calculate magnitude of atrophy in comparison to 115 healthy controls. Spearman correlations were used to evaluate associations between frontal ROI cortical thickness and cognitive-behavioral symptoms, measured by Neuropsychiatric Inventory Questionnaire (NPI-Q) and Clinical Dementia Rating (CDR) scale. ALS-FTD participants exhibited variable degrees of apathy (NPI-Q/apathy: 1.6 ± 1.2), disinhibition (NPI-Q/disinhibition: 1.2 ± 1.2), executive dysfunction (CDR/judgment-problem solving: 1.7 ± 0.8). Within the ALS-FTD group, executive dysfunction correlated with dlPFC atrophy (ρ:-0.65;p < 0.05); similar trends were seen for apathy with ACC (ρ:-0.53;p < 0.10) and dmPFC (ρ:-0.47;p < 0.10) atrophy, for disinhibition with OFC atrophy (ρ:-0.51;p < 0.10). Compared to people with ALS, those with ALS-FTD showed more diffuse atrophy involving precentral gyrus, prefrontal, temporal regions. Profile and severity of cognitive-behavioral symptoms in ALS-FTD are predicted by regional prefrontal atrophy. These findings are consistent with established brain-behavior models and support the role of quantitative MRI in diagnosis, management, counseling, monitoring and prognostication for a neurodegenerative disorder with diverse phenotypes.
Collapse
Affiliation(s)
- Elena Ratti
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA.
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Amyotrophic Lateral Sclerosis Multidisciplinary Clinic, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Massachusetts Alzheimer's Disease Research Center (ADRC), 149 13th Street, Charlestown, MA, 02129, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA, 02129, USA.
- Biogen, 300 Binney Street, Cambridge, MA, 02142, USA.
| | - Kimiko Domoto-Reilly
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 149 13th Street, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Neurology, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Christina Caso
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Neurology, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Alyssa Murphy
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
- Amyotrophic Lateral Sclerosis Multidisciplinary Clinic, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Speech and Language Pathology, Massachusetts General Hospital, 275 Cambridge Street, Boston, MA, 02114, USA
| | - Nikos Makris
- Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Merit E Cudkowicz
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
- Amyotrophic Lateral Sclerosis Multidisciplinary Clinic, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 149 13th Street, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA, 02129, USA
| |
Collapse
|
30
|
Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features. J Neurol 2021; 269:2440-2452. [PMID: 34585269 PMCID: PMC9021106 DOI: 10.1007/s00415-021-10801-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022]
Abstract
The description of group-level, genotype- and phenotype-associated imaging traits is academically important, but the practical demands of clinical neurology centre on the accurate classification of individual patients into clinically relevant diagnostic, prognostic and phenotypic categories. Similarly, pharmaceutical trials require the precision stratification of participants based on quantitative measures. A single-centre study was conducted with a uniform imaging protocol to test the accuracy of an artificial neural network classification scheme on a cohort of 378 participants composed of patients with ALS, healthy subjects and disease controls. A comprehensive panel of cerebral volumetric measures, cortical indices and white matter integrity values were systematically retrieved from each participant and fed into a multilayer perceptron model. Data were partitioned into training and testing and receiver-operating characteristic curves were generated for the three study-groups. Area under the curve values were 0.930 for patients with ALS, 0.958 for disease controls, and 0.931 for healthy controls relying on all input imaging variables. The ranking of variables by classification importance revealed that white matter metrics were far more relevant than grey matter indices to classify single subjects. The model was further tested in a subset of patients scanned within 6 weeks of their diagnosis and an AUC of 0.915 was achieved. Our study indicates that individual subjects may be accurately categorised into diagnostic groups in an observer-independent classification framework based on multiparametric, spatially registered radiology data. The development and validation of viable computational models to interpret single imaging datasets are urgently required for a variety of clinical and clinical trial applications.
Collapse
|
31
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
32
|
Imaging data indicate cerebral reorganisation in poliomyelitis survivors: Possible compensation for longstanding lower motor neuron pathology. Data Brief 2021; 38:107316. [PMID: 34485646 PMCID: PMC8397913 DOI: 10.1016/j.dib.2021.107316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
A standardised, single-centre cross-sectional imaging protocol was utilised to investigate cortical grey matter and cerebral white matter alterations in 36 poliomyelitis survivors in contrast to healthy individuals and patients with amyotrophic lateral sclerosis (ALS) as a 'disease-control' group. [1] T1-weighted imaging and 32-direction diffusion tensor imaging data were obtained on a 3 Tesla Philips Achieva MRI system, using an IR-SPGR sequence and SE-EPI sequence respectively. Raw region-of-interest data and percentage change with respect to reference estimated marginal mean values are presented for grey and white matter metrics in key anatomical regions. Poliomyelitis survivors exhibit no frank grey or white matter degeneration. To the contrary, increased partial volumes can be detected in the brainstem, cerebellum and occipital lobes compared to healthy individuals. Higher fractional anisotropy was also noted in the corticospinal tracts, cerebellum, bilateral mesial temporal lobes and inferior frontal brain regions in poliomyelitis survivors in contrast to controls. Anatomical patterns of superior integrity metrics in polio survivors were concordant with anatomical regions of focal degeneration in ALS. Our imaging data indicate cortical and white matter reorganisation in polio survivors, which may be interpreted as compensatory adaptation to severe lower motor neuron injury acquired in infancy.
