1
|
Jeong H, Lim H, Yoon C, Won J, Lee GY, de la Rosa E, Kirschke JS, Kim B, Kim N, Kim C. Robust Ensemble of Two Different Multimodal Approaches to Segment 3D Ischemic Stroke Segmentation Using Brain Tumor Representation Among Multiple Center Datasets. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2375-2389. [PMID: 38693333 PMCID: PMC11522214 DOI: 10.1007/s10278-024-01099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Ischemic stroke segmentation at an acute stage is vital in assessing the severity of patients' impairment and guiding therapeutic decision-making for reperfusion. Although many deep learning studies have shown attractive performance in medical segmentation, it is difficult to use these models trained on public data with private hospitals' datasets. Here, we demonstrate an ensemble model that employs two different multimodal approaches for generalization, a more effective way to perform on external datasets. First, after we jointly train a segmentation model on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) MR modalities, the model is inferred on the DWI images. Second, a channel-wise segmentation model is trained by concatenating the DWI and ADC images as input, and then is inferred using both MR modalities. Before training with ischemic stroke data, we utilized BraTS 2021, a public brain tumor dataset, for transfer learning. An extensive ablation study evaluates which strategy learns better representations for ischemic stroke segmentation. In our study, nnU-Net well-known for robustness is selected as our baseline model. Our proposed method is evaluated on three different datasets: the Asan Medical Center (AMC) I and II, and the 2022 Ischemic Stroke Lesion Segmentation (ISLES). Our experiments are widely validated over a large, multi-center, and multi-scanner dataset with a huge amount of 846 scans. Not only stroke lesion models can benefit from transfer learning using brain tumor data, but combining the MR modalities using different training schemes also highly improves segmentation performance. The method achieved a top-1 ranking in the ongoing ISLES'22 challenge and performed particularly well on lesion-wise metrics of interest to neuroradiologists, achieving a Dice coefficient of 78.69% and a lesion-wise F1 score of 82.46%. Also, the method was relatively robust on the AMC I (Dice, 60.35%; lesion-wise F1, 68.30%) and II (Dice; 74.12%; lesion-wise F1, 67.53%) datasets in different settings. The high segmentation accuracy of our proposed method could improve radiologists' ability to detect ischemic stroke lesions in MRI images. Our model weights and inference code are available on https://github.com/MDOpx/ISLES22-model-inference .
Collapse
Affiliation(s)
- Hyunsu Jeong
- Graduate School of Artificial Intelligence (GSAI), Department of Electrical Engineering, Medical Science and Engineering, and Medical Device Innovation Center, Convergence IT Engineering, Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyunseok Lim
- Graduate School of Artificial Intelligence (GSAI), Department of Electrical Engineering, Medical Science and Engineering, and Medical Device Innovation Center, Convergence IT Engineering, Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Chiho Yoon
- Graduate School of Artificial Intelligence (GSAI), Department of Electrical Engineering, Medical Science and Engineering, and Medical Device Innovation Center, Convergence IT Engineering, Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jongjun Won
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Grace Yoojin Lee
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ezequiel de la Rosa
- icometrix, Leuven, Belgium
- Department of Informatics, Technical University of Munich, Neuroradiology Munich, Germany
| | - Jan S Kirschke
- Department of Informatics, Technical University of Munich, Neuroradiology Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechtsder Isar, Technical University of Munich, Munich, Germany
| | - Bumjoon Kim
- Department of Biomedical Engineering, Convergence Medicine, Radiology, Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Namkug Kim
- Department of Biomedical Engineering, Convergence Medicine, Radiology, Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Chulhong Kim
- Graduate School of Artificial Intelligence (GSAI), Department of Electrical Engineering, Medical Science and Engineering, and Medical Device Innovation Center, Convergence IT Engineering, Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| |
Collapse
|
2
|
Michaelson NM, Rúa SH, Kaunzner UW, Marcille M, Pliska-Bloch I, Markowitz K, Nguyen TD, Gauthier SA. Impact of paramagnetic rim lesions on disability and race in multiple sclerosis: mediation analysis. Ann Clin Transl Neurol 2024. [PMID: 39290047 DOI: 10.1002/acn3.52203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Black American (BA) multiple sclerosis (MS) patients experience greater disability compared to White American (WA) patients. Here, we investigated the role of paramagnetic rim lesions (PRLs), a subset of chronic active lesions, on race-related disability in MS. METHODS We conducted a retrospective observational study comparing BA and WA MS patients. PRLs were identified through Quantitative Susceptibility Mapping (QSM) MRI. A causal mediation analysis explored the impact of PRLs on the relationship between race and disability, as measured by the Expanded Disability Status Scale (EDSS). RESULTS The prevalence of PRLs in BA patients with MS was higher at 55% compared to WA patients at 39% (p = 0.022). A higher percentage of PRLs among all white matter lesions was observed with BA (8.01%) patients compared to WA (3.4%) patients (p = 0.003). In a regression analysis, controlling for significant patient-level covariates and income-level demographics, the percentage of PRLs was, on average, 4.61 points higher for BA patients than for WA patients (p = 0.003). In a separate regression analysis, accounting for covariates, BA patients exhibited significantly higher EDSS scores (p < 0.001). Further analysis demonstrated that the percentage of PRLs was a mediator in the association between BA patients and greater disability (p = 0.031). Higher proportion of PRLs in BA population accounted for 14% of the total effect of race on disability. INTERPRETATION BA patients exhibit greater disability, in part, due to their higher proportion of PRLs. This study underscores the substantial impact of chronic active lesions on disability outcomes in this specific minority MS patient population.
