1
|
Tettey A, Jiang Y, Li X, Li Y. Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway. Front Pharmacol 2021; 12:767002. [PMID: 34867394 PMCID: PMC8633825 DOI: 10.3389/fphar.2021.767002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with a resultant increase of the mean pulmonary arterial pressure, right ventricular hypertrophy and eventual death. Research in recent years has produced various therapeutic options for its clinical management but the high mortality even under treatment remains a big challenge attributed to the complex pathophysiology. Studies from clinical and non-clinical experiments have revealed that the nitric oxide (NO) pathway is one of the key pathways underlying the pathophysiology of PAH. Many of the essential drugs used in the management of PAH act on this pathway highlighting its significant role in PAH. Meanwhile, several novel compounds targeting on NO pathway exhibits great potential to become future therapy medications. Furthermore, the NO pathway is found to interact with other crucial pathways. Understanding such interactions could be helpful in the discovery of new drug that provide better clinical outcomes.
Collapse
Affiliation(s)
- Abraham Tettey
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
2
|
Tawa M, Nagata R, Sumi Y, Nakagawa K, Sawano T, Ohkita M, Matsumura Y. Preventive effects of nitrate-rich beetroot juice supplementation on monocrotaline-induced pulmonary hypertension in rats. PLoS One 2021; 16:e0249816. [PMID: 33831045 PMCID: PMC8031446 DOI: 10.1371/journal.pone.0249816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
Beetroot (Beta vulgaris L.) has a high level of nitrate; therefore, its dietary intake could increase nitric oxide (NO) level in the body, possibly preventing the development of pulmonary hypertension (PH). In this study, we examined the effects of beetroot juice (BJ) supplementation on PH and the contribution of nitrate to such effects using a rat model of monocrotaline (MCT, 60 mg/kg s.c.)-induced PH. Rats were injected subcutaneously with saline or 60 mg/kg MCT and were sacrificed 28 days after the injection. In some rats injected with MCT, BJ was supplemented from the day of MCT injection to the day of sacrifice. First, MCT-induced right ventricular systolic pressure elevation, pulmonary arterial medial thickening and muscularization, and right ventricular hypertrophy were suppressed by supplementation with low-dose BJ (nitrate: 1.3 mmol/L) but not high-dose BJ (nitrate: 4.3 mmol/L). Of the plasma nitrite, nitrate, and their sum (NOx) levels, only the nitrate levels were found to be increased by the high-dose BJ supplementation. Second, in order to clarify the possible involvement of nitrate in the preventive effects of BJ on PH symptoms, the effects of nitrate-rich BJ (nitrate: 0.9 mmol/L) supplementation were compared with those of the nitrate-depleted BJ. While the former exerted preventive effects on PH symptoms, such effects were not observed in rats supplemented with nitrate-depleted BJ. Neither supplementation with nitrate-rich nor nitrate-depleted BJ affected plasma nitrite, nitrate, and NOx levels. These findings suggest that a suitable amount of BJ ingestion, which does not affect systemic NO levels, can prevent the development of PH in a nitrate-dependent manner. Therefore, BJ could be highly useful as a therapy in patients with PH.
Collapse
Affiliation(s)
- Masashi Tawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- * E-mail: ,
| | - Rikako Nagata
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yuiko Sumi
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Keisuke Nakagawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Tatsuya Sawano
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yasuo Matsumura
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
3
|
Gentle SJ, Freeman A, Patel RP, Ambalavanan N, Lal CV. Airway nitrite is increased in extremely preterm infants with bronchopulmonary dysplasia. Respir Res 2020; 21:244. [PMID: 32957939 PMCID: PMC7504869 DOI: 10.1186/s12931-020-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/13/2020] [Indexed: 11/10/2022] Open
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) is the most common complication of prematurity and significantly contributes to mortality and morbidity with few predictive biomarkers. Given that nitrites have been implicated in pathways associated with lung disease, we hypothesized that nitrite levels would be altered in the airways of premature infants diagnosed with BPD. METHODS This was a prospective cohort study of extremely low birth infants (< 28 weeks' gestation) at the University of Alabama at Birmingham. Nitrite levels from tracheal aspirates (TAs) were compared between intubated and ventilated infants with BPD and gestation matched full term (FT) controls. TA derived nitrite levels from day one after birth were also compared between preterm infants who did and did not develop BPD. RESULTS Infants with BPD were found to have significantly elevated nitrite levels in their tracheal aspirates compared to gestation matched FT controls (p < 0.05). There was a trend for increased nitrite levels on postnatal day one in infants that developed BPD compared to infants that did not develop BPD (p = 0.05). CONCLUSIONS In conclusion, nitrite levels are significantly increased in airways of infants with BPD. Data from a larger cohort are needed to further support the utility of nitrite for BPD prediction. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Samuel J Gentle
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, 1700 6th Ave S, Birmingham, al, 35233, USA.