Collapse
|
33
|
Bede P, Siah WF. The diagnostic challenge of primary lateral sclerosis: the integration of clinical, genetic and radiological cues. Eur J Neurol 2021; 28:3875-3876. [PMID: 34339556 DOI: 10.1111/ene.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Salpêtrière University Hospital, Sorbonne University, Paris, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Nash Y, Sitty M. Non-Motor Symptoms of Amyotrophic Lateral Sclerosis: A Multi-Faceted Disorder. J Neuromuscul Dis 2021; 8:699-713. [PMID: 34024773 DOI: 10.3233/jnd-210632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor pathways. A growing body of evidence from recent years suggests that ALS results in a wide range of non-motor symptoms as well, which can have a significant impact on patients' quality of life. These symptoms could also, in turn, provide useful information as biomarkers for disease progression, and can shed insight on ALS mechanisms. Here we aim to review a wide range of non-motor symptoms of ALS, with emphasis on their importance to research and clinical treatment of patients.
Collapse
Affiliation(s)
- Yuval Nash
- Tel Aviv Youth University, The Jaime and Joan Constantiner School of Education, Tel Aviv University, Tel Aviv, Israel
| | - Michal Sitty
- Clalit Health Services, Kiryat Ono, Israel.,Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing. Diagnostics (Basel) 2021; 11:diagnostics11081365. [PMID: 34441299 PMCID: PMC8391180 DOI: 10.3390/diagnostics11081365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/23/2022] Open
Abstract
Despite an early understanding of amyotrophic lateral sclerosis (ALS) as a disease affecting the motor system, including motoneurons in the motor cortex, brainstem, and spinal cord, today, many cases involving dementia and behavioral disorders are reported. Therefore, we currently divide ALS not only based on genetic predisposition into the most common sporadic variant (90% of cases) and the familial variant (10%), but also based on cognitive and/or behavioral symptoms, with five specific subgroups of clinical manifestation—ALS with cognitive impairment, ALS with behavioral impairment, ALS with combined cognitive and behavioral impairment, the fully developed behavioral variant of frontotemporal dementia in combination with ALS, and comorbid ALS and Alzheimer’s disease (AD). Generally, these cases are referred to as amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD). Clinical behaviors and the presence of the same pathognomonic deposits suggest that FTLD and ALS could be a continuum of one entity. This review was designed primarily to compare neuropathological findings in different types of ALS relative to their characteristic locations as well as the immunoreactivity of the inclusions, and thus, foster a better understanding of the immunoreactivity, distribution, and morphology of the pathological deposits in relation to genetic mutations, which can be useful in specifying the final diagnosis.
