1
|
Illman M, Jaatela J, Vallinoja J, Nurmi T, Mäenpää H, Piitulainen H. Altered excitation-inhibition balance in the primary sensorimotor cortex to proprioceptive hand stimulation in cerebral palsy. Clin Neurophysiol 2024; 157:25-36. [PMID: 38039924 DOI: 10.1016/j.clinph.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Our objective was to clarify the primary sensorimotor (SM1) cortex excitatory and inhibitory alterations in hemiplegic (HP) and diplegic (DP) cerebral palsy (CP) by quantifying SM1 cortex beta power suppression and rebound with magnetoencephalography (MEG). METHODS MEG was recorded from 16 HP and 12 DP adolescents, and their 32 healthy controls during proprioceptive stimulation of the index fingers evoked by a movement actuator. The related beta power changes were computed with Temporal Spectral Evolution (TSE). Peak strengths of beta suppression and rebound were determined from representative channels over the SM1 cortex. RESULTS Beta suppression was stronger contralateral to the stimulus and rebound was weaker ipsilateral to the stimulation in DP compared to controls. Beta modulation strengths did not differ significantly between HP and the control group. CONCLUSIONS The emphasized beta suppression in DP suggests less efficient proprioceptive processing in the SM1 contralateral to the stimulation. Their weak rebound further indicates reduced intra- and/or interhemispheric cortical inhibition, which is a potential neuronal mechanism for their bilateral motor impairments. SIGNIFICANCE The excitation-inhibition balance of the SM1 cortex related to proprioception is impaired in diplegic CP. Therefore, the cortical and behavioral proprioceptive deficits should be better diagnosed and considered to better target individualized effective rehabilitation in CP.
Collapse
Affiliation(s)
- Mia Illman
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O.BOX 35, FI-40014 Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland.
| | - Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Helena Mäenpää
- Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O.BOX 35, FI-40014 Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland; Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| |
Collapse
|
2
|
Jaatela J, Aydogan DB, Nurmi T, Vallinoja J, Mäenpää H, Piitulainen H. Limb-specific thalamocortical tracts are impaired differently in hemiplegic and diplegic subtypes of cerebral palsy. Cereb Cortex 2023; 33:10245-10257. [PMID: 37595205 PMCID: PMC10545439 DOI: 10.1093/cercor/bhad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/20/2023] Open
Abstract
Thalamocortical pathways are considered crucial in the sensorimotor functioning of children with cerebral palsy (CP). However, previous research has been limited by non-specific tractography seeding and the lack of comparison between different CP subtypes. We compared limb-specific thalamocortical tracts between children with hemiplegic (HP, N = 15) or diplegic (DP, N = 10) CP and typically developed peers (N = 19). The cortical seed-points for the upper and lower extremities were selected (i) manually based on anatomical landmarks or (ii) using functional magnetic resonance imaging (fMRI) activations following proprioceptive-limb stimulation. Correlations were investigated between tract structure (mean diffusivity, MD; fractional anisotropy, FA; apparent fiber density, AFD) and sensorimotor performance (hand skill and postural stability). Compared to controls, our results revealed increased MD in both upper and lower limb thalamocortical tracts in the non-dominant hemisphere in HP and bilaterally in DP subgroup. MD was strongly lateralized in participants with hemiplegia, while AFD seemed lateralized only in controls. fMRI-based tractography results were comparable. The correlation analysis indicated an association between the white matter structure and sensorimotor performance. These findings suggest distinct impairment of functionally relevant thalamocortical pathways in HP and DP subtypes. Thus, the organization of thalamocortical white matter tracts may offer valuable guidance for targeted, life-long rehabilitation in children with CP.
