1
|
Elshoura Y, Herz M, Gad MZ, Hanafi R. Nitro fatty acids: A comprehensive review on analytical methods and levels in health and disease. Anal Biochem 2024; 694:115624. [PMID: 39029643 DOI: 10.1016/j.ab.2024.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Nitro fatty acids (NO2-FAs) are biologically active compounds produced from the reaction of unsaturated fatty acids with reactive nitrogen species (RNS). Due to their electrophilic nature, these endogenously produced metabolites can react with nucleophilic targets, producing a spectrum of modulatory and protective effects. Determination of NO2-FAs in biological samples is challenging due to their low nanomolar to picomolar endogenous concentrations, indistinct metabolism, and distribution in many tissues and biofluids. Several attempts have been made to develop precise, standardized, and efficient methodologies for assessing physiological and pathophysiological processes to overcome the difficulties associated with their measurement. This review discusses those approaches utilizing liquid chromatography tandem mass spectrometry (LC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS) for the quantification of NO2-FAs, in addition to a summary of their laboratory synthesis and extraction from biological samples. Clinical associations with different pathological conditions, including hyperlipidaemia, cardiac ischemia and herpes simplex type 2 viral infection (HSV-2), are also discussed.
Collapse
Affiliation(s)
- Yasmin Elshoura
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt
| | - Magy Herz
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt.
| | - Mohamed Z Gad
- Department of Biochemistry, German University in Cairo, Egypt
| | - Rasha Hanafi
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt
| |
Collapse
|
2
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Dinkova-Kostova AT, Hakomäki H, Levonen AL. Electrophilic metabolites targeting the KEAP1/NRF2 partnership. Curr Opin Chem Biol 2024; 78:102425. [PMID: 38241876 DOI: 10.1016/j.cbpa.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Numerous electrophilic metabolites are formed during cellular activity, particularly under conditions of oxidative, inflammatory and metabolic stress. Among them are lipid oxidation and nitration products, and compounds derived from amino acid and central carbon metabolism. Here we focus on one cellular target of electrophiles, the Kelch-like ECH associated protein 1 (KEAP1)/nuclear factor erythroid 2 p45-related factor 2 (NRF2) partnership. Many of these reactive compounds modify C151, C273 and/or C288 within KEAP1. Other types of modifications include S-lactoylation of C273, N-succinylation of K131, and formation of methylimidazole intermolecular crosslink between two KEAP1 monomers. Modified KEAP1 relays the initial signal to transcription factor NRF2 and its downstream targets, the ultimate effectors that provide means for detoxification, adaptation and survival. Thus, by non-enzymatically covalently modifying KEAP1, the electrophilic metabolites discussed here serve as chemical signals connecting metabolism with stress responses.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
4
|
Deen AJ, Adinolfi S, Härkönen J, Patinen T, Liu X, Laitinen T, Takabe P, Kainulainen K, Pasonen-Seppänen S, Gawriyski LM, Arasu UT, Selvarajan I, Mäkinen P, Laitinen H, Kansanen E, Kaikkonen MU, Poso A, Varjosalo M, Levonen AL. Oncogenic KEAP1 mutations activate TRAF2-NFκB signaling to prevent apoptosis in lung cancer cells. Redox Biol 2024; 69:103031. [PMID: 38184997 PMCID: PMC10808971 DOI: 10.1016/j.redox.2024.103031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1) - Nuclear factor erythroid 2 -related factor 2 (NRF2) pathway is the major transcriptional stress response system in cells against oxidative and electrophilic stress. NRF2 is frequently constitutively active in many cancers, rendering the cells resistant to chemo- and radiotherapy. Loss-of-function (LOF) mutations in the repressor protein KEAP1 are common in non-small cell lung cancer, particularly adenocarcinoma. While the mutations can occur throughout the gene, they are enriched in certain areas, indicating that these may have unique functional importance. In this study, we show that in the GSEA analysis of TCGA lung adenocarcinoma RNA-seq data, the KEAP1 mutations in R320 and R470 were associated with enhanced Tumor Necrosis Factor alpha (TNFα) - Nuclear Factor kappa subunit B (NFκB) signaling as well as MYC and MTORC1 pathways. To address the functional role of these hotspot mutations, affinity purification and mass spectrometry (AP-MS) analysis of wild type (wt) KEAP1 and its mutation forms, R320Q and R470C were employed to interrogate differences in the protein interactome. We identified TNF receptor associated factor 2 (TRAF2) as a putative protein interaction partner. Both mutant KEAP1 forms showed increased interaction with TRAF2 and other anti-apoptotic proteins, suggesting that apoptosis signalling could be affected by the protein interactions. A549 lung adenocarcinoma cells overexpressing mutant KEAP1 showed high TRAF2-mediated NFκB activity and increased protection against apoptosis, XIAP being one of the key proteins involved in anti-apoptotic signalling. To conclude, KEAP1 R320Q and R470C and its interaction with TRAF2 leads to activation of NFκB pathway, thereby protecting against apoptosis.