Collapse
|
36
|
Tu S, Huang M, Caga J, Mahoney CJ, Kiernan MC. Brainstem Correlates of Pathological Laughter and Crying Frequency in ALS. Front Neurol 2021; 12:704059. [PMID: 34305804 PMCID: PMC8296641 DOI: 10.3389/fneur.2021.704059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
Pseudobulbar affect is a disorder of emotional expression commonly observed in amyotrophic lateral sclerosis (ALS), presenting as episodes of involuntary laughter, or crying. The objective of the current study was to determine the association between frequency of pathological laughter and crying (PLC) episodes with clinical features, cognitive impairment, and brainstem pathology. Thirty-five sporadic ALS patients underwent neuropsychological assessment, with a subset also undergoing brain imaging. The Center for Neurological Study Lability Scale (CNS-LS) was used to screen for presence and severity of pseudobulbar affect (CNS-LS ≥ 13) and frequency of PLC episodes. Presence of pseudobulbar affect was significantly higher in bulbar onset ALS (p = 0.02). Frequency of PLC episodes was differentially associated with cognitive performance and brainstem integrity. Notably pathological laughter frequency, but not crying, showed a significant positive association with executive dysfunction on the Trail Making Test B-A (R2 = 0.14, p = 0.04). Similarly, only pathological laughter frequency demonstrated a significant negative correlation with gray matter volume of the brainstem (R2 = 0.46, p < 0.01), and mean fractional anisotropy of the superior cerebellar peduncles (left: R2 = 0.44, p < 0.01; right: R2 = 0.44, p < 0.01). Hierarchical regression indicated brainstem imaging in combination with site of symptom onset explained 73% of the variance in pathological laughter frequency in ALS. The current findings suggest emotional lability is underpinned by degeneration across distinct neural circuits, with brainstem integrity critical in the emergence of pathological laughter.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Mengjie Huang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jashelle Caga
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Li H, Zhang Q, Duan Q, Jin J, Hu F, Dang J, Zhang M. Brainstem Involvement in Amyotrophic Lateral Sclerosis: A Combined Structural and Diffusion Tensor MRI Analysis. Front Neurosci 2021; 15:675444. [PMID: 34149349 PMCID: PMC8206526 DOI: 10.3389/fnins.2021.675444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction The brainstem is an important component in the pathology of amyotrophic lateral sclerosis (ALS). Although neuroimaging studies have shown multiple structural changes in ALS patients, few studies have investigated structural alterations in the brainstem. Herein, we compared the brainstem structure between patients with ALS and healthy controls. Methods A total of 33 patients with ALS and 33 healthy controls were recruited in this study. T1-weighted and diffusion tensor imaging (DTI) were acquired on a 3 Tesla magnetic resonance imaging (3T MRI) scanner. Volumetric and vertex-wised approaches were implemented to assess the differences in the brainstem’s morphological features between the two groups. An atlas-based region of interest (ROI) analysis was performed to compare the white matter integrity of the brainstem between the two groups. Additionally, a correlation analysis was used to evaluate the relationship between ALS clinical characteristics and structural features. Results Volumetric analyses showed no significant difference in the subregion volume of the brainstem between ALS patients and healthy controls. In the shape analyses, ALS patients had a local abnormal surface contraction in the ventral medulla oblongata and ventral pons. Compared with healthy controls, ALS patients showed significantly lower fractional anisotropy (FA) in the left corticospinal tract (CST) and bilateral frontopontine tracts (FPT) at the brainstem level, and higher radial diffusivity (RD) in bilateral CST and left FPT at the brainstem level by ROI analysis in DTI. Correlation analysis showed that disease severity was positively associated with FA in left CST and left FPT. Conclusion These findings suggest that the brainstem in ALS suffers atrophy, and degenerative processes in the brainstem may reflect disease severity in ALS. These findings may be helpful for further understanding of potential neural mechanisms in ALS.
Collapse
Affiliation(s)
- Haining Li
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuli Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Duan
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaoting Jin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fangfang Hu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
McKenna MC, Chipika RH, Li Hi Shing S, Christidi F, Lope J, Doherty MA, Hengeveld JC, Vajda A, McLaughlin RL, Hardiman O, Hutchinson S, Bede P. Infratentorial pathology in frontotemporal dementia: cerebellar grey and white matter alterations in FTD phenotypes. J Neurol 2021; 268:4687-4697. [PMID: 33983551 PMCID: PMC8563547 DOI: 10.1007/s00415-021-10575-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The contribution of cerebellar pathology to cognitive and behavioural manifestations is increasingly recognised, but the cerebellar profiles of FTD phenotypes are relatively poorly characterised. A prospective, single-centre imaging study has been undertaken with a high-resolution structural and diffusion tensor protocol to systematically evaluate cerebellar grey and white matter alterations in behavioural-variant FTD(bvFTD), non-fluent variant primary progressive aphasia(nfvPPA), semantic-variant primary progressive aphasia(svPPA), C9orf72-positive ALS-FTD(C9 + ALSFTD) and C9orf72-negative ALS-FTD(C9-ALSFTD). Cerebellar cortical thickness and complementary morphometric analyses were carried out to appraise atrophy patterns controlling for demographic variables. White matter integrity was assessed in a study-specific white matter skeleton, evaluating three diffusivity metrics: fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Significant cortical thickness reductions were identified in: lobule VII and crus I in bvFTD; lobule VI VII, crus I and II in nfvPPA; and lobule VII, crus I and II in svPPA; lobule IV, VI, VII and Crus I and II in C9 + ALSFTD. Morphometry revealed volume reductions in lobule V in all groups; in addition to lobule VIII in C9 + ALSFTD; lobule VI, VIII and vermis in C9-ALSFTD; lobule V, VII and vermis in bvFTD; and lobule V, VI, VIII and vermis in nfvPPA. Widespread white matter alterations were demonstrated by significant fractional anisotropy, axial diffusivity and radial diffusivity changes in each FTD phenotype that were more focal in those with C9 + ALSFTD and svPPA. Our findings indicate that FTD subtypes are associated with phenotype-specific cerebellar signatures with the selective involvement of specific lobules instead of global cerebellar atrophy.