Collapse
Affiliation(s)
- Nara M Michaelson
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Sandra H Rúa
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| | - Ulrike W Kaunzner
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | | | - Kimberly Markowitz
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
De Rosa AP, Benedetto M, Tagliaferri S, Bardozzo F, D'Ambrosio A, Bisecco A, Gallo A, Cirillo M, Tagliaferri R, Esposito F. Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis. Sci Rep 2024; 14:21348. [PMID: 39266642 PMCID: PMC11393062 DOI: 10.1038/s41598-024-72649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Segmentation of multiple sclerosis (MS) lesions on brain MRI scans is crucial for diagnosis, disease and treatment monitoring but is a time-consuming task. Despite several automated algorithms have been proposed, there is still no consensus on the most effective method. Here, we applied a consensus-based framework to improve lesion segmentation on T1-weighted and FLAIR scans. The framework is designed to combine publicly available state-of-the-art deep learning models, by running multiple segmentation tasks before merging the outputs of each algorithm. To assess the effectiveness of the approach, we applied it to MRI datasets from two different centers, including a private and a public dataset, with 131 and 30 MS patients respectively, with manually segmented lesion masks available. No further training was performed for any of the included algorithms. Overlap and detection scores were improved, with Dice increasing by 4-8% and precision by 3-4% respectively for the private and public dataset. High agreement was obtained between estimated and true lesion load (ρ = 0.92 and ρ = 0.97) and count (ρ = 0.83 and ρ = 0.94). Overall, this framework ensures accurate and reliable results, exploiting complementary features and overcoming some of the limitations of individual algorithms.
Collapse
Affiliation(s)
- Alessandro Pasquale De Rosa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Marco Benedetto
- Kelyon S.r.l., Via Benedetto Brin, 59 C5/C6, 80142, Naples, Italy
- NeuRoNe Lab, DISA-MIS, University of Salerno, 84084, Fisciano, Italy
| | | | | | - Alessandro D'Ambrosio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | | | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy.
| |
Collapse
|
4
|
Demuth S, Paris J, Faddeenkov I, De Sèze J, Gourraud PA. Clinical applications of deep learning in neuroinflammatory diseases: A scoping review. Rev Neurol (Paris) 2024:S0035-3787(24)00522-8. [PMID: 38772806 DOI: 10.1016/j.neurol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Deep learning (DL) is an artificial intelligence technology that has aroused much excitement for predictive medicine due to its ability to process raw data modalities such as images, text, and time series of signals. OBJECTIVES Here, we intend to give the clinical reader elements to understand this technology, taking neuroinflammatory diseases as an illustrative use case of clinical translation efforts. We reviewed the scope of this rapidly evolving field to get quantitative insights about which clinical applications concentrate the efforts and which data modalities are most commonly used. METHODS We queried the PubMed database for articles reporting DL algorithms for clinical applications in neuroinflammatory diseases and the radiology.healthairegister.com website for commercial algorithms. RESULTS The review included 148 articles published between 2018 and 2024 and five commercial algorithms. The clinical applications could be grouped as computer-aided diagnosis, individual prognosis, functional assessment, the segmentation of radiological structures, and the optimization of data acquisition. Our review highlighted important discrepancies in efforts. The segmentation of radiological structures and computer-aided diagnosis currently concentrate most efforts with an overrepresentation of imaging. Various model architectures have addressed different applications, relatively low volume of data, and diverse data modalities. We report the high-level technical characteristics of the algorithms and synthesize narratively the clinical applications. Predictive performances and some common a priori on this topic are finally discussed. CONCLUSION The currently reported efforts position DL as an information processing technology, enhancing existing modalities of paraclinical investigations and bringing perspectives to make innovative ones actionable for healthcare.
