1
|
Helan M, Malaska J, Tomandl J, Jarkovsky J, Helanova K, Benesova K, Sitina M, Dastych M, Ondrus T, Pavkova Goldbergova M, Gal R, Lokaj P, Tomandlova M, Parenica J. Kinetics of Biomarkers of Oxidative Stress in Septic Shock: A Pilot Study. Antioxidants (Basel) 2022; 11:antiox11040640. [PMID: 35453325 PMCID: PMC9031382 DOI: 10.3390/antiox11040640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Septic shock is a major cause of mortality in ICU patients, its pathophysiology is complex and not properly understood. Oxidative stress seems to be one of the most important mechanisms of shock progression to multiple organ failure. In the present pilot study, we have analysed eight oxidative-stress-related biomarkers in seven consecutive time points (i.e., the first seven days) in 21 septic shock patients admitted to the ICU. Our objective was to describe the kinetics of four biomarkers related to pro-oxidative processes (nitrite/nitrate, malondialdehyde, 8-oxo-2′-deoxyguanosine, soluble endoglin) compared to four biomarkers of antioxidant processes (the ferric reducing ability of plasma, superoxide dismutase, asymmetric dimethylarginine, mid-regional pro-adrenomedullin) and four inflammatory biomarkers (CRP, IL-6, IL-10 and neopterin). Furthermore, we analysed each biomarker’s ability to predict mortality at the time of admission and 12 h after admission. Although a small number of study subjects were recruited, we have identified four promising molecules for further investigation: soluble endoglin, superoxide dismutase, asymmetric dimethylarginine and neopterin.
Collapse
Affiliation(s)
- Martin Helan
- Department of Anaesthesiology and Intensive Care, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic; (M.H.); (M.S.)
- International Clinical Research Center (ICRC), St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
| | - Jan Malaska
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Josef Tomandl
- Department of Biochemistry, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Jiri Jarkovsky
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.J.); (K.B.)
| | - Katerina Helanova
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
- Department of Internal Medicine and Cardiology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Klara Benesova
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.J.); (K.B.)
| | - Michal Sitina
- Department of Anaesthesiology and Intensive Care, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic; (M.H.); (M.S.)
- International Clinical Research Center (ICRC), St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
| | - Milan Dastych
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Tomas Ondrus
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
- Department of Internal Medicine and Cardiology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Monika Pavkova Goldbergova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Roman Gal
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Petr Lokaj
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
- Department of Internal Medicine and Cardiology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Marie Tomandlova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Correspondence:
| | - Jiri Parenica
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.M.); (K.H.); (T.O.); (R.G.); (P.L.); (J.P.)
- Department of Internal Medicine and Cardiology, University Hospital Brno, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Molema G, Zijlstra JG, van Meurs M, Kamps JAAM. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 2022; 18:95-112. [PMID: 34667283 DOI: 10.1038/s41581-021-00489-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis.
Collapse
Affiliation(s)
- Grietje Molema
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Jan G Zijlstra
- Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Cao H, Huang W. HDL and Sepsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:129-139. [DOI: 10.1007/978-981-19-1592-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Özkan M, Günay N, Sener EF, Karcıoglu Ö, Tahtasakal R, Dal F, Günay NE, Demiryürek AT. Variants in TNF and NOS3 (eNOS) genes associated with sepsis in adult patients. J Gene Med 2021; 23:e3323. [PMID: 33609421 DOI: 10.1002/jgm.3323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/23/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by a dysregulated host response to infections and is a leading cause of death in hospitalized patients. The present study aimed to elucidate the possible association between sepsis and the tumor necrosis factor (TNF) gene -308G/A (rs1800629) polymorphism, as well as endothelial nitric oxide synthase (eNOS, NOS3) gene -786T/C (rs2070744), 4a/4b (27 bp-VNTR in intron 4, rs61722009) and 894G/T (Glu298Asp, rs1799983) polymorphisms. METHODS In total, 188 septic adult cases and 188 healthy controls were enrolled. Genomic DNAs from the controls and patients were analyzed by polymerase chain reaction and restriction fragment length polymorphism methods. RESULTS There were significant associations between the G/G genotype and G allele of the TNF -308G/A (rs1800629) polymorphism in the sepsis group (p < 0.001). The presence of the T/C genotype (p = 0.002) and C allele (p = 0.001) of the -786T/C (rs2070744) was markedly associated with an increased risk of sepsis. However, no significant associations were found with 4a/4b (27 bp-VNTR in intron 4, rs61722009) and 894G/T (Glu298Asp, rs1799983) polymorphisms. Higher 4bGC and lower 4bTT haplotype frequencies were associated with sepsis. CONCLUSIONS Our results strongly suggest that TNF gene (-308G/A, rs1800629) and NOS3 gene -786T/C (rs2070744) polymorphisms may modify individual susceptibility to sepsis in the Turkish population.