| | - Amelia Freeman
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, 1700 6th Ave S, Birmingham, al, 35233, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, 1700 6th Ave S, Birmingham, al, 35233, USA
| | - Charitharth V Lal
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, 1700 6th Ave S, Birmingham, al, 35233, USA
| |
Collapse
|
4
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
5
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Malikova E, Carlström M, Kmecova Z, Marusakova M, Zsigmondova B, Krenek P, Klimas J, Henrohn D. Effects of inorganic nitrate in a rat model of monocrotaline-induced pulmonary arterial hypertension. Basic Clin Pharmacol Toxicol 2019; 126:99-109. [PMID: 31429204 DOI: 10.1111/bcpt.13309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/11/2019] [Indexed: 12/27/2022]
Abstract
The nitrate-nitrite-nitric oxide (NO) pathway represents an alternative source of NO generation, which is independent of NO synthase and potentiated by hypoxia. Augmentation of this pathway by dietary nitrate has proven favourable effects in several cardiovascular disease models. However, less is known regarding its potential value in pulmonary arterial hypertension (PAH). The aim of this study was to assess the effects of oral inorganic nitrate administration in monocrotaline (MCT)-induced PAH. Male 12-week-old Wistar rats were injected subcutaneously with monocrotaline (MCT, 60 mg/kg). Nitrate treatment (0.3 or 1 mmol/kg/d; drinking water) commenced on day 12 following the MCT injection and continued for 16 days. Nitrate administration did not attenuate right ventricular (RV) hypertrophy, increased lung weight and up-regulated mRNA expression of brain natriuretic peptide. Plasma nitrate and nitrite levels were significantly increased as well as lung nitrate level, whereas nitrite lung level was decreased following nitrate treatment (1 mmol/kg/d). MCT-induced PAH resulted in an increased MnSOD protein level, which was not observed following nitrate treatment. MCT-associated up-regulation of nNOS in the lung appeared to be dose-dependently prevented by nitrate treatment. Western blot analysis did not reveal any differences in eNOS, iNOS, XO or gp91phox expression in the lungs among the groups. In conclusion, nitrate treatment did not significantly attenuate pathological RV and lung remodelling in the rat MCT model of PAH. The suppression of MnSOD and nNOS expression by nitrate could be interpreted as reduced demand of endogenous antioxidant defence in this model.
Collapse
Affiliation(s)
- Eva Malikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Margareta Marusakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Bianka Zsigmondova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Dan Henrohn
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Tawa M, Yano Y, Yamanaka M, Sawano T, Iesaki K, Murata Y, Tanaka R, Nakagawa K, Ohkita M, Matsumura Y. Effects of Beet Juice Supplementation on Monocrotaline-Induced Pulmonary Hypertension in Rats. Am J Hypertens 2019; 32:216-222. [PMID: 30265283 DOI: 10.1093/ajh/hpy144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Recently, attention has been focused on the cardiovascular protective effects of beet juice (BJ) with high amounts of nitrate. In this study, we examined the effect of BJ supplementation in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). METHODS MCT (60 mg/kg) was subcutaneously administered to rats, and BJ (prepared by dissolving BJ powder at a concentration of 1 g/l or 10 g/l in drinking water) supplementation was started from the day of, 1 week before, and 2 weeks after MCT injection. Saline-injected rats given drinking water were used as controls. RESULTS Low-dose BJ supplementation starting from the day of MCT injection exerted protective effects on the MCT-induced elevation of right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary arterial remodeling, without causing a significant increase in plasma nitrite plus nitrate (NOx) levels. On the other hand, such beneficial effects were not observed with high-dose BJ supplementation, although the NOx levels were slightly higher than those in the low-dose group. In addition, low-dose BJ supplementation starting from 1 week before MCT injection did not improve PH symptoms, as described above. Furthermore, low-dose BJ supplementation starting from 2 weeks after MCT injection was ineffective against functional and morphological alterations in pulmonary circulation associated with MCT-induced PH. CONCLUSIONS Habitual ingestion of a suitable amount of BJ could be a potential option for preventing PH. However, beneficial effects cannot be expected when PH has developed to some degree.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yoko Yano
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Misaki Yamanaka
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Tatsuya Sawano