Collapse
Affiliation(s)
- Ashik Jawahar Deen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Simone Adinolfi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Jouni Härkönen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland; Department of Pathology, Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Tommi Patinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland
| | - Piia Takabe
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70211, Finland
| | - Kirsi Kainulainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70211, Finland
| | | | - Lisa M Gawriyski
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Petri Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Hanna Laitinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Emilia Kansanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland; Science Service Centre, Kuopio University Hospital, Kuopio, 70211, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland; Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, 72076, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| |
Collapse
|
5
|
Sánchez-Calvo B, Cassina A, Mastrogiovanni M, Santos M, Trias E, Kelley EE, Rubbo H, Trostchansky A. Olive oil-derived nitro-fatty acids: protection of mitochondrial function in non-alcoholic fatty liver disease. J Nutr Biochem 2021; 94:108646. [PMID: 33838229 PMCID: PMC8197755 DOI: 10.1016/j.jnutbio.2021.108646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.
Collapse
Affiliation(s)
- Beatriz Sánchez-Calvo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Nutrición Básica, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariela Santos
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, United States
| | - Homero Rubbo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Fazzari M, Woodcock SR, Rowart P, Ricart K, Lancaster JR, Patel R, Vitturi DA, Freeman BA, Schopfer FJ. Endogenous generation of nitro-fatty acid hybrids having dual nitrate ester (RONO 2) and nitroalkene (RNO 2) substituents. Redox Biol 2021; 41:101913. [PMID: 33819836 PMCID: PMC8049994 DOI: 10.1016/j.redox.2021.101913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
Organic nitrate esters, long-recognized therapies for cardiovascular disorders, have not been detected biologically. We characterize in rat stomach unsaturated fatty acid nitration reactions that proceed by generation of nitro-nitrate intermediates (NO2-ONO2-FA) via oxygen and nitrite dependent reactions. NO2-ONO2-lipids represent ∼70% of all nitrated lipids in the stomach and they decay in vitro at neutral or basic pH by the loss of the nitrate ester group (-ONO2) from the carbon backbone upon deprotonation of the α-carbon (pKa ∼7), yielding nitrate, nitrite, nitrosative species, and an electrophilic fatty acid nitroalkene product (NO2-FA). Of note, NO2-FA are anti-inflammatory and tissue-protective signaling mediators, which are undergoing Phase II trials for the treatment of kidney and pulmonary diseases. The decay of NO2-ONO2-FA occurs during intestinal transit and absorption, leading to the formation of NO2-FA that were subsequently detected in circulating plasma triglycerides. These observations provide new insight into unsaturated fatty acid nitration mechanisms, identify nitro-nitrate ester-containing lipids as intermediates in the formation of both secondary nitrogen oxides and electrophilic fatty acid nitroalkenes, and expand the scope of endogenous products stemming from metabolic reactions of nitrogen oxides.
Collapse
Affiliation(s)
- Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA.
