1
|
Zhou X, Su W, Bao Q, Cui Y, Li X, Yang Y, Yang C, Wang C, Jiao L, Chen D, Huang J. Nitric Oxide Ameliorates the Effects of Hypoxia in Mice by Regulating Oxygen Transport by Hemoglobin. High Alt Med Biol 2024; 25:174-185. [PMID: 38743636 DOI: 10.1089/ham.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Xiaoying Zhou, Wenting Su, Quanwei Bao, Yu Cui, Xiaoxu Li, Yidong Yang, Chengzhong Yang, Chengyuan Wang, Li Jiao, Dewei Chen, and Jian Huang. Nitric oxide ameliorates the effects of hypoxia in mice by regulating oxygen transport by hemoglobin. High Alt Med Biol. 25:174-185, 2024.-Hypoxia is a common pathological and physiological phenomenon in ischemia, cancer, and strenuous exercise. Nitric oxide (NO) acts as an endothelium-derived relaxing factor in hypoxic vasodilation and serves as an allosteric regulator of hemoglobin (Hb). However, the ultimate effects of NO on the hematological system in vivo remain unknown, especially in extreme environmental hypoxia. Whether NO regulation of the structure of Hb improves oxygen transport remains unclear. Hence, we examined whether NO altered the oxygen affinity of Hb (Hb-O2 affinity) to protect extremely hypoxic mice. Mice were exposed to severe hypoxia with various concentrations of NO, and the survival time, exercise capacity, and other physical indexes were recorded. The survival time was prolonged in the 5 ppm NO (6.09 ± 1.29 minutes) and 10 ppm NO (6.39 ± 1.58 minutes) groups compared with the 0 ppm group (4.98 ± 1.23 minutes). Hypoxia of the brain was relieved, and the exercise exhaustion time was prolonged when mice inhaled 20 ppm NO (24.70 ± 6.87 minutes vs. 20.23 ± 6.51 minutes). In addition, the differences in arterial oxygen saturation (SO2%) (49.64 ± 7.29% vs. 42.90 ± 4.30%) and arteriovenous SO2% difference (25.14 ± 8.95% vs. 18.10 ± 6.90%) obviously increased. In ex vivo experiments, the oxygen equilibrium curve (OEC) left shifted as P50 decreased from 43.77 ± 2.49 mmHg (0 ppm NO) to 40.97 ± 1.40 mmHg (100 ppm NO) and 38.36 ± 2.78 mmHg (200 ppm NO). Furthermore, the Bohr effect of Hb was enhanced by the introduction of 200 ppm NO (-0.72 ± 0.062 vs.-0.65 ± 0.051), possibly allowing Hb to more easily offload oxygen in tissue at lower pH. The crystal structure reveals a greater distance between Asp94β-His146β in nitrosyl -Hb(NO-Hb), NO-HbβCSO93, and S-NitrosoHb(SNO-Hb) compared to tense Hb(T-Hb, 3.7 Å, 4.3 Å, and 5.8 Å respectively, versus 3.5 Å for T-Hb). Moreover, hydrogen bonds were less likely to form, representing a key limitation of relaxed Hb (R-Hb). Upon NO interaction with Hb, hydrogen bonds and salt bridges were less favored, facilitating relaxation. We speculated that NO ameliorated the effects of hypoxia in mice by promoting erythrocyte oxygen loading in the lung and offloading in tissues.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Wenting Su
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengyuan Wang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Li Jiao
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Kamenshchikov NO, Podoksenov YK, Kozlov BN, Maslov LN, Mukhomedzyanov AV, Tyo MA, Boiko AM, Margolis NY, Boshchenko AA, Serebryakova ON, Dzyuman AN, Shirshin AS, Buranov SN, Selemir VD. The Nephroprotective Effect of Nitric Oxide during Extracorporeal Circulation: An Experimental Study. Biomedicines 2024; 12:1298. [PMID: 38927505 PMCID: PMC11201384 DOI: 10.3390/biomedicines12061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to determine the effectiveness of administering 80 ppm nitric oxide in reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental perfusion. Twenty-four sheep were randomized into four groups: two groups received 80 ppm NO conditioning with 90 min of cardiopulmonary bypass (CPB + NO) or 90 min of CPB and hypothermic circulatory arrest (CPB + CA + NO), while two groups received sham protocols (CPB and CPB + CA). Kidney injury was assessed using laboratory (neutrophil gelatinase-associated lipocalin, an acute kidney injury biomarker) and morphological methods (morphometric histological changes in kidney biopsy specimens). A kidney biopsy was performed 60 min after weaning from mechanical perfusion. NO did not increase the concentrations of inhaled NO2 and methemoglobin significantly. The NO-conditioning groups showed less severe kidney injury and mitochondrial dysfunction, with statistical significance in the CPB + NO group and reduced tumor necrosis factor-α expression as a trigger of apoptosis and necroptosis in renal tissue in the CPB + CA + NO group compared to the CPB + CA group. The severity of mitochondrial dysfunction in renal tissue was insignificantly lower in the NO-conditioning groups. We conclude that NO administration is safe and effective at reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental CPB.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Yuri K. Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Boris N. Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alexander V. Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Mark A. Tyo
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alexander M. Boiko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Natalya Yu. Margolis
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Olga N. Serebryakova
- Department of Morphology and General Pathology, Siberian State Medical University, 2 Moskovsky trakt, Tomsk 634050, Russia; (O.N.S.); (A.N.D.)
