1
|
Maekawa M, Iwahori A, Kumondai M, Sato Y, Sato T, Mano N. Determination of Choline-Containing Compounds in Rice Bran Fermented with Aspergillus oryzae Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2024; 13:A0151. [PMID: 39161737 PMCID: PMC11331278 DOI: 10.5702/massspectrometry.a0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Choline-containing compounds are essential nutrients for human activity, as they are involved in many biological processes, including cell membrane organization, methyl group donation, neurotransmission, signal transduction, lipid transport, and metabolism. These compounds are normally obtained from food. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is a fermented food product derived from rice and rice ingredients. FBRA exhibits a multitude of functional properties with respect to the health sciences. This study has a particular focus on choline-containing compounds. We first developed a simultaneous liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis method for seven choline-containing compounds. The method was subsequently applied to FBRA and its ingredients. Hydrophilic interaction chromatography (HILIC) and selected reaction monitoring were employed for the simultaneous analysis of seven choline-containing compounds. MS ion source conditions were optimized in positive ion mode, and the product ions derived from the choline group were obtained through MS/MS optimization. Under optimized HILIC conditions, the peaks exhibited good shape without peak tailing. Calibration curves demonstrated high linearity across a 300- to 10,000-fold concentration range. The application of the method to FBRA and other ingredients revealed significant differences between food with and without fermentation. In particular, betaine and α-glycerophosphocholine were found to be highest in FBRA and brown rice malt, respectively. The results indicated that the fermentation processing of rice ingredients results in alterations to the choline-containing compounds present in foods. The developed HILIC/MS/MS method proved to be a valuable tool for elucidating the composition of choline-containing compounds in foods.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| |
Collapse
|
2
|
Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo Seldenreich R, Padilha APZ, De Pieri E, Effting PS, Machado-De-Ávila RA, Réus GZ, Leipnitz G, Streck EL. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 2024; 49:758-770. [PMID: 38104040 DOI: 10.1007/s11064-023-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Antunes Torres
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Giassi Alano
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rafaela Tezza Matiola
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rejane de Figueiredo Seldenreich
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Alex Paulo Zeferino Padilha
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ellen De Pieri
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Pauline Souza Effting
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ricardo Andrez Machado-De-Ávila
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gislaine Zilli Réus
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emilio Luiz Streck
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
3
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
4
|
Oral administration of lutein attenuates ethanol-induced memory deficit in rats by restoration of acetylcholinesterase activity. Physiol Behav 2019; 204:121-128. [DOI: 10.1016/j.physbeh.2019.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 11/21/2022]
|
5
|
Jiao-Tai-Wan Improves Cognitive Dysfunctions through Cholinergic Pathway in Scopolamine-Treated Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3538763. [PMID: 30050927 PMCID: PMC6040267 DOI: 10.1155/2018/3538763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
Abstract
Cognitive dysfunction is characterized as the gradual loss of learning ability and cognitive function, as well as memory impairment. Jiao-tai-wan (JTW), a Chinese medicine prescription including Coptis chinensis and cinnamon, is mainly used for the treatment of insomnia, while the effect of JTW in improving cognitive function has not been reported. In this study, we employed a scopolamine- (SCOP-) treated learning and memory deficit model to explore whether JTW could alleviate cognitive dysfunction. In behavioral experiments, Morris water maze, Y-maze, fearing condition test, and novel object discrimination test were conducted. Results showed that oral administration of JTW (2.1 g/kg, 4.2 g/kg, and 8.4 g/kg) can effectively promote the ability of spatial recognition, learning and memory, and the memory ability of fresh things of SCOP-treated mice. In addition, the activity of acetylcholinesterase (AChE) was effectively decreased; the activity of choline acetyltransferase (ChAT) and concentration of acetylcholine (Ach) were improved after JTW treatment in both hippocampus and cortex of SCOP-treated mice. JTW effectively ameliorated oxidative stress because of decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) and increased the activities of superoxide dismutase (SOD) and catalase (CAT) in hippocampus and cortex. Furthermore, JTW promotes the expressions of neurotrophic factors including postsynaptic density protein 95 (PSD95) and synaptophysin (SYN) and brain-derived neurotrophic factor (BDNF) in both hippocampus and cortex. Nissl's staining shows that the neuroprotective effect of JTW was very effective. To sum up, JTW might be a promising candidate for the treatment of cognitive dysfunction.