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA
| | - Karina Ricart
- Department of Pathology, University of Alabama, 901 19th Street South, Birmingham, 35294, AL, USA
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, 15213, PA, USA
| | - Rakesh Patel
- Department of Pathology, University of Alabama, 901 19th Street South, Birmingham, 35294, AL, USA
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, 15213, PA, USA; Center for Critical Care Nephrology, Pittsburgh, 15213, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, 15213, PA, USA
| |
Collapse
|
7
|
Grippo V, Mojovic M, Pavicevic A, Kabelac M, Hubatka F, Turanek J, Zatloukalova M, Freeman BA, Vacek J. Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes. Redox Biol 2021; 38:101756. [PMID: 33181478 PMCID: PMC7658499 DOI: 10.1016/j.redox.2020.101756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022] Open
Abstract
Fatty acid nitroalkenes (NO2-FA) are endogenously-generated products of the reaction of metabolic and inflammatory-derived nitrogen dioxide (.NO2) with unsaturated fatty acids. These species mediate signaling actions and induce adaptive responses in preclinical models of inflammatory and metabolic diseases. The nitroalkene substituent possesses an electrophilic nature, resulting in rapid and reversible reactions with biological nucleophiles such as cysteine, thus supporting post-translational modifications (PTM) of proteins having susceptible nucleophilic centers. These reactions contribute to enzyme regulation, modulation of inflammation and cell proliferation and the regulation of gene expression responses. Herein, focus is placed on the reduction-oxidation (redox) characteristics and stability of specific NO2-FA regioisomers having biological and clinical relevance; nitro-oleic acid (NO2-OA), bis-allylic nitro-linoleic acid (NO2-LA) and the conjugated diene-containing nitro-conjugated linoleic acid (NO2-cLA). Cyclic and alternating-current voltammetry and chronopotentiometry were used to the study of reduction potentials of these NO2-FA. R-NO2 reduction was observed around -0.8 V (vs. Ag/AgCl/3 M KCl) and is related to relative NO2-FA electrophilicity. This reduction process could be utilized for the evaluation of NO2-FA stability in aqueous milieu, shown herein to be pH dependent. In addition, electron paramagnetic resonance (EPR) spectroscopy was used to define the stability of the nitroalkene moiety under aqueous conditions, specifically under conditions where nitric oxide (.NO) release could be detected. The experimental data were supported by density functional theory calculations using 6-311++G (d,p) basis set and B3LYP functional. Based on experimental and computational approaches, the relative electrophilicities of these NO2-FA are NO2-cLA >> NO2-LA > NO2-OA. Micellarization and vesiculation largely define these biophysical characteristics in aqueous, nucleophile-free conditions. At concentrations below the critical micellar concentration (CMC), monomeric NO2-FA predominate, while at greater concentrations a micellar phase consisting of self-assembled lipid structures predominates. The CMC, determined by dynamic light scattering in 0.1 M phosphate buffer (pH 7.4) at 25 °C, was 6.9 (NO2-LA) 10.6 (NO2-OA) and 42.3 μM (NO2-cLA), respectively. In aggregate, this study provides new insight into the biophysical properties of NO2-FA that are important for better understanding the cell signaling and pharmacological potential of this class of mediators.
Collapse
Affiliation(s)
- Valentina Grippo
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 775 15, Czech Republic
| | - Milos Mojovic
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Aleksandra Pavicevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 370 05, Czech Republic
| | - Frantisek Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 775 15, Czech Republic
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 775 15, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
8
|
Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem 2020; 64:19-31. [PMID: 31867621 DOI: 10.1042/ebc20190058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Lipid oxidation results in the formation of many reactive products, such as small aldehydes, substituted alkenals, and cyclopentenone prostaglandins, which are all able to form covalent adducts with nucleophilic residues of proteins. This process is called lipoxidation, and the resulting adducts are called advanced lipoxidation end products (ALEs), by analogy with the formation of advanced glycoxidation end products from oxidized sugars. Modification of proteins by reactive oxidized lipids leads to structural changes such as increased β-sheet conformation, which tends to result in amyloid-like structures and oligomerization, or unfolding and aggregation. Reaction with catalytic cysteines is often responsible for the loss of enzymatic activity in lipoxidized proteins, although inhibition may also occur through conformational changes at more distant sites affecting substrate binding or regulation. On the other hand, a few proteins are activated by lipoxidation-induced oligomerization or interactions, leading to increased downstream signalling. At the cellular level, it is clear that some proteins are much more susceptible to lipoxidation than others. ALEs affect cell metabolism, protein-protein interactions, protein turnover via the proteasome, and cell viability. Evidence is building that they play roles in both physiological and pathological situations, and inhibiting ALE formation can have beneficial effects.