| | - Anna N. Dzyuman
- Department of Morphology and General Pathology, Siberian State Medical University, 2 Moskovsky trakt, Tomsk 634050, Russia; (O.N.S.); (A.N.D.)
| | - Alexander S. Shirshin
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| | - Sergey N. Buranov
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| | - Victor D. Selemir
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| |
Collapse
|
3
|
Muenster S, Zarragoikoetxea I, Moscatelli A, Balcells J, Gaudard P, Pouard P, Marczin N, Janssens SP. Inhaled NO at a crossroads in cardiac surgery: current need to improve mechanistic understanding, clinical trial design and scientific evidence. Front Cardiovasc Med 2024; 11:1374635. [PMID: 38646153 PMCID: PMC11027901 DOI: 10.3389/fcvm.2024.1374635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Inhaled nitric oxide (NO) has been used in pediatric and adult perioperative cardiac intensive care for over three decades. NO is a cellular signaling molecule that induces smooth muscle relaxation in the mammalian vasculature. Inhaled NO has the unique ability to exert its vasodilatory effects in the pulmonary vasculature without any hypotensive side-effects in the systemic circulation. In patients undergoing cardiac surgery, NO has been reported in numerous studies to exert beneficial effects on acutely lowering pulmonary artery pressure and reversing right ventricular dysfunction and/or failure. Yet, various investigations failed to demonstrate significant differences in long-term clinical outcomes. The authors, serving as an advisory board of international experts in the field of inhaled NO within pediatric and adult cardiac surgery, will discuss how the existing scientific evidence can be further improved. We will summarize the basic mechanisms underlying the clinical applications of inhaled NO and how this translates into the mandate for inhaled NO in cardiac surgery. We will move on to the popular use of inhaled NO and will talk about the evidence base of the use of this selective pulmonary vasodilator. This review will elucidate what kind of clinical and biological barriers and gaps in knowledge need to be solved and how this has impacted in the development of clinical trials. The authors will elaborate on how the optimization of inhaled NO therapy, the development of biomarkers to identify the target population and the definition of response can improve the design of future large clinical trials. We will explain why it is mandatory to gain an international consensus for the state of the art of NO therapy far beyond this expert advisory board by including the different major players in the field, such as the different medical societies and the pharma industry to improve our understanding of the real-life effects of inhaled NO in large scale observational studies. The design for future innovative randomized controlled trials on inhaled NO therapy in cardiac surgery, adequately powered and based on enhanced biological phenotyping, will be crucial to eventually provide scientific evidence of its clinical efficacy beyond its beneficial hemodynamic properties.