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland. .,Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review draws together the most recent findings in ALS biomarker research from biochemical, imaging and neurophysiology techniques. RECENT FINDINGS The potential of circulating RNA is highlighted, including new retrieval techniques. With ongoing genetic clinical trials, the need for pharmacodynamic biomarkers is essential. There is a strong case for neurofilament proteins being validated in ALS; their biomarker profile is discussed. Oxidative stress and neuroinflammation studies offer insight into disease mechanisms and offer good biomarker potential. Recent metabolic studies include investigation of lipid profiles, creatinine and ferritin. The potential of chitinase proteins as pharmacodynamic and prognostic biomarkers is highlighted. The role of tau and amyloidβ is debated, as evidenced by the articles presented here. Proteomic approaches provide unbiased discoveries of novel biomarkers, together with confirmation of previous findings. The use of imaging techniques is outlined to demonstrate selective atrophy, volume loss, muscle and tract involvement. In-vivo imaging is discussed with reference to histone deacetylase, oxidative stress, neuroinflammation and metabolic changes. New applications of electrophysiology demonstrate objective muscle biomarkers and brain network perturbations. SUMMARY The biomarker research field continues to provide insight into the disease. Multicentre collaborations are needed to validate these promising recent findings.
Collapse
|
40
|
Li Hi Shing S, Lope J, McKenna MC, Chipika RH, Hardiman O, Bede P. Increased cerebral integrity metrics in poliomyelitis survivors: putative adaptation to longstanding lower motor neuron degeneration. J Neurol Sci 2021; 424:117361. [PMID: 33773768 DOI: 10.1016/j.jns.2021.117361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Post-polio syndrome (PPS) has been traditionally considered a slowly progressive condition that affects poliomyelitis survivors decades after their initial infection. Cerebral changes in poliomyelitis survivors are poorly characterised and the few existing studies are strikingly conflicting. OBJECTIVE The overarching aim of this study is the comprehensive characterisation of cerebral grey and white matter alterations in poliomyelitis survivors with reference to healthy- and disease-controls using quantitative imaging metrics. METHODS Thirty-six poliomyelitis survivors, 88 patients with ALS and 117 healthy individuals were recruited in a prospective, single-centre neuroimaging study using uniform MRI acquisition parameters. All participants underwent standardised clinical assessments, T1-weighted structural and diffusion tensor imaging. Whole-brain and region-of-interest morphometric analyses were undertaken to evaluate patterns of grey matter changes. Tract-based spatial statistics were performed to evaluate diffusivity alterations in a study-specific whiter matter skeleton. RESULTS In contrast to healthy controls, poliomyelitis survivors exhibited increased grey matter partial volumes in the brainstem, cerebellum and occipital lobe, accompanied by increased FA in the corticospinal tracts, cerebellum, bilateral mesial temporal lobes and inferior frontal tracts. Polio survivors exhibited increased integrity metrics in the same anatomical regions where ALS patients showed degenerative changes. CONCLUSIONS Our findings indicate considerable cortical and white matter reorganisation in poliomyelitis survivors which may be interpreted as compensatory, adaptive change in response to severe lower motor neuron injury in infancy.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
41
|
Extra-motor cerebral changes and manifestations in primary lateral sclerosis. Brain Imaging Behav 2021; 15:2283-2296. [PMID: 33409820 DOI: 10.1007/s11682-020-00421-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Primary lateral sclerosis (PLS) is classically considered a 'pure' upper motor neuron disorder. Motor cortex atrophy and pyramidal tract degeneration are thought to be pathognomonic of PLS, but extra-motor cerebral changes are poorly characterized. In a prospective neuroimaging study, forty PLS patients were systematically evaluated with a standardised imaging, genetic and clinical protocol. Patients were screened for ALS and HSP associated mutations, as well as C9orf72 hexanucleotide repeats. Clinical assessment included composite reflex scores, spasticity scales, functional rating scales, and screening for cognitive and behavioural deficits. The neuroimaging protocol evaluated cortical atrophy patterns, subcortical grey matter changes and white matter alterations in whole-brain and region-of-interest analyses. PLS patients tested negative for known ALS- and HSP-associated mutations and C9orf72 repeat expansions. Voxel-wise analyses revealed anterior cingulate, dorsolateral prefrontal, insular, opercular, orbitofrontal and bilateral mesial temporal grey matter changes and white matter alterations in the fornix, brainstem, temporal lobes, and cerebellum. Significant thalamus, caudate, hippocampus, putamen and accumbens nucleus volume reductions were also identified. Extra-motor clinical manifestations were dominated by verbal fluency deficits, language deficits, apathy and pseudobulbar affect. Our clinical and radiological evaluation confirms considerable extra-motor changes in a population-based cohort of PLS patients. Our data suggest that PLS should no longer be considered a neurodegenerative disorder selectively affecting the pyramidal system. PLS is associated with widespread extra-motor changes and manifestations which should be carefully considered in the multidisciplinary management of this low-incidence condition.
