1
|
Hervouin A, Bézy-Wendling J, Noury F. How to accurately quantify brain magnetic susceptibility in the context of Parkinson's disease: Validation on phantoms and healthy volunteers at 1.5 and 3 T. NMR IN BIOMEDICINE 2024; 37:e5182. [PMID: 38993048 DOI: 10.1002/nbm.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024]
Abstract
Currently, brain iron content represents a new neuromarker for understanding the physiopathological mechanisms leading to Parkinson's disease (PD). In vivo quantification of biological iron is possible by reconstructing magnetic susceptibility maps obtained using quantitative susceptibility mapping (QSM). Applying QSM is challenging, as up to now, no standardization of acquisition protocols and phase image processing has emerged from referenced studies. Our objectives were to compare the accuracy and the sensitivity of 10 QSM pipelines built from algorithms from the literature, applied on phantoms data and on brain data. Two phantoms, with known magnetic susceptibility ranges, were created from several solutions of gadolinium chelate. Twenty healthy volunteers from two age groups were included. Phantoms and brain data were acquired at 1.5 and 3 T, respectively. Susceptibility-weighted images were obtained using a 3D multigradient-recalled-echo sequence. For brain data, 3D anatomical T1- and T2-weighted images were also acquired to segment the deep gray nuclei of interest. Concerning in vitro data, the linear dependence of magnetic susceptibility versus gadolinium concentration and deviations from the theoretically expected values were calculated. For brain data, the accuracy and sensitivity of the QSM pipelines were evaluated in comparison with results from the literature and regarding the expected magnetic susceptibility increase with age, respectively. A nonparametric Mann-Whitney U-test was used to compare the magnetic susceptibility quantification in deep gray nuclei between the two age groups. Our methodology enabled quantifying magnetic susceptibility in human brain and the results were consistent with those from the literature. Statistically significant differences were obtained between the two age groups in all cerebral regions of interest. Our results show the importance of optimizing QSM pipelines according to the application and the targeted magnetic susceptibility range, to achieve accurate quantification. We were able to define the optimal QSM pipeline for future applications on patients with PD.
Collapse
Affiliation(s)
| | | | - Fanny Noury
- Univ Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| |
Collapse
|
2
|
Mohammadi S, Ghaderi S, Mohammadi H, Fatehi F. Simultaneous Increase of Mean Susceptibility and Mean Kurtosis in the Substantia Nigra as an MRI Neuroimaging Biomarker for Early-Stage Parkinson's Disease: A Systematic Review and Meta-Analysis. J Magn Reson Imaging 2024. [PMID: 39210501 DOI: 10.1002/jmri.29569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder. Early detection is crucial for treatment and slowing disease progression. HYPOTHESIS Simultaneous alterations in mean susceptibility (MS) from quantitative susceptibility mapping (QSM) and mean kurtosis (MK) from diffusion kurtosis imaging (DKI) can serve as reliable neuroimaging biomarkers for early-stage PD (ESPD) in the basal ganglia nuclei, including the substantia nigra (SN), putamen (PUT), globus pallidus (GP), and caudate nucleus (CN). STUDY TYPE Systematic review and meta-analysis. POPULATION One hundred eleven patients diagnosed with ESPD and 81 healthy controls (HCs) were included from four studies that utilized both QSM and DKI in both subject groups. FIELD STRENGTH/SEQUENCE Three-dimensional multi-echo gradient echo sequence for QSM and spin echo planar imaging sequence for DKI at 3 Tesla. ASSESSMENT A systematic review and meta-analysis using PRISMA guidelines searched PubMed, Web of Science, and Scopus. STATISTICAL TESTS Random-effects model, standardized mean difference (SMD) to compare MS and MK between ESPD patients and HCs, I2 statistic for heterogeneity, Newcastle-Ottawa Scale (NOS) for risk of bias, and Egger's test for publication bias. A P-value <0.05 was considered significant. RESULTS MS values were significantly higher in SN (SMD 0.72, 95% CI 0.31 to 1.12), PUT (SMD 0.68, 95% CI 0.29 to 1.07), and GP (SMD 0.53, 95% CI 0.19 to 0.87) in ESPD patients compared to HCs. CN did not show a significant difference in MS values (P = 0.15). MK values were significantly higher only in SN (SMD = 0.72, 95% CI 0.16 to 1.27). MK values were not significantly different in PUT (P = 1.00), GP (P = 0.97), and CN (P = 0.59). Studies had high quality (NOS 7-8) and no publication bias (P = 0.967). DATA CONCLUSION Simultaneous use of MS and MK may be useful as an early neuroimaging biomarker for ESPD detection and its differentiation from HCs, with significant differences observed in the SN. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