Collapse
|
9
|
Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020; 10:E904. [PMID: 32545924 PMCID: PMC7356958 DOI: 10.3390/biom10060904] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| |
Collapse
|
10
|
Lamas Bervejillo M, Bonanata J, Franchini GR, Richeri A, Marqués JM, Freeman BA, Schopfer FJ, Coitiño EL, Córsico B, Rubbo H, Ferreira AM. A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes. Redox Biol 2020; 29:101376. [PMID: 31926616 PMCID: PMC6926352 DOI: 10.1016/j.redox.2019.101376] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Nitro-fatty acids (NO2-FA) are electrophilic lipid mediators derived from unsaturated fatty acid nitration. These species are produced endogenously by metabolic and inflammatory reactions and mediate anti-oxidative and anti-inflammatory responses. NO2-FA have been postulated as partial agonists of the Peroxisome Proliferator-Activated Receptor gamma (PPARγ), which is predominantly expressed in adipocytes and myeloid cells. Herein, we explored molecular and cellular events associated with PPARγ activation by NO2-FA in monocytes and macrophages. NO2-FA induced the expression of two PPARγ reporter genes, Fatty Acid Binding Protein 4 (FABP4) and the scavenger receptor CD36, at early stages of monocyte differentiation into macrophages. These responses were inhibited by the specific PPARγ inhibitor GW9662. Attenuated NO2-FA effects on PPARγ signaling were observed once cells were differentiated into macrophages, with a significant but lower FABP4 upregulation, and no induction of CD36. Using in vitro and in silico approaches, we demonstrated that NO2-FA bind to FABP4. Furthermore, the inhibition of monocyte FA binding by FABP4 diminished NO2-FA-induced upregulation of reporter genes that are transcriptionally regulated by PPARγ, Keap1/Nrf2 and HSF1, indicating that FABP4 inhibition mitigates NO2-FA signaling actions. Overall, our results affirm that NO2-FA activate PPARγ in monocytes and upregulate FABP4 expression, thus promoting a positive amplification loop for the downstream signaling actions of this mediator.
Collapse
Affiliation(s)
- M Lamas Bervejillo
- Laboratorio de Inmunología, Instituto de Higiene, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, CP 11600, Uruguay
| | - J Bonanata
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, UdelaR, Montevideo, CP 11400, Uruguay; Centro de Investigaciones Biomédicas (CeInBio), UdelaR, Montevideo, CP 11800, Uruguay
| | - G R Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - A Richeri
- Laboratorio de Biología Celular, Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, CP 11600, Uruguay
| | - J M Marqués
- Laboratorio de Investigación en Vacunas, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, CP 11600, Uruguay
| | - B A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - F J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - E L Coitiño
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, UdelaR, Montevideo, CP 11400, Uruguay; Centro de Investigaciones Biomédicas (CeInBio), UdelaR, Montevideo, CP 11800, Uruguay.
| | - B Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - H Rubbo
- Centro de Investigaciones Biomédicas (CeInBio), UdelaR, Montevideo, CP 11800, Uruguay; Departamento de Bioquímica, Facultad de Medicina, UdelaR, Montevideo, CP 11800, Uruguay
| | - A M Ferreira
- Laboratorio de Inmunología, Instituto de Higiene, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, CP 11600, Uruguay.
| |
Collapse
|
11
|
Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020; 11:602771. [PMID: 33408694 PMCID: PMC7779974 DOI: 10.3389/fendo.2020.602771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
While often regarded as a subset of metabolomics, lipidomics can better be considered as a field in its own right. While the total number of lipid species in biology may not exceed the number of metabolites, they can be modified chemically and biochemically leading to an enormous diversity of derivatives, many of which retain the lipophilic properties of lipids and thus expand the lipidome greatly. Oxidative modification by radical oxygen species, either enzymatically or chemically, is one of the major mechanisms involved, although attack by non-radical oxidants also occurs. The modified lipids typically contain more oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a succinct overview of the types of species formed, the reactive compounds involved and the specific molecular sites that they react with, and the biochemical or chemical mechanisms involved. In many cases, these modifications reduce the stability of the lipid, and breakdown products are formed, which themselves have interesting properties such as the ability to react with other biomolecules. Publications on the biological effects of modified lipids are growing rapidly, supporting the concept that some of these biomolecules have potential signaling and regulatory effects. The question therefore arises whether modified lipids represent an "epilipidome", analogous to the epigenetic modifications that can control gene expression.