Collapse
|
42
|
Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use. J Neurol 2021; 268:1913-1926. [PMID: 33399966 DOI: 10.1007/s00415-020-10368-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The majority of imaging studies in ALS infer group-level imaging signatures from group comparisons, as opposed to estimating disease burden in individual patients. In a condition with considerable clinical heterogeneity, the characterisation of individual patterns of pathology is hugely relevant. In this study, we evaluate a strategy to track progressive cortical involvement in single patients by using subject-specific reference cohorts. METHODS We have interrogated a multi-timepoint longitudinal dataset of 61 ALS patients to demonstrate the utility of estimating cortical disease burden and the expansion of cerebral atrophy over time. We contrast our strategy to the gold-standard approach to gauge the advantages and drawbacks of our method. We modelled the evolution of cortical integrity in a conditional growth model, in which we accounted for age, gender, disability, symptom duration, education and handedness. We hypothesised that the variance associated with demographic variables will be successfully eliminated in our approach. RESULTS In our model, the only covariate which modulated the expansion of atrophy was motor disability as measured by the ALSFRS-r (t(153) = - 2.533, p = 0.0123). Using the standard approach, age also significantly influenced progression of CT change (t(153) = - 2.151, p = 0.033) demonstrating the validity and potential clinical utility of our approach. CONCLUSION Our strategy of estimating the extent of cortical atrophy in individual patients with ALS successfully corrects for demographic factors and captures relevant cortical changes associated with clinical disability. Our approach provides a framework to interpret single T1-weighted images in ALS and offers an opportunity to track cortical propagation patterns both at individual subject level and at cohort level.
Collapse
|
43
|
Li Hi Shing S, McKenna MC, Siah WF, Chipika RH, Hardiman O, Bede P. The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging Behav 2021; 15:2693-2719. [PMID: 33398779 DOI: 10.1007/s11682-020-00429-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/14/2023]
Abstract
While C9orf72-specific imaging signatures have been proposed by both ALS and FTD research groups and considerable presymptomatic alterations have also been confirmed in young mutation carriers, considerable inconsistencies exist in the literature. Accordingly, a systematic review of C9orf72-imaging studies has been performed to identify consensus findings, stereotyped shortcomings, and unique contributions to outline future directions. A formal literature review was conducted according to the STROBE guidelines. All identified papers were individually reviewed for sample size, choice of controls, study design, imaging modalities, statistical models, clinical profiling, and identified genotype-associated pathological patterns. A total of 74 imaging papers were systematically reviewed. ALS patients with GGGGCC repeat expansions exhibit relatively limited motor cortex involvement and widespread extra-motor pathology. C9orf72 positive FTD patients often show preferential posterior involvement. Reports of thalamic involvement are relatively consistent across the various phenotypes. Asymptomatic hexanucleotide repeat carriers often exhibit structural and functional changes decades prior to symptom onset. Common shortcomings included sample size limitations, lack of disease-controls, limited clinical profiling, lack of genetic testing in healthy controls, and absence of post mortem validation. There is a striking paucity of longitudinal studies and existing presymptomatic studies have not evaluated the predictive value of radiological changes with regard to age of onset and phenoconversion. With the advent of antisense oligonucleotide therapies, the meticulous characterisation of C9orf72-associated changes has gained practical relevance. Neuroimaging offers non-invasive biomarkers for future clinical trials, presymptomatic ascertainment, diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
44
|
Pioro EP, Turner MR, Bede P. Neuroimaging in primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:18-27. [PMID: 33602015 DOI: 10.1080/21678421.2020.1837176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Increased interest in the underlying pathogenesis of primary lateral sclerosis (PLS) and its relationship to amyotrophic lateral sclerosis (ALS) has corresponded to a growing number of CNS imaging studies, especially in the past decade. Both its rarity and uncertainty of definite diagnosis prior to 4 years from symptom onset have resulted in PLS being less studied than ALS. In this review, we highlight most relevant papers applying magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) to analyzing CNS changes in PLS, often in relation to ALS. In patients with PLS, mostly brain, but also spinal cord has been evaluated since significant neurodegeneration is essentially restricted to upper motor neuron (UMN) structures and related pathways. Abnormalities of cortex and subcortical white matter tracts have been identified by structural and functional MRI and MRS studies, while metabolic and cell-specific changes in PLS brain have been revealed using various PET radiotracers. Future neuroimaging studies will continue to explore the interface between the PLS-ALS continuum, identify more changes unique to PLS, apply novel MRI and MRS sequences showing greater structural and neurochemical detail, as well as expand the repertoire of PET radiotracers that reveal various cellular pathologies. Neuroimaging has the potential to play an important role in the evaluation of novel therapies for patients with PLS.