3
|
Andersson Forsman O, Sjöström H, Svenningsson P, Granberg T. Combined MR quantitative susceptibility mapping and multi-shell diffusion in Parkinson's disease. J Neuroimaging 2024. [PMID: 39004781 DOI: 10.1111/jon.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping (QSM), neurite orientation dispersion and density imaging (NODDI), and the g-ratio have separately shown differences between Parkinson's disease (PD) and healthy controls. The g-ratio has, however, not been studied in PD in the substantia nigra (SN) and the putamen. A combination of these methods could also potentially be a complementary imaging biomarker for PD. This study aimed to assess the diagnostic performance of QSM, NODDI, the g-ratio, and a combined QSM-NODDI imaging marker in the SN and putamen of PD patients. METHODS In this prospective study, the diagnostic performance of median region of interest values was compared in a cohort of 15 participants with PD and 14 healthy controls after manual segmentation. The diagnostic performance was assessed using the area under curve (AUC) for the receiving operator characteristic. RESULTS Median QSM in the contralateral SN identified PD with AUC 0.77, and median isotropic volume fraction identified PD in the ipsilateral SN with AUC 0.68. A combined NODDI-QSM marker improved diagnostic performance (AUC 0.80). No significant differences were found in the g-ratio. CONCLUSION A combination of median QSM and median isotropic volume fraction improves the differentiation of PD from healthy controls and is a potential biomarker in the diagnostics of PD. This confirms previously reported results indicating that combining QSM and NODDI modestly improves differentiation of PD.
Collapse
Affiliation(s)
| | - Henrik Sjöström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Ghaderi S, Mohammadi S, Fatehi F. Calcium accumulation or iron deposition: Delving into the temporal sequence of amyotrophic lateral sclerosis pathophysiology in the primary motor cortex. IBRAIN 2024; 10:375-377. [PMID: 39346793 PMCID: PMC11427793 DOI: 10.1002/ibra.12168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 10/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, but an in vivo understanding of its early pathology remains limited. A recent study used topographic layer imaging to investigate iron and calcium accumulation in the primary motor cortex (M1) of patients with ALS compared with controls. Despite the preserved cortical thickness, ALS patients showed increased iron in layer 6 and calcium accumulation in layer 5a and the superficial layer. Calcium accumulation was particularly prominent in the low-myelin borders, potentially preceding the demyelination. This study reveals a novel in vivo pathology in ALS, suggesting that calcium dysregulation may precede iron accumulation and contribute to early M1 cell degeneration. Further investigation using quantitative susceptibility mapping and complementary techniques, such as diffusion kurtosis imaging, along with ultrahigh-field magnetic resonance imaging, into the role of calcium and early intervention strategies is warranted.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of NeurologyUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
5
|
Jin J, Su D, Zhang J, Lam JST, Zhou J, Feng T. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies. Chin Med J (Engl) 2024:00029330-990000000-01086. [PMID: 38809051 DOI: 10.1097/cm9.0000000000003167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Iron deposition plays a crucial role in the pathophysiology of Parkinson's disease (PD), yet the distribution pattern of iron deposition in the subcortical nuclei has been inconsistent across previous studies. We aimed to assess the difference patterns of iron deposition detected by quantitative iron-sensitive magnetic resonance imaging (MRI) between patients with PD and patients with atypical parkinsonian syndromes (APSs), and between patients with PD and healthy controls (HCs). METHODS A systematic literature search was conducted on PubMed, Embase, and Web of Science databases to identify studies investigating the iron content in PD patients using the iron-sensitive MRI techniques (R2* and quantitative susceptibility mapping [QSM]), up until May 1, 2023. The quality assessment of case-control and cohort studies was performed using the Newcastle-Ottawa Scale, whereas diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Standardized mean differences and summary estimates of sensitivity, specificity, and area under the curve (AUC) were calculated for iron content, using a random effects model. We also conducted the subgroup-analysis based on the MRI sequence and meta-regression. RESULTS Seventy-seven studies with 3192 PD, 209 multiple system atrophy (MSA), 174 progressive supranuclear palsy (PSP), and 2447 HCs were included. Elevated iron content in substantia nigra (SN) pars reticulata (P <0.001) and compacta (P <0.001), SN (P <0.001), red nucleus (RN, P <0.001), globus pallidus (P <0.001), putamen (PUT, P = 0.009), and thalamus (P = 0.046) were found in PD patients compared with HCs. PD patients showed lower iron content in PUT (P <0.001), RN (P = 0.003), SN (P = 0.017), and caudate nucleus (P = 0.027) than MSA patients, and lower iron content in RN (P = 0.001), PUT (P <0.001), globus pallidus (P = 0.004), SN (P = 0.015), and caudate nucleus (P = 0.001) than PSP patients. The highest diagnostic accuracy distinguishing PD from HCs was observed in SN (AUC: 0.85), and that distinguishing PD from MSA was found in PUT (AUC: 0.90). In addition, the best diagnostic performance was achieved in the RN for distinguishing PD from PSP (AUC: 0.84). CONCLUSION Quantitative iron-sensitive MRI could quantitatively detect the iron content of subcortical nuclei in PD and APSs, while it may be insufficient to accurately diagnose PD. Future studies are needed to explore the role of multimodal MRI in the diagnosis of PD. REGISTRISION PROSPERO; CRD42022344413.
Collapse
Affiliation(s)
- Jianing Jin
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Junjiao Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Joyce S T Lam
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA 02131, United States
- Harvard Medical School, Boston, MA 02210, United States
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
6
|
Mohammadi S, Ghaderi S, Fatehi F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique. Brain Imaging Behav 2024:10.1007/s11682-024-00895-6. [PMID: 38758278 DOI: 10.1007/s11682-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI technique that accurately measures iron concentration in brain tissues. This meta-analysis synthesized evidence from 30 studies that used QSM to quantify the iron levels in the putamen. The PRISMA statement was adhered to when conducting the systematic reviews and meta-analyses. We conducted a meta-analysis using a random-effects model, as well as subgroup analyses (disease type, geographic region, field strength, coil, disease type, age, and sex) and sensitivity analysis. A total of 1247 patients and 1035 controls were included in the study. Pooled results showed a standardized mean difference (SMD) of 0.41 (95% CI 0.19 to 0.64), with the strongest effect seen in Alzheimer's disease (AD) at 1.01 (95% CI 0.50 to 1.52). Relapsing-remitting multiple sclerosis (RRMS) also showed increased putaminal iron at 0.37 (95% CI 0.177 to 0.58). No significant differences were observed in Parkinson's disease (PD). No significant differences were found between subgroups based on geographic region, field strength, coil, disease type, age, and sex. The studies revealed significant heterogeneity, with field strength as the primary source, while other factors, such as disease type, location, age, sex, and coil type, may have contributed. The sensitivity analysis showed that these factors did not have a significant influence on the overall results. In summary, this meta-analysis supports abnormalities in putaminal iron content across different diseases with neurodegeneration, especially AD and RRMS, as measured by QSM. This highlights the potential of QSM as an imaging biomarker to better understand disease mechanisms involving disturbances in brain iron homeostasis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
7
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Alushaj E, Handfield-Jones N, Kuurstra A, Morava A, Menon RS, Owen AM, Sharma M, Khan AR, MacDonald PA. Increased iron in the substantia nigra pars compacta identifies patients with early Parkinson'sdisease: A 3T and 7T MRI study. Neuroimage Clin 2024; 41:103577. [PMID: 38377722 PMCID: PMC10944193 DOI: 10.1016/j.nicl.2024.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson's disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD. We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated k-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI). PD patients had higher QSM values in the SNc at both 3T (padj = 0.001) and 7T (padj = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (padj = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82-0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79-0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc. This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.