Collapse
|
12
|
Garner RM, Mould DR, Chieffo C, Jorkasky DK. Pharmacokinetic and Pharmacodynamic Effects of Oral CXA-10, a Nitro Fatty Acid, After Single and Multiple Ascending Doses in Healthy and Obese Subjects. Clin Transl Sci 2019; 12:667-676. [PMID: 31343124 PMCID: PMC6853153 DOI: 10.1111/cts.12672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
10‐nitro‐9(E)‐octadec‐9‐enoic acid (CXA‐10), a novel nitro fatty acid compound, demonstrates potential as a therapeutic agent in multiple disease indications in which oxidative stress, inflammation, fibrosis, and/or direct tissue toxicity play significant roles. Phase I studies were conducted in healthy and obese subjects to evaluate the pharmacokinetics (PK), pharmacodynamics (PD), safety, and tolerability of oral CXA‐10 after single and multiple doses in the fed and fasted states that would confirm the mechanisms of action of CXA‐10. After single and multiple ascending doses, CXA‐10 demonstrated dose‐proportional increases in plasma exposure. CXA‐10 decreased levels of biomarkers associated with altered inflammation and metabolic stress observed from nonclinical studies. In CXA‐10‐202, a consistent decrease from baseline was observed with CXA‐10 150 mg dose, but not 25 or 450 mg doses, for biomarkers of altered inflammation and metabolic dysfunction, including leptin, triglycerides, cholesterol, MCP‐1, and IL‐6. In CXA‐10‐203, after coadministration with CXA‐10, geometric mean peak plasma concentration (Cmax) and area under the plasma concentration‐time curve from time point 0 to the end of the dosing interval (AUC0−t) decreased 20% and 25% for pravastatin, increased 10% and 25% for simvastatin, and decreased 20% and 5% for ezetimibe. These findings are consistent with the pharmacological effects of CXA‐10. Adverse events (AEs) were dose‐related, and the most frequently reported AEs (>10% of subjects) were diarrhea, abdominal pain, and nausea. CXA‐10 was safe and well‐tolerated with no clinically significant abnormalities reported on physical examination, vital signs, clinical laboratory evaluations, or electrocardiographic evaluation. Phase II studies are underway in patients with focal segmental glomerulosclerosis and pulmonary arterial hypertension to investigate the efficacy and tolerability of CXA‐10 75–300 mg once daily.
Collapse
Affiliation(s)
| | - Diane R Mould
- Projections Research Inc, Phoenixville, Pennsylvania, USA
| | | | | |
Collapse
|
13
|
Schopfer FJ, Khoo NKH. Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology. Trends Endocrinol Metab 2019; 30:505-519. [PMID: 31196614 PMCID: PMC7121905 DOI: 10.1016/j.tem.2019.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 02/04/2023]
Abstract
In addition to supporting cellular energetic demands and providing building blocks for lipid synthesis, fatty acids (FAs) are precursors of potent signaling molecules. In particular, the presence of conjugated double bonds on the fatty-acyl chain provides a preferential target for nitration generating nitro-FAs (NO2-FAs). The formation of NO2-FAs is a nonenzymatic process that requires reactive nitrogen species and occurs locally at the site of inflammation or during gastric acidification. NO2-FAs are electrophilic and display pleiotropic signaling actions through reversible protein alkylation. This review focuses on the endogenously formed NO2-FAs' mechanism of absorption, systemic distribution, signaling, and preclinical models. Understanding the dynamics of these processes will facilitate targeted dietary interventions and further the current pharmacological development aimed at low-grade inflammatory diseases.