Collapse
Affiliation(s)
- Stefan Muenster
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Iratxe Zarragoikoetxea
- Department of Anesthesiology and Intensive Care Medicine, Hospital Universitari I Politècnic Fe, Valencia, Spain
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Joan Balcells
- Pediatric Intensive Care Unit, Vall d’Hebron Barcelona Campus Hospitalari, Universitari Vall d'Hebron, Barcelona, Spain
| | - Philippe Gaudard
- Department of Anesthesiology and Critical Care Medicine Arnaud de Villeneuve, CHU Montpellier, University of Montpellier, PhyMedExp, INSERM, CNRS, Montpellier, France
| | - Philippe Pouard
- Department of Anesthesiology and Critical Care, Assistance Publique-Hopitaux de Paris, Hopital Necker-Enfants Malades, Paris, France
| | - Nandor Marczin
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Stefan P. Janssens
- Cardiac Intensive Care, Department of Cardiovascular Diseases, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Sienel RI, Mamrak U, Biller J, Roth S, Zellner A, Parakaw T, Khambata RS, Liesz A, Haffner C, Ahluwalia A, Seker BF, Plesnila N. Inhaled nitric oxide suppresses neuroinflammation in experimental ischemic stroke. J Neuroinflammation 2023; 20:301. [PMID: 38102677 PMCID: PMC10725028 DOI: 10.1186/s12974-023-02988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation. Mice were subjected to experimental stroke and received inhaled NO (iNO; 50 ppm) after reperfusion. iNO normalized vascular cyclic guanosine monophosphate (cGMP) levels, reduced the elevated expression of intercellular adhesion molecule-1 (ICAM-1), and returned leukocyte adhesion to baseline levels. Reduction of vascular pathology significantly reduced the inflammatory cytokines interleukin-1β (Il-1β), interleukin-6 (Il-6), and tumor necrosis factor-α (TNF-α), within the brain parenchyma. These findings suggest that vascular dysfunction is responsible for leukocyte adhesion and that these processes drive parenchymal inflammation. Reversing vascular dysfunction may therefore emerge as a novel approach to diminish neuroinflammation after ischemic stroke and possibly other ischemic disorders.
Collapse
Affiliation(s)
- Rebecca I Sienel
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Janina Biller
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Andreas Zellner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Tipparat Parakaw
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Burcu F Seker
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Florek E, Szukalska M, Markiewicz K, Miechowicz I, Gornowicz-Porowska J, Jelińska A, Kasprzyk-Pochopień J, Nawrot J, Sobczak A, Horoszkiewicz M, Piekoszewski W, Nowak G. Evaluation of the Protective and Regenerative Properties of Commercially Available Artichoke Leaf Powder Extract on Plasma and Liver Oxidative Stress Parameters. Antioxidants (Basel) 2023; 12:1846. [PMID: 37891925 PMCID: PMC10604870 DOI: 10.3390/antiox12101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular damage by the harmful effects of xenobiotics, which increase the production of free radicals, is a widespread phenomenon. The extract from the leaves of Cynara scolymus L. available as an artichoke preparation (natural source) of antioxidants may serve as a potential hepatoprotective factor. This study aimed to evaluate the impact of the protective and regenerative properties of artichoke preparation on the liver in three extract doses: 0.5; 1.0; and 1.5 g/kg bw/day. The evaluation was conducted by measuring the levels of oxidative stress parameters, including glutathione (GSH), glutathione S-transferases (GST), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), Trolox equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), glutathione peroxidase (GPx), paraoxonase 1 (PON1), SH- group, nitrosylated protein (RSNO), as well as such liver enzymes as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in the plasma and liver homogenate of rats with liver damage induced by CCl4 (1 mL/kg bw). Measurements were taken in plasma and liver homogenate. The results have demonstrated that the artichoke preparation, owing to its high antioxidative potential, exhibits protective and regenerative effects on the liver. This is supported by the observation of higher GSH levels in the plasma of rats treated with artichoke extract for two weeks before CCl4 exposure. Furthermore, the artichoke extract has shown regenerative properties, as evidenced by lower ALT, AST, and SOD activity in the group treated with artichoke extract after CCl4 exposure. These findings suggest that the in vivo administration of artichoke preparation may be beneficial for the protection and regeneration of the liver.
Collapse
Affiliation(s)
- Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.S.); (K.M.)
| | - Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.S.); (K.M.)
| | - Katarzyna Markiewicz
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.S.); (K.M.)
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Justyna Gornowicz-Porowska
- Department of Practical Cosmetology and Skin Disease Prevention, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.G.-P.); (J.N.); (G.N.)
| | - Anna Jelińska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.J.); (A.S.)
| | - Joanna Kasprzyk-Pochopień
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (J.K.-P.); (W.P.)
| | - Joanna Nawrot
- Department of Practical Cosmetology and Skin Disease Prevention, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.G.-P.); (J.N.); (G.N.)
| | - Agnieszka Sobczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.J.); (A.S.)
| | | | - Wojciech Piekoszewski
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (J.K.-P.); (W.P.)