Collapse
Affiliation(s)
- Erind Alushaj
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada; Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
| | - Nicholas Handfield-Jones
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada; Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
| | - Alan Kuurstra
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Anisa Morava
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Ravi S Menon
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| | - Manas Sharma
- Department of Radiology, Western University, London, Ontario N6A 3K7, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Ali R Khan
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Penny A MacDonald
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
10
|
Shang S, Wang L, Xu Y, Zhang H, Chen L, Dou W, Yin X, Ye J, Chen YC. Optimization of structural connectomes and scaled patterns of structural-functional decoupling in Parkinson's disease. Neuroimage 2023; 284:120450. [PMID: 37949260 DOI: 10.1016/j.neuroimage.2023.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is manifested with disrupted topology of the structural connection network (SCN) and the functional connection network (FCN). However, the SCN and its interactions with the FCN remain to be further investigated. This multimodality study attempted to precisely characterize the SCN using diffusion kurtosis imaging (DKI) and further identify the neuropathological pattern of SCN-FCN decoupling, underscoring the neurodegeneration of PD. Diffusion-weighted imaging and resting-state functional imaging were available for network constructions among sixty-nine patients with PD and seventy demographically matched healthy control (HC) participants. The classification performance and topological prosperities of both the SCN and the FCN were analyzed, followed by quantification of the SCN-FCN couplings across scales. The SCN constructed by kurtosis metrics achieved optimal classification performance (area under the curve 0.89, accuracy 80.55 %, sensitivity 78.40 %, and specificity 80.65 %). Along with diverse alterations of structural and functional network topology, the PD group exhibited decoupling across scales including: reduced global coupling; increased nodal coupling within the sensorimotor network (SMN) and subcortical network (SN); higher intramodular coupling within the SMN and SN and lower intramodular coupling of the default mode network (DMN); decreased coupling between the modules of DMN-fronto-parietal network and DMN-visual network, but increased coupling between the SMN-SN module. Several associations between the coupling coefficient and topological properties of the SCN, as well as between network values and clinical scores, were observed. These findings validated the clinical implementation of DKI for structural network construction with better differentiation ability and characterized the SCN-FCN decoupling as supplementary insight into the pathological process underlying PD.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lijuan Wang
- Department of Radiology, Jintang First People's Hospital, Sichuan University, Chengdu, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Ye
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Bian B, Liu Z, Feng D, Li W, Wang L, Li Y, Li D. Glutaric Aciduria Type 1: Comparison between Diffusional Kurtosis Imaging and Conventional MR Imaging. AJNR Am J Neuroradiol 2023; 44:967-973. [PMID: 37474264 PMCID: PMC10411849 DOI: 10.3174/ajnr.a7928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND PURPOSE Routine MR imaging has limited use in evaluating the severity of glutaric aciduria type 1. To better understand the mechanisms of brain injury in glutaric aciduria type 1, we explored the value of diffusional kurtosis imaging in detecting microstructural injury of the gray and white matter. MATERIALS AND METHODS This study included 17 patients with glutaric aciduria type 1 and 17 healthy controls who underwent conventional MR imaging and diffusional kurtosis imaging. The diffusional kurtosis imaging metrics of the gray and white matter were measured. Then, the MR imaging scores and diffusional kurtosis imaging metrics of all ROIs were further correlated with the morbidity scores and Barry-Albright dystonia scores. RESULTS The MR imaging scores showed no significant relation to the morbidity and Barry-Albright dystonia scores. Compared with healthy controls, patients with glutaric aciduria type 1 showed higher kurtosis values in the basal ganglia, corona radiata, centrum semiovale, and temporal lobe (P < .05). The DTI metrics of the basal ganglia were higher than