Collapse
|
6
|
Gomes LM, Scaini G, Carvalho-Silva M, Gomes ML, Malgarin F, Kist LW, Bogo MR, Rico EP, Zugno AI, Deroza PFP, Réus GZ, de Moura AB, Quevedo J, Ferreira GC, Schuck PF, Streck EL. Antioxidants Reverse the Changes in the Cholinergic System Caused by L-Tyrosine Administration in Rats. Neurotox Res 2018; 34:769-780. [PMID: 29417439 DOI: 10.1007/s12640-018-9866-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/30/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
Tyrosinemia type II is an inborn error of metabolism caused by a deficiency in the activity of the enzyme tyrosine aminotransferase, leading to tyrosine accumulation in the body. Although the mechanisms involved are still poorly understood, several studies have showed that higher levels of tyrosine are related to oxidative stress and therefore may affect the cholinergic system. Thus, the aim of this study was to investigate the effects of chronic administration of L-tyrosine on choline acetyltransferase activity (ChAT) and acetylcholinesterase (AChE) in the brain of rats. Moreover, we also examined the effects of one antioxidant treatment (N-acetylcysteine (NAC) + deferoxamine (DFX)) on cholinergic system. Our results showed that the chronic administration of L-tyrosine decreases the ChAT activity in the cerebral cortex, while the AChE activity was increased in the hippocampus, striatum, and cerebral cortex. Moreover, we found that the antioxidant treatment was able to prevent the decrease in the ChAT activity in the cerebral cortex. However, the increase in AChE activity induced by L-tyrosine was partially prevented the in the hippocampus and striatum, but not in the cerebral cortex. Our results also showed no differences in the aversive and spatial memory after chronic administration of L-tyrosine. In conclusion, the results of this study demonstrated an increase in AChE activity in the hippocampus, striatum, and cerebral cortex and an increase of ChAT in the cerebral cortex, without cognitive impairment. Furthermore, the alterations in the cholinergic system were partially prevented by the co-administration of NAC and DFX. Thus, the restored central cholinergic system by antioxidant treatment further supports the view that oxidative stress may be involved in the pathophysiology of tyrosinemia type II.
Collapse
Affiliation(s)
- Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Maria L Gomes
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda Malgarin
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Luiza W Kist
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício R Bogo
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Pacheco Rico
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Pedro F P Deroza
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Airam B de Moura
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gustavo C Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
7
|
Abstract
This study concerns the effects of microwave on health because they pervade diverse fields of our lives. The brain has been recognized as one of the organs that is most vulnerable to microwave radiation. Therefore, in this article, we reviewed recent studies that have explored the effects of microwave radiation on the brain, especially the hippocampus, including analyses of epidemiology, morphology, electroencephalograms, learning and memory abilities and the mechanisms underlying brain dysfunction. However, the problem with these studies is that different parameters, such as the frequency, modulation, and power density of the radiation and the irradiation time, were used to evaluate microwave radiation between studies. As a result, the existing data exhibit poor reproducibility and comparability. To determine the specific dose-effect relationship between microwave radiation and its biological effects, more intensive studies must be performed.
Collapse
Affiliation(s)
- Wei-Jia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li-Feng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Xiang-Jun Hu
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
8
|
Wong-Guerra M, Jiménez-Martin J, Pardo-Andreu GL, Fonseca-Fonseca LA, Souza DO, de Assis AM, Ramirez-Sanchez J, Del Valle RMS, Nuñez-Figueredo Y. Mitochondrial involvement in memory impairment induced by scopolamine in rats. Neurol Res 2017; 39:649-659. [PMID: 28398193 DOI: 10.1080/01616412.2017.1312775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Gilberto L Pardo-Andreu
- c Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos , Universidad de La Habana , La Habana , Cuba
| | - Luis A Fonseca-Fonseca
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Diogo O Souza
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Adriano M de Assis
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Jeney Ramirez-Sanchez
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Yanier Nuñez-Figueredo
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| |
Collapse
|
9
|
Vasilopoulou CG, Constantinou C, Giannakopoulou D, Giompres P, Margarity M. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice. Physiol Behav 2016; 164:284-91. [DOI: 10.1016/j.physbeh.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
10
|
Gawel K, Labuz K, Gibula-Bruzda E, Jenda M, Marszalek-Grabska M, Filarowska J, Silberring J, Kotlinska JH. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1059-71. [PMID: 27376896 PMCID: PMC5021718 DOI: 10.1007/s00210-016-1269-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases—enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments—probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | | | - Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Malgorzata Jenda
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Joanna Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093, Lublin, Poland.