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Gerard Nowak
- Department of Practical Cosmetology and Skin Disease Prevention, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.G.-P.); (J.N.); (G.N.)
| |
Collapse
|
6
|
Yassaghi Y, Jeddi S, Yousefzadeh N, Kashfi K, Ghasemi A. Long-term inorganic nitrate administration protects against myocardial ischemia-reperfusion injury in female rats. BMC Cardiovasc Disord 2023; 23:411. [PMID: 37605135 PMCID: PMC10441752 DOI: 10.1186/s12872-023-03425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The favorable effects of nitrate against myocardial ischemia-reperfusion injury (MIRI) have primarily focused on male rats and in short term. Here we determine the impact of long-term nitrate intervention on baseline cardiac function and the resistance to MIRI in female rats. METHODS Female Wistar rats were randomly divided into untreated and nitrate-treated (100 mg/L sodium nitrate in drinking water for 9 months) groups (n = 14/group). At intervention end, levels of serum progesterone, nitric oxide metabolites (NOx), heart NOx concentration, and mRNA expressions of NO synthase isoforms (NOS), i.e., endothelial (eNOS), neuronal (nNOS), and inducible (iNOS), were measured. Isolated hearts were exposed to ischemia, and cardiac function indices (CFI) recorded. When the ischemia-reperfusion (IR) period ended, infarct size, NO metabolites, eNOS, nNOS, and iNOS expression were measured. RESULTS Nitrate-treated rats had higher serum progesterone (29.8%, P = 0.013), NOx (31.6%, P = 0.035), and higher heart NOx (60.2%, P = 0.067), nitrite (131%, P = 0.018), and eNOS expression (200%, P = 0.005). Nitrate had no significant effects on baseline CFI but it increased recovery of left ventricular developed pressure (LVDP, 19%, P = 0.020), peak rate of positive (+ dp/dt, 16%, P = 0.006) and negative (-dp/dt, 14%, P = 0.014) changes in left ventricular pressure and decreased left ventricular end-diastolic pressure (LVEDP, 17%, P < 0.001) and infarct size (34%, P < 0.001). After the IR, the two groups had significantly different heart nitrite, nitrate, NOx, and eNOS and iNOS mRNA expressions. CONCLUSIONS Long-term nitrate intervention increased the resistance to MIRI in female rats; this was associated with increased heart eNOS expression and circulating progesterone before ischemia and blunting ischemia-induced increased iNOS and decreased eNOS after MIRI.
Collapse
Affiliation(s)
- Younes Yassaghi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran.
| |
Collapse
|
7
|
Kamenshchikov NO, Duong N, Berra L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines 2023; 11:1085. [PMID: 37189703 PMCID: PMC10135597 DOI: 10.3390/biomedicines11041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Perioperative organ injury remains a medical, social and economic problem in cardiac surgery. Patients with postoperative organ dysfunction have increases in morbidity, length of stay, long-term mortality, treatment costs and rehabilitation time. Currently, there are no pharmaceutical technologies or non-pharmacological interventions that can mitigate the continuum of multiple organ dysfunction and improve the outcomes of cardiac surgery. It is essential to identify agents that trigger or mediate an organ-protective phenotype during cardiac surgery. The authors highlight nitric oxide (NO) ability to act as an agent for perioperative protection of organs and tissues, especially in the heart-kidney axis. NO has been delivered in clinical practice at an acceptable cost, and the side effects of its use are known, predictable, reversible and relatively rare. This review presents basic data, physiological research and literature on the clinical application of NO in cardiac surgery. Results support the use of NO as a safe and promising approach in perioperative patient management. Further clinical research is required to define the role of NO as an adjunct therapy that can improve outcomes in cardiac surgery. Clinicians also have to identify cohorts of responders for perioperative NO therapy and the optimal modes for this technology.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Nicolette Duong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
8
|
Signori D, Magliocca A, Hayashida K, Graw JA, Malhotra R, Bellani G, Berra L, Rezoagli E. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med Exp 2022; 10:28. [PMID: 35754072 PMCID: PMC9234017 DOI: 10.1186/s40635-022-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.