those of healthy controls (P < .05). The fractional anisotropy value of the temporal lobe and the mean diffusivity values of basal ganglia in glutaric aciduria type 1 were lower than those in the control group (P < .05). The diffusional kurtosis imaging metrics of the temporal lobe and basal ganglia were significantly correlated with the Barry-Albright dystonia scores. The mean kurtosis values of the anterior and posterior putamen and Barry-Albright dystonia scores were most relevant (r = 0.721, 0.730, respectively). The mean kurtosis values of the basal ganglia had the best diagnostic efficiency with area under the curve values of 0.837 for the temporal lobe, and the mean diffusivity values of the basal ganglia in glutaric aciduria type 1 were lower than those in the control group (P < .05). The diffusional kurtosis imaging metrics of the temporal lobe and basal ganglia were significantly correlated with the Barry-Albright dystonia scores. The mean kurtosis values of the anterior and posterior putamen and Barry-Albright dystonia scores were most relevant (r = 0.721, 0.730, respectively). The mean kurtosis values of the basal ganglia had the best diagnostic efficiency with area under the curve values of 0.837. CONCLUSIONS Diffusional kurtosis imaging provides more comprehensive quantitative information regarding the gray and white matter micropathologic damage in glutaric aciduria type 1 than routine MR imaging scores.
Collapse
Affiliation(s)
- B Bian
- From the Departments of Radiology (B.B., Z.L., D.L.)
| | - Z Liu
- From the Departments of Radiology (B.B., Z.L., D.L.)
| | - D Feng
- Outpatient Pediatrics (D.F.)
| | - W Li
- State Key Laboratory of Stem Cell and Reproductive Biology (W.L., L.W.), Chinese Academy of Sciences and University, Beijing, China
| | - L Wang
- State Key Laboratory of Stem Cell and Reproductive Biology (W.L., L.W.), Chinese Academy of Sciences and University, Beijing, China
| | - Y Li
- Gene Therapy Laboratory (Y.L.), The First Hospital of Jilin University, Changchun, Jilin, China
| | - D Li
- From the Departments of Radiology (B.B., Z.L., D.L.)
| |
Collapse
|
12
|
Xu Y, Huang X, Geng X, Wang F. Meta-analysis of iron metabolism markers levels of Parkinson's disease patients determined by fluid and MRI measurements. J Trace Elem Med Biol 2023; 78:127190. [PMID: 37224790 DOI: 10.1016/j.jtemb.2023.127190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Parkinson' s disease (PD) is a progressive neurodegenerative disease featured neuropathologically by the loss of dopaminergic neurons of the substantia nigra (SN). Iron overload in the SN is mainly relative to the pathology and pathogenesis of PD. Postmortem samples of PD has indicated the increased levels of brain iron. However, there is no consensus on iron content through iron-sensitive magnetic resonance imaging (MRI) techniques and the alteration of iron and iron related metabolism markers levels in blood and cerebrospinal fluids (CSF) are still unclear based on the current studies. In this study, we performed a meta-analysis to explore the iron concentration and iron metabolism markers levels through iron-sensitive MRI quantification and body fluid. METHODS A comprehensive literature search was performed in PubMed, EMBASE and Cochrane Library databases for relevant published studies that analyzed iron load in the SN of PD patients using quantitative susceptibility mapping (QSM) or susceptibility weighting imaging (SWI), and iron metabolism markers, iron, ferritin, transferrin, total iron-binding capacity(TIBC)in CSF sample or serum/plasma sample (from Jan 2010 to Sep 2022 to filter these inaccurate researches attributed to unadvanced equipment, inaccurate analytical methods). Standardized mean differences (SMD) or mean differences (MD) and 95% confidence intervals (CI) with random or fixed effect model was used to estimate the results. RESULTS Forty-two articles fulfilled the inclusion criteria including 19 for QSM, 6 for SWI, and 17 for serum/plasma/CSF sample including 2874 PD patients and 2821 healthy controls (HCs). Our meta-analysis results founded a notable difference for QSM values increase (19.67, 95% CI=18.69-20.64) and for SWI measurements (-1.99, 95% CI= -3.52 to -0.46) in the SN in PD patients. However, the serum/plasma/CSF iron levels and serum/plasma ferritin, transferrin, total iron-binding capacity (TIBC) did not differ significantly between PD patients and HCs. CONCLUSIONS Our meta-analysis showed the consistent increase in the SN in PD patients using QSM and SWI techniques of iron-sensitive MRI measures while no significant differences were observed in other iron metabolism markers levels.