Collapse
Affiliation(s)
- Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
| | - Helena Mäenpää
- Pediatric Neurology, New Children’s Hospital, Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Pediatric Neurology, New Children’s Hospital, Helsinki University Hospital, FI-00029 Helsinki, Finland
- Aalto NeuroImaging, Aalto University, FI-02150 Espoo, Finland
| |
Collapse
|
3
|
Dukkipati SS, Walker SJ, Trevarrow MP, Busboom M, Baker SE, Kurz MJ. Reduced wrist flexor H-reflex excitability is linked with increased wrist proprioceptive error in adults with cerebral palsy. Front Neurol 2022; 13:930303. [PMID: 36016542 PMCID: PMC9396222 DOI: 10.3389/fneur.2022.930303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Although most neurophysiological studies of persons with cerebral palsy (CP) have been focused on supraspinal networks, recent evidence points toward the spinal cord as a central contributor to their motor impairments. However, it is unclear if alterations in the spinal pathways are also linked to deficits in the sensory processing observed clinically. This investigation aimed to begin to address this knowledge gap by evaluating the flexor carpi radialis (FCR) H-reflex in adults with CP and neurotypical (NT) controls while at rest and during an isometric wrist flexion task. The maximal H-wave (Hmax) and M-wave (Mmax) at rest were calculated and utilized to compute Hmax/Mmax ratios (H:M ratios). Secondarily, the facilitation of the H-wave was measured while producing an isometric, voluntary wrist flexion contraction (i.e., active condition). Finally, a wrist position sense test was used to quantify the level of joint position sense. These results revealed that the adults with CP had a lower H:M ratio compared with the NT controls while at rest. The adults with CP were also unable to facilitate their H-reflexes with voluntary contraction and had greater position sense errors compared with the controls. Further, these results showed that the adults with CP that had greater wrist position sense errors tended to have a lower H:M ratio at rest. Overall, these findings highlight that aberration in the spinal cord pathways of adults with CP might play a role in the sensory processing deficiencies observed in adults with CP.
Collapse
Affiliation(s)
- S. Shekar Dukkipati
- Boys Town National Research Hospital, Omaha, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sarah J. Walker
- Boys Town National Research Hospital, Omaha, NE, United States
| | | | - Morgan Busboom
- Boys Town National Research Hospital, Omaha, NE, United States
| | - Sarah E. Baker
- Boys Town National Research Hospital, Omaha, NE, United States
| | - Max J. Kurz
- Boys Town National Research Hospital, Omaha, NE, United States
- School of Medicine, Creighton University, Omaha, NE, United States
- *Correspondence: Max J. Kurz
| |
Collapse
|
4
|
Jaatela J, Aydogan DB, Nurmi T, Vallinoja J, Piitulainen H. Identification of Proprioceptive Thalamocortical Tracts in Children: Comparison of fMRI, MEG, and Manual Seeding of Probabilistic Tractography. Cereb Cortex 2022; 32:3736-3751. [PMID: 35040948 PMCID: PMC9433422 DOI: 10.1093/cercor/bhab444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Studying white matter connections with tractography is a promising approach to understand the development of different brain processes, such as proprioception. An emerging method is to use functional brain imaging to select the cortical seed points for tractography, which is considered to improve the functional relevance and validity of the studied connections. However, it is unknown whether different functional seeding methods affect the spatial and microstructural properties of the given white matter connection. Here, we compared functional magnetic resonance imaging, magnetoencephalography, and manual seeding of thalamocortical proprioceptive tracts for finger and ankle joints separately. We showed that all three seeding approaches resulted in robust thalamocortical tracts, even though there were significant differences in localization of the respective proprioceptive seed areas in the sensorimotor cortex, and in the microstructural properties of the obtained tracts. Our study shows that the selected functional or manual seeding approach might cause systematic biases to the studied thalamocortical tracts. This result may indicate that the obtained tracts represent different portions and features of the somatosensory system. Our findings highlight the challenges of studying proprioception in the developing brain and illustrate the need for using multimodal imaging to obtain a comprehensive view of the studied brain process.
Collapse
Affiliation(s)
- Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
- Department of Psychiatry, Helsinki University Hospital, Helsinki FI-00029, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
| | - Harri Piitulainen
- Address correspondence to Harri Piitulainen, associate professor, Harri Piitulainen, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014, Finland.
| |
Collapse
|