Collapse
Affiliation(s)
- Davide Signori
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jan A Graw
- Department of Anesthesiology and Operative Intensive Care Medicine, CCM/CVK Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
9
|
Lee SH, Won GW, Choi SH, Kim MY, Oh CH, Park JT, Park JI. Antiaging effect of inotodiol on oxidative stress in human dermal fibroblasts. Biomed Pharmacother 2022; 153:113311. [PMID: 35759867 DOI: 10.1016/j.biopha.2022.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative damage is one of the major causes of human skin aging. Inotodiol is a lanostane triterpenoid that demonstrates antiviral, anticancer, and anti-inflammatory activities. Previous studies have reported that inotodiol also has antiallergic effects. However, whether inotodiol inhibits oxidative stress-induced human skin aging is not known. Stimulation of human dermal fibroblast cells with hydrogen peroxide is related to skin aging. Inotodiol inhibited the expression of mitogen-activated protein kinase (MAPK) and NADPH Oxidase 5 (NOX5). Moreover, inotodiol effectively decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as nitric oxide (NO), reactive oxygen species (ROS), cyclooxygenase-2 (COX-2), and cytokines such as IL-1β, IL-6, and TNF-α. Based on our results, inotodiol protects human dermal fibroblast by preventing MAPK-NOX5 and NF-κB activation and attenuates the expression of aging genes. Inotodiol may therefore be considered a potential candidate for developing natural antiaging products, because it protects the human skin from oxidative stress-induced skin aging by inhibiting the MAPK-NOX5 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Gun-Woo Won
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Seung-Hyeon Choi
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Mi-Yoon Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Cheong-Hae Oh
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Kamenshchikov NO, Berra L, Carroll RW. Therapeutic Effects of Inhaled Nitric Oxide Therapy in COVID-19 Patients. Biomedicines 2022; 10:biomedicines10020369. [PMID: 35203578 PMCID: PMC8962307 DOI: 10.3390/biomedicines10020369] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
The global COVID-19 pandemic has become the largest public health challenge of recent years. The incidence of COVID-19-related acute hypoxemic respiratory failure (AHRF) occurs in up to 15% of hospitalized patients. Antiviral drugs currently available to clinicians have little to no effect on mortality, length of in-hospital stay, the need for mechanical ventilation, or long-term effects. Inhaled nitric oxide (iNO) administration is a promising new non-standard approach to directly treat viral burden while enhancing oxygenation. Along with its putative antiviral affect in COVID-19 patients, iNO can reduce inflammatory cell-mediated lung injury by inhibiting neutrophil activation, lowering pulmonary vascular resistance and decreasing edema in the alveolar spaces, collectively enhancing ventilation/perfusion matching. This narrative review article presents recent literature on the iNO therapy use for COVID-19 patients. The authors suggest that early administration of the iNO therapy may be a safe and promising approach for the treatment of COVID-19 patients. The authors also discuss unconventional approaches to treatment, continuous versus intermittent high-dose iNO therapy, timing of initiation of therapy (early versus late), and novel delivery systems. Future laboratory and clinical research is required to define the role of iNO as an adjunct therapy against bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
- Correspondence:
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
| | - Ryan W. Carroll
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
- Division of Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
11
|
Klyamer D, Shutilov R, Basova T. Recent Advances in Phthalocyanine and Porphyrin-Based Materials as Active Layers for Nitric Oxide Chemical Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:895. [PMID: 35161641 PMCID: PMC8840409 DOI: 10.3390/s22030895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Nitric oxide (NO) is a highly reactive toxic gas that forms as an intermediate compound during the oxidation of ammonia and is used for the manufacture of hydroxylamine in the chemical industry. Moreover, NO is a signaling molecule in many physiological and pathological processes in mammals, as well as a biomarker indicating the course of inflammatory processes in the respiratory tract. For this reason, the detection of NO both in the gas phase and in the aqueous media is an important task. This review analyzes the state of research over the past ten years in the field of applications of phthalocyanines, porphyrins and their hybrid materials as active layers of chemical sensors for the detection of NO, with a primary focus on chemiresistive and electrochemical ones. The first part of the review is devoted to the study of phthalocyanines and porphyrins, as well as their hybrids for the NO detection in aqueous solutions and biological media. The second part presents an analysis of works describing the latest achievements in the field of studied materials as active layers of sensors for the determination of gaseous NO. It is expected that this review will further increase the interest of researchers who are engaged in the current level of evaluation and selection of modern materials for use in the chemical sensing of nitric oxide.