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kana Iesaki
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yuka Murata
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Ryosuke Tanaka
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Keisuke Nakagawa
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Mamoru Ohkita
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yasuo Matsumura
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
8
|
Jankov RP, Daniel KL, Iny S, Kantores C, Ivanovska J, Ben Fadel N, Jain A. Sodium nitrite augments lung S-nitrosylation and reverses chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Lung Cell Mol Physiol 2018; 315:L742-L751. [DOI: 10.1152/ajplung.00184.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deficient nitric oxide (NO) signaling plays a critical role in the pathogenesis of chronic neonatal pulmonary hypertension (PHT). Physiological NO signaling is regulated by S-nitrosothiols (SNOs), which act both as a reservoir for NO and as a reversible modulator of protein function. We have previously reported that therapy with inhaled NO (iNO) increased peroxynitrite-mediated nitration in the juvenile rat lung, although having minimal reversing effects on vascular remodeling. We hypothesized that sodium nitrite (NaNO2) would be superior to iNO in enhancing lung SNOs, thereby contributing to reversal of chronic hypoxic PHT. Rat pups were exposed to air or hypoxia (13% O2) from postnatal days 1 to 21. Dose-response prevention studies were conducted from days 1–21 to determine the optimal dose of NaNO2. Animals then received rescue therapy with daily subcutaneous NaNO2 (20 mg/kg), vehicle, or were continuously exposed to iNO (20 ppm) from days 14–21. Chronic PHT secondary to hypoxia was both prevented and reversed by treatment with NaNO2. Rescue NaNO2 increased lung NO and SNO contents to a greater extent than iNO, without causing nitration. Seven lung SNO proteins upregulated by treatment with NaNO2 were identified by multiplex tandem mass tag spectrometry, one of which was leukotriene A4 hydrolase (LTA4H). Rescue therapy with a LTA4H inhibitor, SC57461A (10 mg·kg−1·day−1 sc), partially reversed chronic hypoxic PHT. We conclude that NaNO2 was superior to iNO in increasing tissue NO and SNO generation and reversing chronic PHT, in part via upregulated SNO-LTA4H.
Collapse
Affiliation(s)
- Robert P. Jankov
- Molecular Biomedicine Program, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Kathrine L. Daniel
- Molecular Biomedicine Program, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Shira Iny
- Molecular Biomedicine Program, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Crystal Kantores
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Nadya Ben Fadel
- Faculty of Medicine, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Amish Jain
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Stimulation of nitric oxide-sensitive soluble guanylate cyclase in monocrotaline-induced pulmonary hypertensive rats. Life Sci 2018; 203:203-209. [DOI: 10.1016/j.lfs.2018.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 11/19/2022]
|
10
|
Discovery and development of sGC stimulators for the treatment of pulmonary hypertension and rare diseases. Nitric Oxide 2018; 77:88-95. [PMID: 29738821 DOI: 10.1016/j.niox.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
Abstract
The NO/sGC/cGMP signaling cascade plays a pivotal role in regulation of cardiovascular, cardiopulmonary and cardiorenal diseases and impairment of this cascade results in severe pathologies. Therefore, pharmacological interventions, targeting this pathway are promising strategies for treating a variety of diseases. Nitrates, supplementing NO and, PDE5 inhibitors preventing cGMP degradation, are used for angina pectoris treatment and the treatment of pulmonary arterial hypertension (PAH), respectively. More recently, a new class of drugs which directly stimulate the sGC enzyme and trigger NO-independent cGMP production was introduced and termed sGC stimulators. In 2013, the first sGC stimulator, riociguat, was approved for the treatment of PAH and chronic thromboembolic pulmonary hypertension (CTEPH). Since cGMP targets multiple intracellular downstream targets, sGC stimulators have shown - beyond the well characterized vasodilatation - anti-fibrotic, anti-inflammatory and anti-proliferative effects. These additional modes of action might extend the therapeutic potential of this drug class substantially. This review summarizes the NO/sGC/cGMP signaling cascades, the discovery and the mode of action of sGC stimulators. Furthermore, the preclinical evidence and development of riociguat for the treatment of PAH and CTEPH is reviewed. Finally, a summary of the antifibrotic effects of sGC stimulators, especially the most recent finding for skin fibrosis are included which may indicate efficacy in fibrotic diseases like Systemic Sclerosis (SSc).