| |
Collapse
|
11
|
Frydecka D, Beszłej JA, Gościmski P, Kiejna A, Misiak B. Profiling cognitive impairment in treatment-resistant schizophrenia patients. Psychiatry Res 2016; 235:133-8. [PMID: 26706131 DOI: 10.1016/j.psychres.2015.11.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/08/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
The aim of this study was to compare cognitive performance between schizophrenia patients with and without treatment resistance (TRS and non-TRS patients) taking into account psychopathological symptoms and antipsychotic treatment. The following cognitive tests were administered to 53 TRS patients and 32 non-TRS subjects: Rey Auditory Verbal Learning Test (RAVLT), Trail Making Tests (TMT-A and TMT-B), verbal fluency tests (FAS test and Supermarket), as well as selected Wechsler Adults Intelligence Scale (WAIS-R-PI) subtests: Digit Symbol Coding Test, Digit Span Forward and Backward and Similarities. TRS patients performed significantly worse in comparison with non-TRS patients on the measures of processing speed (TMT-A, Stroop test, FAS test, Supermarket test, Digit Symbol Coding test), verbal fluency (FAS test, Supermarket test), cognitive flexibility and executive functions (Stroop test) after controlling for age, illness duration, clinical symptoms severity, the number of years of completed education and antipsychotics' dose. Cognitive performance was associated with negative and general symptomatology. Anticholinergic activity of antipsychotics had debilitating effect on cognitive functioning in non-TRS patients (FAS test) and in TRS patients (TMT-B test, Stroop test, RAVLT subtests, Digit Coding test and Similarities test), while low anticholinergic activity of antipsychotics was associated with better cognitive performance in non-TRS patients (Backward Digit Span test) and in TRS patients (Similarities test). Results of this study indicate that cognitive deficits are more robust in TRS patients than in non-TRS subjects, and are associated with clinical symptoms as well as the treatment with antipsychotics that exert high anticholinergic activity.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland.
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Piotr Gościmski
- Lower Silesian Centre of Mental Health, 18 Conrad Korzeniowski Street, 50-226 Wroclaw, Poland
| | - Andrzej Kiejna
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland; Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland
| |
Collapse
|
12
|
Costa FLPD, Monteiro LDS, Binda NS, Gomez MV, Gomez RS. Effect of Propofol on the Release of [3H] Acetylcholine from Rat Hippocampal Synaptosomes. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.494.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Lu Y, Xu S, He M, Chen C, Zhang L, Liu C, Chu F, Yu Z, Zhou Z, Zhong M. Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure. Physiol Behav 2012; 106:631-7. [PMID: 22564535 DOI: 10.1016/j.physbeh.2012.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/27/2012] [Accepted: 04/19/2012] [Indexed: 11/19/2022]
Abstract
Extensive evidence indicates that glucose administration attenuates memory deficits in rodents and humans, and cognitive impairment has been associated with reduced glucose metabolism and uptake in certain brain regions including the hippocampus. In the present study, we investigated whether glucose treatment attenuated memory deficits caused by chronic low-power-density microwave (MW) exposure, and the effect of MW exposure on hippocampal glucose uptake. We exposed Wistar rats to 2.45 GHz pulsed MW irradiation at a power density of 1 mW/cm(2) for 3 h/day, for up to 30 days. MW exposure induced spatial learning and memory impairments in rats. Hippocampal glucose uptake was also reduced by MW exposure in the absence or presence of insulin, but the levels of blood glucose and insulin were not affected. However, these spatial memory deficits were reversed by systemic glucose treatment. Our results indicate that glucose administration attenuates the spatial memory deficits induced by chronic low-power-density MW exposure, and reduced hippocampal glucose uptake may be associated with cognitive impairment caused by MW exposure.
Collapse
Affiliation(s)
- Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schäble S, Huston JP, Barros M, Tomaz C, de Souza Silva MA. The NK3 receptor agonist senktide ameliorates scopolamine-induced deficits in memory for object, place and temporal order. Neurobiol Learn Mem 2012; 97:235-40. [DOI: 10.1016/j.nlm.2011.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 12/12/2022]
|
15
|
Jinno S. Structural organization of long-range GABAergic projection system of the hippocampus. Front Neuroanat 2009; 3:13. [PMID: 19649167 PMCID: PMC2718779 DOI: 10.3389/neuro.05.013.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/03/2009] [Indexed: 01/17/2023] Open
Abstract
GABA is a key mediator of neural activity in the mammalian central nervous system, and a diverse set of GABAergic neurons utilize GABA as a transmitter. It has been widely accepted that GABAergic neurons typically serve as interneurons while glutamatergic principal cells send excitatory signals to remote areas. In general, glutamatergic projection neurons monosynaptically innervate both principal cells and local GABAergic interneurons in each target area, and these GABAergic cells play a vital role in modulation of the activity of principal cells. The formation and recall of sensory, motor and cognitive representations require coordinated fast communication among multiple areas of the cerebral cortex, which are thought to be mostly mediated by glutamatergic neurons. However, there is an increasing body of evidence showing that specific subpopulations of cortical GABAergic neurons send long-range axonal projections to subcortical and other cortical areas. In particular, a variety of GABAergic neurons in the hippocampus project to neighboring and remote areas. Using anatomical, molecular and electrophysiological approaches, several types of GABAergic projection neurons have been shown to exist in the hippocampus. The target areas of these cells are the subiculum and other retrohippocampal areas, the medial septum and the contralateral dentate gyrus. The long-range GABAergic projection system of the hippocampus may serve to coordinate precisely the multiple activity patterns of widespread cortical cell assemblies in different brain states and among multiple functionally related areas.