Collapse
Affiliation(s)
- Yiyuan Xu
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xinyu Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
13
|
Welton T, Hartono S, Shih YC, Lee W, Chai PH, Chong SL, Ng SYE, Chia NSY, Choi X, Heng DL, Tan EK, Tan LC, Chan LL. Microstructure of Brain Nuclei in Early Parkinson's Disease: Longitudinal Diffusion Kurtosis Imaging. JOURNAL OF PARKINSON'S DISEASE 2023; 13:233-242. [PMID: 36744346 PMCID: PMC10041414 DOI: 10.3233/jpd-225095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diffusion kurtosis imaging provides in vivo measurement of microstructural tissue characteristics and could help guide management of Parkinson's disease. OBJECTIVE To investigate longitudinal diffusion kurtosis imaging changes on magnetic resonance imaging in the deep grey nuclei in people with early Parkinson's disease over two years, and whether they correlate with disease progression. METHODS We conducted a longitudinal case-control study of early Parkinson's disease. 262 people (Parkinson's disease: n = 185, aged 67.5±9.1 years; 43% female; healthy controls: n = 77, aged 66.6±8.1 years; 53% female) underwent diffusion kurtosis imaging and clinical assessment at baseline and two-year timepoints. We automatically segmented five nuclei, comparing the mean kurtosis and other diffusion kurtosis imaging indices between groups and over time using repeated-measures analysis of variance, and Pearson correlation with the two-year change in Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III. RESULTS At baseline, mean kurtosis was higher in Parkinson's disease than controls in the substantia nigra, putamen, thalamus and globus pallidus when adjusting for age, sex, and levodopa equivalent daily dose (p < 0.027). These differences grew over two years, with mean kurtosis increasing for the Parkinson's disease group while remaining stable for the control group; evident in significant "group ×time" interaction effects for the putamen, thalamus and globus pallidus (ηp2= 0.08-0.11, p < 0.015). However, we did not detect significant correlations between increasing mean kurtosis and declining motor function in the Parkinson's disease group. CONCLUSION Diffusion kurtosis imaging of specific grey matter structures shows abnormal microstructure in PD at baseline and abnormal progression in PD over two years.
Collapse
Affiliation(s)
- Thomas Welton
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Septian Hartono
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Yao-Chia Shih
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Weiling Lee
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Pik Hsien Chai
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Say Lee Chong
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Samuel Yong Ern Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Nicole Shuang Yu Chia
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Xinyi Choi
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Dede Liana Heng
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Louis C.S. Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Ling-Ling Chan
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| |
Collapse
|
14
|
Imaging Technologies for Cerebral Pharmacokinetic Studies: Progress and Perspectives. Biomedicines 2022; 10:biomedicines10102447. [PMID: 36289709 PMCID: PMC9598571 DOI: 10.3390/biomedicines10102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
Collapse
|
15
|
Li Q, Cao B, Liu K, Sun H, Ding Y, Yan C, Wu PY, Dai C, Rao S, Zeng M, Jiang S, Zhou J. Detecting the muscle invasiveness of bladder cancer: an application of diffusion kurtosis imaging and tumor contact length. Eur J Radiol 2022; 151:110329. [DOI: 10.1016/j.ejrad.2022.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|