Collapse
Affiliation(s)
- Mustafa Özkan
- Department of Emergency Medicine, Medical School, Erciyes University, Kayseri, Turkey
| | - Nurullah Günay
- Department of Emergency Medicine, Medical School, Erciyes University, Kayseri, Turkey
| | - Elif Funda Sener
- Department of Medical Biology, Medical School, Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Özgür Karcıoglu
- Department of Emergency Medicine, University of Health Sciences, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Reyhan Tahtasakal
- Department of Medical Biology, Medical School, Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Fatma Dal
- Genome and Stem Cell Center of Erciyes University, Kayseri, Turkey
| | | | | |
Collapse
|
5
|
Abstract
Endothelial cells (ECs) are vascular, nonconventional immune cells that play a major role in the systemic response after bacterial infection to limit its dissemination. Triggered by exposure to pathogens, microbial toxins, or endogenous danger signals, EC responses are polymorphous, heterogeneous, and multifaceted. During sepsis, ECs shift toward a proapoptotic, proinflammatory, proadhesive, and procoagulant phenotype. In addition, glycocalyx damage and vascular tone dysfunction impair microcirculatory blood flow, leading to organ injury and, potentially, life-threatening organ failure. This review aims to cover the current understanding of the EC adaptive or maladaptive response to acute inflammation or bacterial infection based on compelling recent basic research and therapeutic clinical trials targeting microvascular and endothelial alterations during septic shock.
Collapse
Affiliation(s)
- Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Can Ince
- Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Hafid Ait-Oufella
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,INSERM U970, Cardiovascular Research Center, Université de Paris, Paris, France
| |
Collapse
|
6
|
Associations of Plasma Nitrite, L-Arginine and Asymmetric Dimethylarginine With Morbidity and Mortality in Patients With Necrotizing Soft Tissue Infections. Shock 2019; 49:667-674. [PMID: 28863028 PMCID: PMC5929495 DOI: 10.1097/shk.0000000000000975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: The nitric oxide system could play an important role in the pathophysiology related to necrotizing soft tissue infection (NSTI). Accordingly, we investigated the association between plasma nitrite level at admission and the presence of septic shock in patients with NSTI. We also evaluated the association between nitrite, asymmetric dimethylarginine (ADMA), l-arginine, l-arginine/ADMA ratio, and outcome. Methods: We analyzed plasma from 141 NSTI patients taken upon hospital admission. The severity of NSTI was assessed by the presence of septic shock, Simplified Acute Physiology Score (SAPS) II, Sepsis-Related Organ Failure Assessment (SOFA) score, use of renal replacement therapy (RRT), amputation, and 28-day mortality. Results: No difference in nitrite levels was found between patients with and without septic shock (median 0.82 μmol/L [interquartile range (IQR) 0.41–1.21] vs. 0.87 μmol/L (0.62–1.24), P = 0.25). ADMA level was higher in patients in need of RRT (0.64 μmol/L (IQR 0.47–0.90) vs. (0.52 μmol/L (0.34–0.70), P = 0.028), and ADMA levels correlated positively with SAPS II (rho = 0.32, P = 0.0002) and SOFA scores (rho = 0.22, P = 0.01). In a logistic regression analysis, an l-arginine/ADMA ratio below 101.59 was independently associated with 28-day mortality, odds ratio 6.03 (95% confidence interval, 1.41–25.84), P = 0.016. None of the other analyses indicated differences in the NO system based on differences in disease severity. Conclusions: In patients with NSTI, we found no difference in baseline nitrite levels according to septic shock. High baseline ADMA level was associated with the use of RRT and patients with a low baseline l-arginine/ADMA ratio were at higher risk of dying within 28 days after hospital admission.
Collapse
|
7
|
Oleskin AV, El’-Registan GI, Shenderov BA. Role of neuromediators in the functioning of the human microbiota: “Business talks” among microorganisms and the microbiota-host dialogue. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716010082] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
8
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|