Collapse
Affiliation(s)
- Erik P Pioro
- Section of ALS & Related Disorders, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Tae WS, Sung JH, Baek SH, Lee CN, Kim BJ. Shape Analysis of the Subcortical Nuclei in Amyotrophic Lateral Sclerosis without Cognitive Impairment. J Clin Neurol 2020; 16:592-598. [PMID: 33029965 PMCID: PMC7541997 DOI: 10.3988/jcn.2020.16.4.592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that mainly affects the pyramidal motor system. However, recent studies have suggested that degeneration of the extramotor system plays a role in the disability experienced by patients with ALS. We investigated the local shape changes and mean volumes of the subcortical nuclei in sporadic ALS patients with preserved cognition. Methods The participants comprised 32 patients with ALS and 43 age- and sex-matched healthy controls. Three-dimensional T1-weighted structural images were acquired. Surface-based vertex analysis was performed with fully automated segmentation of both amygdalae, hippocampi, caudate nuclei, nuclei accumbens, putamina, pallida, and thalami, and the brainstem. The scalar distances from the mean surfaces of the individual subcortical nuclei were compared between groups, and correlations of the local shape distances with initial Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALS-FRS-R) scores and the delta FRS-R and with the disease duration were analyzed. Results ALS patients showed regional shape contractions on the lateral surfaces of both pallida, the lateroposterior surface of the right putamen, and the anterior basal surface of the right accumbens. Delta FRS-R scores were negatively correlated with local shape distances in the right hippocampus and the putamina. However, the initial ALS-FRS-R score and disease duration were not correlated with local shape distances. Conclusions Subcortical gray-matter structures are involved in the neurodegenerative process of ALS before cognitive impairment becomes evident.
Collapse
Affiliation(s)
- Woo Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Korea
| | - Joo Hye Sung
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Seol Hee Baek
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chan Nyoung Lee
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Byung Jo Kim
- Brain Convergence Research Center, Korea University, Seoul, Korea.,Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
46
|
MRI data confirm the selective involvement of thalamic and amygdalar nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief 2020; 32:106246. [PMID: 32944601 PMCID: PMC7481815 DOI: 10.1016/j.dib.2020.106246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
A standardised imaging protocol was implemented to evaluate disease burden in specific thalamic and amygdalar nuclei in 133 carefully phenotyped and genotyped motor neuron disease patients. “Switchboard malfunction in motor neuron diseases: selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis” [1] “Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis” [2] Raw volumetric data, group comparisons, effect sizes and percentage change are presented. Both ALS and PLS patients exhibited focal thalamus atrophy in ventral lateral and ventral anterior regions revealing extrapyramidal motor degeneration. Reduced accessory basal nucleus and cortical nucleus volumes were noted in the amygdala of C9orf72 negative ALS patients compared to healthy controls. ALS patients carrying the GGGGCC hexanucleotide repeats in C9orf72 exhibited preferential pathology in the mediodorsal-paratenial-reuniens thalamic nuclei and in the lateral nucleus and cortico-amygdaloid transition area of the amygdala. Considerable thalamic atrophy was observed in the sensory nuclei and lateral geniculate region of PLS patients. Our data demonstrate genotype-specific patterns of thalamus and amygdala involvement in ALS and a distinct disease-burden pattern in PLS. The dataset may be utilised for validation purposes, meta-analyses and the interpretation of thalamic and amygdalar profiles from other ALS genotypes.