Collapse
Affiliation(s)
- Shozo Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
16
|
Krebs-Kraft DL, Rauw G, Baker GB, Parent MB. Zero net flux estimates of septal extracellular glucose levels and the effects of glucose on septal extracellular GABA levels. Eur J Pharmacol 2009; 611:44-52. [PMID: 19345207 PMCID: PMC2866298 DOI: 10.1016/j.ejphar.2009.03.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 11/21/2022]
Abstract
Although hippocampal infusions of glucose enhance memory, we have found repeatedly that septal glucose infusions impair memory when gamma-aminobutyric acid (GABA) receptors are activated. For instance, hippocampal glucose infusions reverse the memory-impairing effects of co-infusions of the GABA agonist muscimol, whereas septal glucose infusions exacerbate memory deficits produced by muscimol. One potential explanation for these deleterious effects of glucose in the septum is that there are higher levels of endogenous extracellular fluid glucose concentrations in the septum than in the hippocampus. Another hypothesis is that septal glucose infusions impair memory by increasing septal GABA synthesis or release, which is possible because elevating glucose increases GABA levels in other brain regions. To test these hypotheses, Experiment 1 quantified extracellular fluid glucose levels in the septum and hippocampus using zero net flux in vivo microdialysis procedures in conscious, freely moving rats. Experiment 2 determined whether septal infusions of glucose would increase GABA concentrations in dialysates obtained from the septum. The results of Experiment 1 indicated that extracellular fluid glucose levels in the hippocampus and septum are comparable. The results of Experiment 2 showed that co-infusions of glucose with muscimol, at doses that did not affect memory on their own, decreased percent alternation memory scores. However, none of the infusions significantly affected GABA levels. Collectively, these findings suggest that the memory-impairing effects of septal infusions of glucose are not likely due to regional differences in basal extracellular fluid glucose concentrations and are not mediated via an increase in septal GABA release.
Collapse
|
17
|
Krebs-Kraft DL, Parent MB. Hippocampal infusions of glucose reverse memory deficits produced by co-infusions of a GABA receptor agonist. Neurobiol Learn Mem 2007; 89:142-52. [PMID: 17728160 PMCID: PMC2259438 DOI: 10.1016/j.nlm.2007.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/11/2007] [Accepted: 07/15/2007] [Indexed: 11/30/2022]
Abstract
Although septal infusions of glucose typically have positive effects on memory, we have shown repeatedly that this treatment exacerbates memory deficits produced by co-infusions of gamma-aminobutyric acid (GABA) receptor agonists. The present experiments tested whether this negative interaction between glucose and GABA in the medial septum would be observed in the hippocampus, a brain region where glucose typically has positive effects on memory. Specifically, we determined whether hippocampal infusions of glucose would reverse or exacerbate memory deficits produced by hippocampal co-infusions of the GABA receptor agonist muscimol. Fifteen minutes prior to either assessing spontaneous alternation (SA) or continuous multiple trial inhibitory avoidance (CMIA) training, male Sprague-Dawley-derived rats were given bilateral hippocampal infusions of vehicle (phosphate-buffered saline [PBS], 1 microl/2 min), glucose (33 or 50 nmol), muscimol (0.3 or 0.4 microg, SA or 3 microg, CMIA) or muscimol and glucose combined in one solution. The results indicated that hippocampal infusions of muscimol alone decreased SA scores and CMIA retention latencies. More importantly, hippocampal infusions of glucose, at doses that had no effect when infused alone, attenuated (33 nmol) or reversed (50 nmol) the muscimol-induced memory deficits. Thus, although co-infusions of glucose with muscimol into the medial septum impair memory, the present findings show that an opposite effect is observed in the hippocampus. Collectively, these findings suggest that the memory-impairing interaction between glucose and GABA in the medial septum is not a general property of the brain, but rather is brain region-dependent.
Collapse
Affiliation(s)
- Desiree L Krebs-Kraft
- Department of Psychology and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5010, Atlanta, GA 30302-5010, USA.
| | | |
Collapse
|