Collapse
|
11
|
A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:71-81. [PMID: 29047082 DOI: 10.1007/978-3-319-63245-2_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary hypertension (PH) is characterized by increased vasoconstriction and smooth muscle cell hyperplasia driving pathological vascular remodeling of arterial vessels. In this short review, we discuss the primary source of reactive oxygen species (ROS) and nitric oxide (NO) relevant to PH and the mechanism by which dysregulation of their production contributes to PH. Specifically, hypoxia-induced PH is associated with diminished endothelial nitric oxide synthase (eNOS)-derived NO production and increased production of superoxide (O2•-) through eNOS uncoupling and defective mitochondrial respiration. This drives the inhibition of the NO/soluble guanylate cyclase (sGC) pathway and activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) with consequential dysregulation of the pulmonary vasculature. Therapeutics aimed at increasing NO or cGMP bioavailabilities are amenable to hypoxia disease-induced PH. Similarly, strategies targeting HIF-1α are now considered. Overall, pulmonary hypertension including hypoxia-induced PH offers unique opportunities for the rational development of therapeutics centered on modulating redox signaling.
Collapse
|
12
|
|
13
|
Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med 2017; 105:48-67. [PMID: 27989792 PMCID: PMC5401802 DOI: 10.1016/j.freeradbiomed.2016.12.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.
Collapse
Affiliation(s)
- Carl D Koch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bruce A Freeman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
14
|
|
15
|
Pankey EA, Edward JA, Swan KW, Bourgeois CR, Bartow MJ, Yoo D, Peak TA, Song BM, Chan RA, Murthy SN, Prieto MC, Giles TD, Kadowitz PJ. Nebivolol has a beneficial effect in monocrotaline-induced pulmonary hypertension. Can J Physiol Pharmacol 2016; 94:758-68. [DOI: 10.1139/cjpp-2015-0431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pulmonary hypertension is a rare disorder that, without treatment, is progressive and fatal within 3–4 years. Current treatment involves a diverse group of drugs that target the pulmonary vascular bed. In addition, strategies that increase nitric oxide (NO) formation have a beneficial effect in rodents and patients. Nebivolol, a selective β1 adrenergic receptor-blocking agent reported to increase NO production and stimulate β3 receptors, has vasodilator properties suggesting that it may be beneficial in the treatment of pulmonary hypertension. The present study was undertaken to determine whether nebivolol has a beneficial effect in monocrotaline-induced (60 mg/kg) pulmonary hypertension in the rat. These results show that nebivolol treatment (10 mg/kg, once or twice daily) attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension. This study demonstrates the presence of β3 adrenergic receptor immunoreactivity in pulmonary arteries and airways and that nebivolol has pulmonary vasodilator activity. Studies with β3 receptor agonists (mirabegron, BRL 37344) and antagonists suggest that β3 receptor-mediated decreases in systemic arterial pressure occur independent of NO release. Our results suggest that nebivolol, a selective vasodilating β1 receptor antagonist that stimulates β3 adrenergic receptors and induces vasodilation by increasing NO production, may be beneficial in treating pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Edward A. Pankey
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Justin A. Edward
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Kevin W. Swan
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Camille R.T. Bourgeois
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Matthew J. Bartow
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Daniel Yoo
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Taylor A. Peak
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Bryant M. Song
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Ryan A. Chan
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Subramanyam N. Murthy
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Thomas D. Giles
- Department of Internal Medicine, Division of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Philip J. Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| |
Collapse
|
16
|
Omar SA, Webb AJ, Lundberg JO, Weitzberg E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J Intern Med 2016; 279:315-36. [PMID: 26522443 DOI: 10.1111/joim.12441] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is generated endogenously by NO synthases to regulate a number of physiological processes including cardiovascular and metabolic functions. A decrease in the production and bioavailability of NO is a hallmark of many major chronic diseases including hypertension, ischaemia-reperfusion injury, atherosclerosis and diabetes. This NO deficiency is mainly caused by dysfunctional NO synthases and increased scavenging of NO by the formation of reactive oxygen species. Inorganic nitrate and nitrite are emerging as substrates for in vivo NO synthase-independent formation of NO bioactivity. These anions are oxidation products of endogenous NO generation and are also present in the diet, with green leafy vegetables having a high nitrate content. The effects of nitrate and nitrite are diverse and include vasodilatation, improved endothelial function, enhanced mitochondrial efficiency and reduced generation of reactive oxygen species. Administration of nitrate or nitrite in animal models of cardiovascular disease shows promising results, and clinical trials are currently ongoing to investigate the therapeutic potential of nitrate and nitrite in hypertension, pulmonary hypertension, peripheral artery disease and myocardial infarction. In addition, the nutritional aspects of the nitrate-nitrite-NO pathway are interesting as diets suggested to protect against cardiovascular disease, such as the Mediterranean diet, are especially high in nitrate. Here, we discuss the potential therapeutic opportunities for nitrate and nitrite in prevention and treatment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- S A Omar