Collapse
Affiliation(s)
- S Demuth
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France.
| | - J Paris
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - I Faddeenkov
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - J De Sèze
- Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France; Department of Neurology, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France; Inserm CIC 1434 Clinical Investigation Center, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - P-A Gourraud
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; "Data clinic", Department of Public Health, University Hospital of Nantes, Nantes, France
| |
Collapse
|
5
|
Raab F, Malloni W, Wein S, Greenlee MW, Lang EW. Investigation of an efficient multi-modal convolutional neural network for multiple sclerosis lesion detection. Sci Rep 2023; 13:21154. [PMID: 38036638 PMCID: PMC10689724 DOI: 10.1038/s41598-023-48578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
In this study, an automated 2D machine learning approach for fast and precise segmentation of MS lesions from multi-modal magnetic resonance images (mmMRI) is presented. The method is based on an U-Net like convolutional neural network (CNN) for automated 2D slice-based-segmentation of brain MRI volumes. The individual modalities are encoded in separate downsampling branches without weight sharing, to leverage the specific features. Skip connections input feature maps to multi-scale feature fusion (MSFF) blocks at every decoder stage of the network. Those are followed by multi-scale feature upsampling (MSFU) blocks which use the information about lesion shape and location. The CNN is evaluated on two publicly available datasets: The ISBI 2015 longitudinal MS lesion segmentation challenge dataset containing 19 subjects and the MICCAI 2016 MSSEG challenge dataset containing 15 subjects from various scanners. The proposed multi-input 2D architecture is among the top performing approaches in the ISBI challenge, to which open-access papers are available, is able to outperform state-of-the-art 3D approaches without additional post-processing, can be adapted to other scanners quickly, is robust against scanner variability and can be deployed for inference even on a standard laptop without a dedicated GPU.
Collapse
Affiliation(s)
- Florian Raab
- Computational Intelligence and Machine Learning Group, University of Regensburg, 93051, Regensburg, Germany.
| | - Wilhelm Malloni
- Experimental Psychology, University of Regensburg, Regensburg, 93051, Germany
| | - Simon Wein
- Computational Intelligence and Machine Learning Group, University of Regensburg, 93051, Regensburg, Germany
- Experimental Psychology, University of Regensburg, Regensburg, 93051, Germany
| | - Mark W Greenlee
- Experimental Psychology, University of Regensburg, Regensburg, 93051, Germany
| | - Elmar W Lang
- Computational Intelligence and Machine Learning Group, University of Regensburg, 93051, Regensburg, Germany
| |
Collapse
|
6
|
Gentile G, Jenkinson M, Griffanti L, Luchetti L, Leoncini M, Inderyas M, Mortilla M, Cortese R, De Stefano N, Battaglini M. BIANCA-MS: An optimized tool for automated multiple sclerosis lesion segmentation. Hum Brain Mapp 2023; 44:4893-4913. [PMID: 37530598 PMCID: PMC10472913 DOI: 10.1002/hbm.26424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
In this work we present BIANCA-MS, a novel tool for brain white matter lesion segmentation in multiple sclerosis (MS), able to generalize across both the wide spectrum of MRI acquisition protocols and the heterogeneity of manually labeled data. BIANCA-MS is based on the original version of BIANCA and implements two innovative elements: a harmonized setting, tested under different MRI protocols, which avoids the need to further tune algorithm parameters to each dataset; and a cleaning step developed to improve consistency in automated and manual segmentations, thus reducing unwanted variability in output segmentations and validation data. BIANCA-MS was tested on three datasets, acquired with different MRI protocols. First, we compared BIANCA-MS to other widely used tools. Second, we tested how BIANCA-MS performs in separate datasets. Finally, we evaluated BIANCA-MS performance on a pooled dataset where all MRI data were merged. We calculated the overlap using the DICE spatial similarity index (SI) as well as the number of false positive/negative clusters (nFPC/nFNC) in comparison to the manual masks processed with the cleaning step. BIANCA-MS clearly outperformed other available tools in both high- and low-resolution images and provided comparable performance across different scanning protocols, sets of modalities and image resolutions. BIANCA-MS performance on the pooled dataset (SI: 0.72 ± 0.25, nFPC: 13 ± 11, nFNC: 4 ± 8) were comparable to those achieved on each individual dataset (median across datasets SI: 0.72 ± 0.28, nFPC: 14 ± 11, nFNC: 4 ± 8). Our findings suggest that BIANCA-MS is a robust and accurate approach for automated MS lesion segmentation.