Collapse
Affiliation(s)
| | | | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (R.S.)
| |
Collapse
|
12
|
Synergetic protective effect of remote ischemic preconditioning and prolyl 4‑hydroxylase inhibition in ischemic cardiac injury. Mol Med Rep 2022; 25:80. [PMID: 35029283 PMCID: PMC8778658 DOI: 10.3892/mmr.2022.12596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
It has been reported that hypoxia-inducible factor 1α (HIF-1α) serves a key role in the protective effect of remote ischemic preconditioning (RIP) in ischemia/reperfusion (I/R)-induced cardiac injury. Moreover, inhibition of prolyl 4-hydroxylase (PHD), an enzyme responsible for HIF-1α degradation, prevents I/R-induced cardiac injury. However, whether their protective effects are synergetic remains to be elucidated. The present study aimed to investigate the protective effect of RIP, PHD inhibition using dimethyloxalylglycine (DMOG) and their combination on I/R-induced cardiac injury. Rabbits were randomly divided into seven groups: i) Sham; ii) I/R; iii) lung RIP + I/R; iv) thigh RIP + I/R; v) DMOG + I/R; vi) DMOG + lung RIP + I/R; and vii) DMOG + thigh RIP + I/R. I/R models were established via 30 min left coronary artery occlusion and 3 h reperfusion. For lung/thigh RIP, rabbits received left pulmonary artery (or left limb) ischemia for 25 min and followed by release for 5 min. Some rabbits were administered 20 mg/kg DMOG. The results demonstrated that both lung/thigh RIP and DMOG significantly decreased myocardial infarct size, creatine kinase activity and myocardial apoptosis in I/R rabbits. Furthermore, the combination of RIP and PHD inhibition exerted synergetic protective effects on these aforementioned changes. The mechanistic study indicated that both treatments increased mRNA and protein expression levels of HIF-1α and its downstream regulators, including vascular endothelial growth factor (VEGF), AKT and endothelial nitric oxide synthase (eNOS). In conclusion, the present study demonstrated that RIP and PHD inhibition exerted synergetic protective effects on cardiac injury via activation of HIF-1α and the downstream VEGF/AKT-eNOS signaling pathway.
Collapse
|
13
|
Pichugin VV, Seyfetdinov IR, Ryazanov MV, Domnin SE, Gamzaev AB, Chiginev VA, Bober VV, Medvedev AP. New Technology for the Use of Inhaled Nitric Oxide to Protect the Heart and Lungs during Operations with Cardiopulmonary Bypass. Sovrem Tekhnologii Med 2021; 12:28-34. [PMID: 34796002 PMCID: PMC8596258 DOI: 10.17691/stm2020.12.5.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
The aim of the study was to evaluate the effectiveness of a new technology for the use of inhaled nitric oxide (NO) for the heart and lung protection during operations with cardiopulmonary bypass (СРВ).
Collapse
Affiliation(s)
- V V Pichugin
- Professor, Department of Anesthesiology, Resuscitation and Emergency Medical Aid; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I R Seyfetdinov
- PhD Student, Department of Anesthesiology, Resuscitation and Emergency Medical Aid; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M V Ryazanov
- Associate Professor, Department of Hospital Surgery named after B.A. Korolyov; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - S E Domnin
- PhD Student, Department of Anesthesiology, Resuscitation and Emergency Medical Aid; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A B Gamzaev
- Professor, Department of X-ray Endovascular Diagnostics and Treatment; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V A Chiginev
- Professor, Department of Hospital Surgery named after B.A. Korolyov; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V V Bober
- Assistant, Department of Anesthesiology, Resuscitation and Emergency Medical Aid; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A P Medvedev
- Professor, Department of Hospital Surgery named after B.A. Korolyov Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
14
|
Liu K, Wang H, Yu SJ, Tu GW, Luo Z. Inhaled pulmonary vasodilators: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:597. [PMID: 33987295 PMCID: PMC8105872 DOI: 10.21037/atm-20-4895] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
Pulmonary hypertension (PH) is a severe disease that affects people of all ages. It can occur as an idiopathic disorder at birth or as part of a variety of cardiovascular and pulmonary disorders. Inhaled pulmonary vasodilators (IPV) can reduce pulmonary vascular resistance (PVR) and improve RV function with minimal systemic effects. IPV includes inhaled nitric oxide (iNO), inhaled aerosolized prostacyclin, or analogs, including epoprostenol, iloprost, treprostinil, and other vasodilators. In addition to pulmonary vasodilating effects, IPV can also be used to improve oxygenation, reduce inflammation, and protect cell. Off-label use of IPV is common in daily clinical practice. However, evidence supporting the inhalational administration of these medications is limited, inconclusive, and controversial regarding their safety and efficacy. We conducted a search for relevant papers published up to May 2020 in four databases: PubMed, Google Scholar, EMBASE and Web of Science. This review demonstrates that the clinical using and updated evidence of IPV. iNO is widely used in neonates, pediatrics, and adults with different cardiopulmonary diseases. The limitations of iNO include high cost, flat dose-response, risk of significant rebound PH after withdrawal, and the requirement of complex technology for monitoring. The literature suggests that inhaled aerosolized epoprostenol, iloprost, treprostinil and others such as milrinone and levosimendan may be similar to iNO. More research of IPV is needed to determine acceptable inclusion criteria, long-term outcomes, and management strategies including time, dose, and duration.