Collapse
|
47
|
Finegan E, Siah WF, Shing SLH, Chipika RH, Chang KM, McKenna MC, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Hutchinson S, McLaughlin RL, Hardiman O, Bede P. Imaging and clinical data indicate considerable disease burden in 'probable' PLS: Patients with UMN symptoms for 2-4 years. Data Brief 2020; 32:106247. [PMID: 32944602 PMCID: PMC7481824 DOI: 10.1016/j.dib.2020.106247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
Primary lateral sclerosis (PLS) is an adult-onset upper motor neuron disease manifesting in progressive spasticity and gradually resulting in considerably motor disability. In the absence of early disease-specific diagnostic indicators, the majority of patients with PLS face a circuitous diagnostic journey. Until the recent publication of consensus diagnostic criteria, 4-year symptom duration was required to establish the diagnosis. The new diagnostic criteria introduced the category of ‘probable PLS’ for patients with a symptom duration of 2–4 years. “Evolving diagnostic criteria in primary lateral sclerosis: The clinical and radiological basis of "probable PLS" [1]. This dataset provides radiological metrics in a cohort of ‘probable PLS’ patients, ‘definite PLS’ patients and age-matched healthy controls. Region-of-interest radiological data include diffusivity metrics in the corticospinal tracts and corpus callosum as well as mean cortical thickness values in the pre- and para-central gyri in each hemisphere. Our data indicate considerable grey matter and relatively limited white matter involvement in ‘probable PLS’ which supports the rationale for this diagnostic category as a clinically useful entity. The introduction of this diagnostic category will likely facilitate the timely recruitment of PLS patients into research studies and pharmacological trials before widespread neurodegenerative change ensues.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | | | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Mark A. Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Jennifer C. Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Colette Donaghy
- Department of Neurology, Western Health & Social Care Trust, Belfast, United Kingdom
| | | | - Russel L. McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Corresponding author.
| |
Collapse
|
48
|
Involvement of the dentate nucleus in the pathophysiology of amyotrophic lateral sclerosis: A multi-center and multi-modal neuroimaging study. NEUROIMAGE-CLINICAL 2020; 28:102385. [PMID: 32871387 PMCID: PMC7476068 DOI: 10.1016/j.nicl.2020.102385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
This original research article highlights cerebellar structural and functional connectivity abnormalities implicated in the pathophysiology of ALS. In this study, resting-state functional MRI (rs-FMRI), diffusion tensor imaging (DTI), and 3D T1W structural images were examined. Functional connectivity was investigated between the cerebral cortex and cerebellum targeting the dentate nucleus (DN). Microstructural white matter diffusivity was examined along the cerebellar peduncles connecting the DN with the cerebral cortex and brain stem. Grey matter volumes of the cerebellar lobules and DN were determined. Overall, we provide evidence supporting involvement of the DN and associated cerebellar white matter tracts in the pathophysiology of ALS.
Amyotrophic lateral sclerosis (ALS) is characterized primarily by motor neuron but also frontotemporal lobar degeneration. Although the cerebellum is involved in both motor and cognitive functions, little is known of its role in ALS. We targeted the dentate nucleus (DN) in the cerebellum and the associated white matter fibers tracts connecting the DN to the rest of the brain using multimodal imaging techniques to examine the cerebellar structural and functional connectivity patterns in ALS patients and hypothesized that the DN is implicated in the pathophysiology of ALS. A cohort of 127 participants (56 healthy subjects (HS); 71 ALS patients) were recruited across Canada through the Canadian ALS Neuroimaging Consortium (CALSNIC). Resting state functional MRI, diffusion tensor imaging (DTI), and 3D weighted T1 structural images were acquired on a 3-tesla scanner. The DN in the cerebellum was used as a seed to evaluate the whole brain cerebral resting-state functional connectivity (rsFC). The superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP) and inferior cerebellar peduncle (ICP) were used as a region of interest in DTI to evaluate the structural integrity of the DN with the cortex and brain stem. Cerebellar volumetric analysis was done to examine the lobular and DN grey matter (GM) changes in ALS patients. Lastly, an association between DN rsFC and structural alterations were explored. DN rsFC was reduced with cerebrum (supplementary motor area, precentral gyrus, frontal, posterior parietal, temporal), lobule IV, and brain stem, and increased with parieto-occipital region. DN rsFC and white matter (WM) diffusivity alterations at SCP, MCP, and ICP were accompanied by correlations with ALSFRS-R. There were no DN volumetric changes. Notably, DN rsFC correlated with WM abnormalities at superior cerebellar peduncle. The DN plays a pathophysiological role in ALS. Impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. This study demonstrates altered cerebellar rsFC connectivity with motor and extra-motor regions in ALS, and impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. The correlation between the altered DN connectivity, and the behavioral data support the hypothesis that the DN plays a pathophysiological role in ALS.