Collapse
Affiliation(s)
- Giordano Gentile
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
- SIENA Imaging SRLSienaItaly
| | - Mark Jenkinson
- Welcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
- Australian Institute of Machine Learning (AIML), School of Computer and Mathematical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
| | - Ludovica Griffanti
- Welcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
- Welcome Centre for Integrative Neuroimaging (WIN), OHBA, Department of PsychiatryUniversity of Oxford, Warneford HospitalOxfordUK
| | - Ludovico Luchetti
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Matteo Leoncini
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
- SIENA Imaging SRLSienaItaly
| | - Maira Inderyas
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
- SIENA Imaging SRLSienaItaly
| | | | - Rosa Cortese
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Nicola De Stefano
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Marco Battaglini
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
- SIENA Imaging SRLSienaItaly
| |
Collapse
|
7
|
Sarica B, Seker DZ, Bayram B. A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images. Int J Med Inform 2023; 170:104965. [PMID: 36580821 DOI: 10.1016/j.ijmedinf.2022.104965] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease that causes brain and spinal cord lesions, which magnetic resonance imaging (MRI) can detect and characterize. Recently, deep learning methods have achieved remarkable results in the automated segmentation of MS lesions from MRI data. Hence, this study proposes a novel dense residual U-Net model that combines attention gate (AG), efficient channel attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) to enhance the performance of the automatic MS lesion segmentation using 3D MRI sequences. First, convolution layers in each block of the U-Net architecture are replaced by residual blocks and connected densely. Then, AGs are exploited to capture salient features passed through the skip connections. The ECA module is appended at the end of each residual block and each downsampling block of U-Net. Later, the bottleneck of U-Net is replaced with the ASSP module to extract multi-scale contextual information. Furthermore, 3D MR images of Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted (T1-w), and T2-weighted (T2-w) are exploited jointly to perform better MS lesion segmentation. The proposed model is validated on the publicly available ISBI2015 and MSSEG2016 challenge datasets. This model produced an ISBI score of 92.75, a mean Dice score of 66.88%, a mean positive predictive value (PPV) of 86.50%, and a mean lesion-wise true positive rate (LTPR) of 60.64% on the ISBI2015 testing set. Also, it achieved a mean Dice score of 67.27%, a mean PPV of 65.19%, and a mean sensitivity of 74.40% on the MSSEG2016 testing set. The results show that the proposed model performs better than the results of some experts and some of the other state-of-the-art methods realized related to this particular subject. Specifically, the best Dice score and the best LTPR are obtained on the ISBI2015 testing set by using the proposed model to segment MS lesions.
Collapse
Affiliation(s)
- Beytullah Sarica
- Istanbul Technical University, Graduate School, Department of Applied Informatics, Istanbul, 34469, Turkey.
| | - Dursun Zafer Seker
- Istanbul Technical University, Civil Engineering Faculty, Department of Geomatics Engineering, Istanbul, 34469, Turkey.
| | - Bulent Bayram
- Yildiz Technical University, Civil Engineering Faculty, Department of Geomatics Engineering, Istanbul, 34220, Turkey.
| |
Collapse
|
8
|
Dimov AV, Nguyen TD, Gillen KM, Marcille M, Spincemaille P, Pitt D, Gauthier SA, Wang Y. Susceptibility source separation from gradient echo data using magnitude decay modeling. J Neuroimaging 2022; 32:852-859. [PMID: 35668022 DOI: 10.1111/jon.13014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The objective is to demonstrate feasibility of separating magnetic sources in quantitative susceptibility mapping (QSM) by incorporating magnitude decay rates R 2 ∗ $R_2^{\rm{*}}$ in gradient echo (GRE) MRI. METHODS Magnetic susceptibility source separation was developed using R 2 ∗ $R_2^{\rm{*}}$ and compared with a prior method using R 2 ' = R 2 ∗ - R 2 ${R^{\prime}_2} = R_2^* - {R_2}$ that required an additional sequence to measure the transverse relaxation rate R2 . Both susceptibility separation methods were compared in multiple sclerosis (MS) patients (n = 17). Susceptibility values of negative sources estimated with R 2 ∗ $R_2^{\rm{*}}$ -based source separation in a set of enhancing MS lesions (n = 44) were correlated against longitudinal myelin water fraction (MWF) changes. RESULTS In in vivo data, linear regression of the estimated χ + ${\chi}^{+}$ and χ - ${\chi}^{-}$ susceptibility values between the R 2 ∗ $R_2^*$ - and the R 2 ' ${R^{\prime}_2}$ -based separation methods performed across 182 segmented lesions revealed correlation coefficient r = .96 and slope close .99. Correlation analysis in enhancing lesions revealed a significant positive association between the χ - ${\chi}^{-}$ increase at 1-year post-onset relative to 0 year and the MWF increase at 1 year relative to 0 year (β = -0.144, 95% confidence interval: [-0.199, -0.1], p = .0008) and good agreement between R 2 ' ${R^{\prime}_2}$ and R 2 ∗ $R_2^*$ methods (r = .79, slope = .95). CONCLUSIONS Separation of magnetic sources based solely on GRE complex data is feasible by combining magnitude decay rate modeling and phase-based QSM and χ - ${\chi}^{-}$ change may serve as a biomarker for myelin recovery or damage in acute MS lesions.
Collapse
Affiliation(s)
- Alexey V Dimov
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Kelly M Gillen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | | | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|