Collapse
Affiliation(s)
- Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shen-Ji Yu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Med, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
15
|
Tan J, Wu Z, Liu J, Zhang W, Yuan W, Peng H. MicroRNA-203-mediated inhibition of doublecortin underpins cardioprotection conferred by sevoflurane in rats after myocardial ischaemia-reperfusion injury. J Cell Mol Med 2020; 24:9825-9838. [PMID: 32783282 PMCID: PMC7520273 DOI: 10.1111/jcmm.15566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
Myocardial ischaemia‐reperfusion (I/R) injury is a serious illness with high morbidity and mortality. Mounting evidence indicates the utility of sevoflurane (SEV) in the treatment of myocardial I/R injury. This study aimed to explore the molecular mechanisms underlying the protective action of SEV against myocardial I/R injury. A rat model of myocardial I/R injury was established, and I/R rats were treated with different concentrations of SEV. MicroRNA‐203 (miR‐203) and doublecortin (DCX) expression levels were determined using reverse transcription‐quantitative polymerase chain reaction. Putative target relationship between miR‐203 and DCX was explored using dual‐luciferase reporter gene assay and RNA‐binding protein immunoprecipitation assay. Ischaemia‐reperfusion rats were treated with SEV, miR‐203 antagomir or sh‐DCX, followed by determination of oxidative stress‐ and inflammation‐related factor levels using nitrite and enzyme‐linked immunosorbent assays, and that of apoptosis‐related factors using Western blot analysis. The apoptotic rate of myocardial tissues was determined using TdT‐mediated dUTP‐biotin nick end labeling (TUNEL) staining, and the infract area was evaluated using triphenyltetrazolium chloride staining. The results showed miR‐203 was poorly expressed and DCX was highly expressed in myocardial tissues of I/R rats. Sevoflurane was found to elevate miR‐203, and miR‐203, in turn, could target and reduce DCX expression. Sevoflurane, miR‐203 overexpression or DCX silencing resulted in declined oxidative stress, inflammation, apoptosis and infarct area, ultimately alleviating myocardial I/R injury. Collectively, these findings showed that SEV‐activated miR‐203 exhibited suppressive effects on myocardial I/R injury in rats and highlighted the SEV/miR‐203/DCX axis as a promising therapeutic target for myocardial I/R injury management.
Collapse
Affiliation(s)
- Jian Tan
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Zhiguo Wu
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Jun Liu
- Department of Obstetrics, Pingxiang Maternity and Child Health Hospital, Pingxiang, P. R. China
| | - Wenting Zhang
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Wanqiu Yuan
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Hong Peng
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| |
Collapse
|
16
|
Kamenshchikov NO, Anfinogenova YJ, Kozlov BN, Svirko YS, Pekarskiy SE, Evtushenko VV, Lugovsky VA, Shipulin VM, Lomivorotov VV, Podoksenov YK. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial. J Thorac Cardiovasc Surg 2020; 163:1393-1403.e9. [PMID: 32718702 DOI: 10.1016/j.jtcvs.2020.03.182] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) is a serious complication of cardiac surgery with cardiopulmonary bypass (CPB). The aim of this study was to evaluate the effects of nitric oxide (NO) supplementation to the CPB circuit on the development of cardiac surgery-associated AKI. METHODS This prospective randomized controlled study included 96 patients with moderate risk of renal complications who underwent elective cardiac surgery with CPB. The study protocol was registered at ClinicalTrials.gov (identifier NCT03527381). Patients were randomly allocated to either NO supplementation to the CPB bypass circuit (NO treatment group; n = 48) or usual care (control group; n = 48). In the NO treatment group, 40-ppm NO was administered during the entire CPB period. The primary outcome was the incidence of AKI. RESULTS NO treatment was associated with a significant decrease in AKI incidence (10 cases [20.8%] vs 20 cases [41.6%] in the control group; relative risk, 0.5; 95% confidence interval, 0.26-0.95; P = .023) and a higher median urine output during CPB (2.6 mL/kg/h [interquartile range (IQR), 2.1-5.08 mL/kg/h] vs 1.7 mL/kg/h [IQR, 0.80-2.50 mL/kg/h]; P = .0002). The median urinary neutrophil gelatinase-associated lipocalin level at 4 hours after surgery was significantly lower in the NO treatment group (1.12 ng/mL [IQR, 0.75-5.8 ng/mL] vs 4.62 ng/mL [IQR, 2.02-34.55 ng/mL]; P = .005). In the NO treatment group, concentrations of NO metabolites were significantly increased at 5 minutes postclamping, at 5 minutes after declamping, and at the end of the operation. Concentrations of proinflammatory and anti-inflammatory mediators and free plasma hemoglobin did not differ significantly between the 2 groups. CONCLUSIONS NO administration in patients at moderate risk of renal complications undergoing elective cardiac surgery with CPB was associated with a lower incidence of AKI.