Collapse
Affiliation(s)
- Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Nicholas K H Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Citation(s) in RCA: 874] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development. However, challenges regarding target specificity, pharmacodynamic properties, efficacy and safety remain.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Aranda-Caño L, Sánchez-Calvo B, Begara-Morales JC, Chaki M, Mata-Pérez C, Padilla MN, Valderrama R, Barroso JB. Post-Translational Modification of Proteins Mediated by Nitro-Fatty Acids in Plants: Nitroalkylation. PLANTS 2019; 8:plants8040082. [PMID: 30934982 PMCID: PMC6524050 DOI: 10.3390/plants8040082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022]
Abstract
Nitrate fatty acids (NO₂-FAs) are considered reactive lipid species derived from the non-enzymatic oxidation of polyunsaturated fatty acids by nitric oxide (NO) and related species. Nitrate fatty acids are powerful biological electrophiles which can react with biological nucleophiles such as glutathione and certain protein⁻amino acid residues. The adduction of NO₂-FAs to protein targets generates a reversible post-translational modification called nitroalkylation. In different animal and human systems, NO₂-FAs, such as nitro-oleic acid (NO₂-OA) and conjugated nitro-linoleic acid (NO₂-cLA), have cytoprotective and anti-inflammatory influences in a broad spectrum of pathologies by modulating various intracellular pathways. However, little knowledge on these molecules in the plant kingdom exists. The presence of NO₂-OA and NO₂-cLA in olives and extra-virgin olive oil and nitro-linolenic acid (NO₂-Ln) in Arabidopsis thaliana has recently been detected. Specifically, NO₂-Ln acts as a signaling molecule during seed and plant progression and beneath abiotic stress events. It can also release NO and modulate the expression of genes associated with antioxidant responses. Nevertheless, the repercussions of nitroalkylation on plant proteins are still poorly known. In this review, we demonstrate the existence of endogenous nitroalkylation and its effect on the in vitro activity of the antioxidant protein ascorbate peroxidase.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kelley EE. Diminishing Inflammation by Reducing Oxidant Generation: Nitrated Fatty Acid-Mediated Inactivation of Xanthine Oxidoreductase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:59-65. [PMID: 31140171 DOI: 10.1007/978-3-030-11488-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inhibition of xanthine oxidoreductase (XOR) has proven beneficial in a plethora of inflammatory disease processes due to a net reduction in pro-inflammatory oxidants and secondary nitrating species. Electrophilic nitrated fatty acid derivatives, such as nitro-oleic acid (OA-NO2) are also noted to display a broad spectrum of anti-inflammatory effects via interaction with critical signaling pathways. An alternative process in which nitrated fatty acids may extend anti-inflammatory actions is via inactivation of XOR, a process that is more effective than allo/oxypurinol-mediated inhibition. Herein, we describe the molecular aspects of nitrated fatty acid-associated inactivation of XOR, identify specificity via structure function relationships and discuss XOR as a crucial component of the anti-inflammatory portfolio of nitrated fatty acids.
Collapse
Affiliation(s)
- Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
17
|
Fazzari M, Vitturi DA, Woodcock SR, Salvatore SR, Freeman BA, Schopfer FJ. Electrophilic fatty acid nitroalkenes are systemically transported and distributed upon esterification to complex lipids. J Lipid Res 2018; 60:388-399. [PMID: 30545956 DOI: 10.1194/jlr.m088815] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
Electrophilic nitro-fatty acids [NO2-FAs (fatty acid nitroalkenes)] showed beneficial signaling actions in preclinical studies and safety in phase 1 clinical trials. A detailed description of the pharmacokinetics (PK) of NO2-FAs is complicated by the capability of electrophilic fatty acids to alkylate thiols reversibly and become esterified in various complex lipids, and the instability of the nitroalkene moiety during enzymatic and base hydrolysis. Herein, we report the mechanism and kinetics of absorption, metabolism, and distribution of the endogenously detectable and prototypical NO2-FA, 10-nitro-oleic acid (10-NO2-OA), in dogs after oral administration. Supported by HPLC-high-resolution-MS/MS analysis of synthetic and plasma-derived 10-NO2-OA-containing triacylglycerides (TAGs), we show that a key mechanism of NO2-FA distribution is an initial esterification into complex lipids. Quantitative analysis of plasma free and esterified lipid fractions confirmed time-dependent preferential incorporation of 10-NO2-OA into TAGs when compared with its principal metabolite, 10-nitro-stearic acid. Finally, new isomers of 10-NO2-OA were identified in vivo, and their electrophilic reactivity and metabolism characterized. Overall, we reveal that NO2-FAs display unique PK, with the principal mechanism of tissue distribution involving complex lipid esterification, which serves to shield the electrophilic character of this mediator from plasma and hepatic inactivation and thus permits efficient distribution to target organs.
Collapse
Affiliation(s)
- Marco Fazzari
- Fondazione Ri.MED, 90133 Palermo, Italy .,Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA 15261
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA 15261
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA 15261
| | - Sonia R Salvatore
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA 15261
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA 15261
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|