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A J Webb
- Cardiovascular Division, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, London, UK
| | - J O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
de Lima Portella R, Lynn Bickta J, Shiva S. Nitrite Confers Preconditioning and Cytoprotection After Ischemia/Reperfusion Injury Through the Modulation of Mitochondrial Function. Antioxid Redox Signal 2015; 23:307-27. [PMID: 26094636 DOI: 10.1089/ars.2015.6260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nitrite is now recognized as an intrinsic signaling molecule that mediates a number of biological processes. One of the most reproducible effects of nitrite is its ability to mediate cytoprotection after ischemia/reperfusion (I/R). This robust phenomenon has been reproduced by a number of investigators in varying animal models focusing on different target organs. Furthermore, nitrite's cytoprotective versatility is highlighted by its ability to mediate delayed preconditioning and remote conditioning in addition to acute protection. RECENT ADVANCES In the last 10 years, significant progress has been made in elucidating the mechanisms underlying nitrite-mediated ischemic tolerance. CRITICAL ISSUES The mitochondrion, which is essential to both the progression of I/R injury and the protection afforded by preconditioning, has emerged as a major subcellular target for nitrite. This review will outline the role of the mitochondrion in I/R injury and preconditioning, review the accumulated preclinical studies demonstrating nitrite-mediated cytoprotection, and finally focus on the known interactions of nitrite with mitochondria and their role in the mechanism of nitrite-mediated ischemic tolerance. FUTURE DIRECTIONS These studies set the stage for current clinical trials testing the efficacy of nitrite to prevent warm and cold I/R injury.
Collapse
Affiliation(s)
- Rafael de Lima Portella
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Janelle Lynn Bickta
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Dasgupta A, Bowman L, D'Arsigny CL, Archer SL. Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Clin Pharmacol Ther 2014; 97:88-102. [PMID: 25670386 DOI: 10.1002/cpt.10] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/03/2014] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) activates soluble guanylate cyclase (sGC) by binding its prosthetic heme group, thereby catalyzing cyclic guanosine monophosphate (cGMP) synthesis. cGMP causes vasodilation and may inhibit smooth muscle cell proliferation and platelet aggregation. The NO-sGC-cGMP pathway is disordered in pulmonary arterial hypertension (PAH), a syndrome in which pulmonary vascular obstruction, inflammation, thrombosis, and constriction ultimately lead to death from right heart failure. Expression of sGC is increased in PAH but its function is reduced by decreased NO bioavailability, sGC oxidation and the related loss of sGC's heme group. Two classes of sGC modulators offer promise in PAH. sGC stimulators (e.g., riociguat) require heme-containing sGC to catalyze cGMP production, whereas sGC activators (e.g., cinaciguat) activate heme-free sGC. Riociguat is approved for PAH and yields functional and hemodynamic benefits similar to other therapies. Its main serious adverse effect is dose-dependent hypotension. Riociguat is also approved for inoperable chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- A Dasgupta
- Department of Medicine, Queen's University, Etherington Hall, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr Opin Nephrol Hypertens 2014; 23:135-42. [PMID: 24419369 DOI: 10.1097/01.mnh.0000441048.91041.3a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Nitric oxide (NO)-soluble guanylate cyclase (sGC)-dependent signaling mechanisms have a profound effect on the regulation of blood pressure (BP). In this review, we will discuss recent findings in the field that support the importance of sGC in the development of hypertension. RECENT FINDINGS The importance of sGC in BP regulation was highlighted by studies using genetically modified animal models, chemical stimulators/activators and inhibitors of the NO/sGC signaling pathway, and genetic association studies in humans. Many studies further support the role of NO/sGC in vasodilation and vascular dysfunction, which is underscored by the early clinical success of synthetic sGC stimulators for the treatment of pulmonary hypertension. Recent work has uncovered more details about the structural basis of sGC activation, enabling the development of more potent and efficient modulators of sGC activity. Finally, the mechanisms involved in the modulation of sGC by signaling gases other than NO, as well as the influence of redox signaling on sGC, have been the subject of several interesting studies. SUMMARY sGC is fast becoming an interesting therapeutic target for the treatment of vascular dysfunction and hypertension, with novel sGC stimulating/activating compounds as promising clinical treatment options.