Collapse
Affiliation(s)
- Nikolay O Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - Yana J Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Boris N Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Department of Cardiovascular Surgery, Siberian State Medical University, Tomsk, Russia
| | - Yulia S Svirko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Department of Cardiovascular Surgery, Siberian State Medical University, Tomsk, Russia
| | - Stanislav E Pekarskiy
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir V Evtushenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir A Lugovsky
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir M Shipulin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Department of Cardiovascular Surgery, Siberian State Medical University, Tomsk, Russia
| | - Vladimir V Lomivorotov
- Department of Anesthesiology and Critical Care, Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Yuriy K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Department of Cardiovascular Surgery, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
17
|
Pelegrino MT, Paganotti A, Seabra AB, Weller RB. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem Cell Biol 2020; 153:431-441. [PMID: 32162135 PMCID: PMC7300104 DOI: 10.1007/s00418-020-01858-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is related to a wide range of physiological processes such as vasodilation, macrophages cytotoxicity and wound healing. The human skin contains NO precursors (NOx). Those are mainly composed of nitrite (NO2-), nitrate (NO3-), and S-nitrosothiols (RSNOs) which forms a large NO store. These NOx stores in human skin can mobilize NO to blood stream upon ultraviolet (UV) light exposure. The main purpose of this study was to evaluate the most effective UV light wavelength to generate NO and compare it to each NO precursor in aqueous solution. In addition, the UV light might change the RSNO content on human skin. First, we irradiated pure aqueous solutions of NO2- and NO3- and mixtures of NO2- and glutathione and NO3- and S-nitrosoglutathione (GSNO) to identify the NO release profile from those species alone. In sequence, we evaluated the NO generation profile on human skin slices. Human skin was acquired from redundant plastic surgical samples and the NO and RSNO measurements were performed using a selective NO electrochemical sensor. The data showed that UV light could trigger the NO generation in skin with a peak at 280-285 nm (UVB range). We also observed a significant RSNO formation in irradiated human skin, with a peak at 320 nm (UV region) and at 700 nm (visible region). Pre-treatment of the human skin slice using NO2- and thiol (RSHs) scavengers confirmed the important role of these molecules in RSNO formation. These findings have important implications for clinical trials with potential for new therapies.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - André Paganotti
- Laboratory of Materials and Mechanical Manufacture, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - Richard B Weller
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
18
|
Pelegrino MT, Weller RB, Paganotti A, Seabra AB. Delivering nitric oxide into human skin from encapsulated S-nitrosoglutathione under UV light: An in vitro and ex vivo study. Nitric Oxide 2020; 94:108-113. [DOI: 10.1016/j.niox.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023]
|
19
|
Zadek F, Spina S, Hu J, Berra L. Nitric Oxide Treatment for Lungs and Beyond. Novel Insights from Recent Literature. Am J Respir Crit Care Med 2019; 200:628-630. [PMID: 31185176 DOI: 10.1164/rccm.201901-0037rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Francesco Zadek
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stefano Spina
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jie Hu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
20
|
Spina S, Lei C, Pinciroli R, Berra L. Hemolysis and Kidney Injury in Cardiac Surgery: The Protective Role of Nitric Oxide Therapy. Semin Nephrol 2019; 39:484-495. [DOI: 10.1016/j.semnephrol.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|