Collapse
|
49
|
Tondo G, Iaccarino L, Cerami C, Vanoli GE, Presotto L, Masiello V, Coliva A, Salvi F, Bartolomei I, Mosca L, Lunetta C, Perani D. 11 C-PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1513-1523. [PMID: 32762033 PMCID: PMC7480909 DOI: 10.1002/acn3.51112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Neuroinflammation is considered a key driver for neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). SOD1 mutations cause about 20% of familial ALS, and related pathology might generate microglial activation triggering neurodegeneration. 11C‐PK11195 is the prototypical and most validated PET radiotracer, targeting the 18‐kDa translocator protein which is overexpressed in activated microglia. In this study, we investigated microglia activation in asymptomatic (ASYM) and symptomatic (SYM) SOD1 mutated carriers, by using 11C‐PK11195 and PET imaging. Methods We included 20 subjects: 4 ASYM‐carriers, neurologically normal, 6 SYM‐carriers with probable ALS, and 10 healthy controls. A receptor parametric mapping procedure estimated 11C‐PK11195 binding potentials and voxel‐wise statistical comparisons were performed at group and single‐subject levels. Results Both the SYM‐ and ASYM‐carriers showed significant microglia activation in cortical and subcortical structures, with variable patterns at individual level. Clusters of activation were present in occipital and temporal regions, cerebellum, thalamus, and medulla oblongata. Notably, SYM‐carriers showed microglia activation also in supplementary and primary motor cortices and in the somatosensory regions. Interpretation In vivo neuroinflammation occurred in all SOD1 mutated cases since the presymptomatic stages, as shown by a significant cortical and subcortical microglia activation. The involvement of sensorimotor cortex became evident at the symptomatic disease stage. Although our data indicate the role of in vivo PET imaging for assessing resident microglia in the investigation of SOD1‐ALS pathophysiology, further studies are needed to clarify the temporal and spatial dynamics of microglia activation and its relationship with neurodegeneration.
Collapse
Affiliation(s)
- Giacomo Tondo
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Chiara Cerami
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Scuola Universitaria di Studi Superiori IUSS Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | | | - Luca Presotto
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Masiello
- Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| | - Angela Coliva
- Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| | - Fabrizio Salvi
- Bellaria Hospital, IRCCS of Neurological Sciences, Bologna, Italy
| | | | - Lorena Mosca
- Department of Laboratory Medicine, Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| |
Collapse
|
50
|
Finegan E, Li Hi Shing S, Siah WF, Chipika RH, Chang KM, McKenna MC, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Hutchinson S, McLaughlin RL, Hardiman O, Bede P. Evolving diagnostic criteria in primary lateral sclerosis: The clinical and radiological basis of "probable PLS". J Neurol Sci 2020; 417:117052. [PMID: 32731060 DOI: 10.1016/j.jns.2020.117052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Primary lateral sclerosis is a rare neurodegenerative disorder of the upper motor neurons. Diagnostic criteria have changed considerably over the years, and the recent consensus criteria introduced 'probable PLS' for patients with a symptom duration of 2-4 years. The objective of this study is the systematic evaluation of clinical and neuroimaging characteristics in early PLS by studying a group of 'probable PLS patients' in comparison to a cohort of established PLS patients. METHODS In a prospective neuroimaging study, thirty-nine patients were stratified by the new consensus criteria into 'probable' (symptom duration 2-4 years) or 'definite' PLS (symptom duration >4 years). Patients were evaluated with a standardised battery of clinical instruments (ALSFRS-r, Penn upper motor neuron score, the modified Ashworth spasticity scale), whole genome sequencing, and underwent structural and diffusion MRI. The imaging profile of the two PLS cohorts were contrasted to a dataset of 100 healthy controls. All 'probable PLS' patients subsequently fulfilled criteria for 'definite' PLS on longitudinal follow-up and none transitioned to develop ALS. RESULTS PLS patients tested negative for known ALS- or HSP-associated mutations on whole genome sequencing. Despite their shorter symptom duration, 'probable PLS' patients already exhibited considerable functional disability, upper motor neuron disease burden and the majority of them required walking aids for safe ambulation. Their ALSFRS-r, UMN and modified Ashworth score means were 83%, 98% and 85% of the 'definite' group respectively. Motor cortex thickness was significantly reduced in both PLS groups in comparison to controls, but cortical changes were less widespread in 'probable' PLS on morphometric analyses. Corticospinal tract and corpus callosum metrics were relatively well preserved in the 'probable' group in contrast to the widespread white matter degeneration observed in the 'definite' group. CONCLUSIONS Our clinical and radiological analyses support the recent introduction of the 'probable' PLS category, as this cohort already exhibits considerable disability and cerebral changes consistent with established PLS. Before the publication of the new consensus criteria, these patients would have not been diagnosed with PLS on the basis of their symptom duration despite their significant functional impairment and motor cortex atrophy. The introduction of this new category will facilitate earlier recruitment into clinical trials, and shorten the protracted diagnostic uncertainty the majority of PLS patients face.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Colette Donaghy
- Department of Neurology, Belfast, Western Health & Social Care Trust, UK
| | | | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|