Collapse
|
20
|
Somanna NK, Wörner PM, Murthy SN, Pankey EA, Schächtele DJ, St Hilaire RC, Jansen D, Chaffin AE, Nossaman BD, Alt EU, Kadowitz PJ, Izadpanah R. Intratracheal administration of cyclooxygenase-1-transduced adipose tissue-derived stem cells ameliorates monocrotaline-induced pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol 2014; 307:H1187-95. [PMID: 25320332 DOI: 10.1152/ajpheart.00589.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effect of intratracheal administration of cyclooxygenase-1 (COX-1)-modified adipose stem cells (ASCs) on monocrotaline-induced pulmonary hypertension (MCT-PH) was investigated in the rat. The COX-1 gene was cloned from rat intestinal cells, fused with a hemagglutanin (HA) tag, and cloned into a lentiviral vector. The COX-1 lentiviral vector was shown to enhance COX-1 protein expression and inhibit proliferation of vascular smooth muscle cells without increasing apoptosis. Human ASCs transfected with the COX-1 lentiviral vector (ASCCOX-1) display enhanced COX-1 activity while exhibiting similar differentiation potential compared with untransduced (native) ASCs. PH was induced in rats with MCT, and the rats were subsequently treated with intratracheal injection of ASCCOX-1 or untransduced ASCs. The intratracheal administration of ASCCOX-1 3 × 10(6) cells on day 14 after MCT treatment significantly attenuated MCT-induced PH when hemodynamic values were measured on day 35 after MCT treatment whereas administration of untransduced ASCs had no significant effect. These results indicate that intratracheally administered ASCCOX-1 persisted for at least 21 days in the lung and attenuate MCT-induced PH and right ventricular hypertrophy. In addition, vasodilator responses to the nitric oxide donor sodium nitroprusside were not altered by the presence of ASCCOX-1 in the lung. These data emphasize the effectiveness of ASCCOX-1 in the treatment of experimentally induced PH.
Collapse
Affiliation(s)
- Naveen K Somanna
- Department of Microbiology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Philipp M Wörner
- Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Subramanyam N Murthy
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Edward A Pankey
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Deborah J Schächtele
- Department of Microbiology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Rose-Claire St Hilaire
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - David Jansen
- Department of Surgery, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Abigail E Chaffin
- Department of Surgery, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Bobby D Nossaman
- Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana; Department of Anesthesiology, Critical Care Medicine Section, Ochsner Medical Center, New Orleans, Louisiana
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana; Isar Medical Center, Department of Medicine, Interdisciplinary Stem Cell Laboratory, Munich, Germany; and
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana; Department of Surgery, Tulane University Health Sciences Center, New Orleans, Louisiana;
| |
Collapse
|
21
|
Abstract
Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.
Collapse
|
22
|
Sindler AL, Devan AE, Fleenor BS, Seals DR. Inorganic nitrite supplementation for healthy arterial aging. J Appl Physiol (1985) 2014; 116:463-77. [PMID: 24408999 PMCID: PMC3949212 DOI: 10.1152/japplphysiol.01100.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/03/2014] [Indexed: 12/12/2022] Open
Abstract
Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans.
Collapse
Affiliation(s)
- Amy L Sindler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | | | | |
Collapse
|
23
|
Pankey EA, Zsombok A, Lasker GF, Kadowitz PJ. Analysis of responses to the TRPV4 agonist GSK1016790A in the pulmonary vascular bed of the intact-chest rat. Am J Physiol Heart Circ Physiol 2013; 306:H33-40. [PMID: 24186096 DOI: 10.1152/ajpheart.00303.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is a nonselective cation channel expressed on many cell types, including the vascular endothelium and smooth muscle cells. TRPV4 channels play a role in regulating vasomotor tone and capillary permeability. The present study was undertaken to investigate responses to the TRPV4 agonist GSK101790A on the pulmonary and systemic vascular beds in the rat. Intravenous injection of GSK1016790A at doses of 2-10 μg/kg produced dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and small increases in cardiac output, and responses were not altered by the cyclooxygenase inhibitor meclofenamate or the cytochrome P-450 inhibitor miconazole. Injection of GSK1016790A at a dose of 12 μg/kg iv produced cardiovascular collapse that was reversible in some animals. GSK1016790A produced dose-related decreases in pulmonary and systemic arterial pressure when baseline tone in the pulmonary vascular bed was increased with U-46619. After treatment with the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester, GSK1016790A produced larger decreases in systemic arterial pressure and dose-dependent increases in pulmonary arterial pressure followed by a small decrease. These results demonstrate that GSK1016790A has vasodilator activity in pulmonary and systemic vascular beds and that when NOS is inhibited, GSK1016790A produced pulmonary vasoconstrictor responses that were attenuated by the L-type Ca(2+) channel antagonist isradipine. The presence of TRPV4 immunoreactivity was observed in small pulmonary arteries and airways. The present data indicate that responses to TRPV4 are modulated differently by NOS in pulmonary and systemic vascular beds and are attenuated by the TRPV4 antagonist GSK2193874.
Collapse
Affiliation(s)
- Edward A Pankey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | | | | | | |
Collapse
|
24
|
Sonoda K, Ohtake K, Kubo Y, Uchida H, Uchida M, Natsume H, Kobayashi M, Kobayashi J. Aldehyde dehydrogenase 2 partly mediates hypotensive effect of nitrite onl-NAME-induced hypertension in normoxic rat. Clin Exp Hypertens 2013; 36:410-8. [DOI: 10.3109/10641963.2013.846355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Oldfield EH, Loomba JJ, Monteith SJ, Crowley RW, Medel R, Gress DR, Kassell NF, Dumont AS, Sherman C. Safety and pharmacokinetics of sodium nitrite in patients with subarachnoid hemorrhage: a Phase IIA study. J Neurosurg 2013; 119:634-41. [DOI: 10.3171/2013.3.jns13266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Intravenous sodium nitrite has been shown to prevent and reverse cerebral vasospasm in a primate model of subarachnoid hemorrhage (SAH). The present Phase IIA dose-escalation study of sodium nitrite was conducted to determine the compound's safety in humans with aneurysmal SAH and to establish its pharmacokinetics during a 14-day infusion.
Methods
In 18 patients (3 cohorts of 6 patients each) with SAH from a ruptured cerebral aneurysm, nitrite (3 patients) or saline (3 patients) was infused. Sodium nitrite and saline were delivered intravenously for 14 days, and a dose-escalation scheme was used for the nitrite, with a maximum dose of 64 nmol/kg/min. Sodium nitrite blood levels were frequently sampled and measured using mass spectroscopy, and blood methemoglobin levels were continuously monitored using a pulse oximeter.
Results
In the 14-day infusions in critically ill patients with SAH, there was no toxicity or systemic hypotension, and blood methemoglobin levels remained at 3.3% or less in all patients. Nitrite levels increased rapidly during intravenous infusion and reached steady-state levels by 12 hours after the start of infusion on Day 1. The nitrite plasma half-life was less than 1 hour across all dose levels evaluated after stopping nitrite infusions on Day 14.
Conclusions
Previous preclinical investigations of sodium nitrite for the prevention and reversal of vasospasm in a primate model of SAH were effective using doses similar to the highest dose examined in the current study (64 nmol/kg/min). Results of the current study suggest that safe and potentially therapeutic levels of nitrite can be achieved and sustained in critically ill patients after SAH from a ruptured cerebral aneurysm. Clinical trial registration no.: NCT00873015 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | | | | | | | | | - Daryl R. Gress
- 2Neurology, University of Virginia, Charlottesville, Virginia; and
| | | | | | | |
Collapse
|
26
|
Sparacino-Watkins CE, Lai YC, Gladwin MT. Nitrate-nitrite-nitric oxide pathway in pulmonary arterial hypertension therapeutics. Circulation 2012; 125:2824-6. [PMID: 22572912 DOI: 10.1161/circulationaha.112.107821] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Recent publications by ochsner authors. Ochsner J 2012; 12:396-401. [PMID: 23267272 PMCID: PMC3528163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
|