1
|
Kagan D, Hollings J, Batabyal A, Lukowiak K. Five-minute exposure to a novel appetitive food substance is sufficient time for a microRNA-dependent long-term memory to form. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:83-90. [PMID: 37382606 DOI: 10.1007/s00359-023-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The Garcia effect is a unique form of conditioned taste aversion which requires that a novel food stimulus be followed sometime later by a sickness state associated with the novel food stimulus. The long-lasting associative memory resulting from the Garcia effect ensures that organisms avoid toxic foods in their environment. Considering its ecological relevance, we sought to investigate whether a brief encounter (5 min) with a novel, appetitive food stimulus can cause a persisting long-term memory (LTM) to form that would in turn block the Garcia effect in Lymnaea stagnalis. Furthermore, we wanted to explore whether that persisting LTM could be modified by the alteration of microRNAs via an injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated microRNA biogenesis. The Garcia effect procedure involved two observations of feeding behavior in carrot separated by a heat stress (30 °C for 1 h). Exposing snails to carrot for 5 min caused a LTM to form and persist for 1 week, effectively preventing the Garcia effect in snails. In contrast, PLL injection following the 5-min carrot exposure impaired LTM formation, allowing the Garcia effect to occur. These results provide more insight into LTM formation and the Garcia effect, an important survival mechanism.
Collapse
Affiliation(s)
- Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Jasper Hollings
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
2
|
Jardine KH, Huff AE, Wideman CE, McGraw SD, Winters BD. The evidence for and against reactivation-induced memory updating in humans and nonhuman animals. Neurosci Biobehav Rev 2022; 136:104598. [PMID: 35247380 DOI: 10.1016/j.neubiorev.2022.104598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
Systematic investigation of reactivation-induced memory updating began in the 1960s, and a wave of research in this area followed the seminal articulation of "reconsolidation" theory in the early 2000s. Myriad studies indicate that memory reactivation can cause previously consolidated memories to become labile and sensitive to weakening, strengthening, or other forms of modification. However, from its nascent period to the present, the field has been beset by inconsistencies in researchers' abilities to replicate seemingly established effects. Here we review these many studies, synthesizing the human and nonhuman animal literature, and suggest that these failures-to-replicate reflect a highly complex and delicately balanced memory modification system, the substrates of which must be finely tuned to enable adaptive memory updating while limiting maladaptive, inaccurate modifications. A systematic approach to the entire body of evidence, integrating positive and null findings, will yield a comprehensive understanding of the complex and dynamic nature of long-term memory storage and the potential for harnessing modification processes to treat mental disorders driven by pervasive maladaptive memories.
Collapse
Affiliation(s)
- Kristen H Jardine
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - A Ethan Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Shelby D McGraw
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Rivi V, Benatti C, Lukowiak K, Colliva C, Alboni S, Tascedda F, Blom JM. What can we teach Lymnaea and what can Lymnaea teach us? Biol Rev Camb Philos Soc 2021; 96:1590-1602. [PMID: 33821539 PMCID: PMC9545797 DOI: 10.1111/brv.12716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023]
Abstract
This review describes the advantages of adopting a molluscan complementary model, the freshwater snail Lymnaea stagnalis, to study the neural basis of learning and memory in appetitive and avoidance classical conditioning; as well as operant conditioning of its aerial respiratory and escape behaviour. We firstly explored 'what we can teach Lymnaea' by discussing a variety of sensitive, solid, easily reproducible and simple behavioural tests that have been used to uncover the memory abilities of this model system. Answering this question will allow us to open new frontiers in neuroscience and behavioural research to enhance our understanding of how the nervous system mediates learning and memory. In fact, from a translational perspective, Lymnaea and its nervous system can help to understand the neural transformation pathways from behavioural output to sensory coding in more complex systems like the mammalian brain. Moving on to the second question: 'what can Lymnaea teach us?', it is now known that Lymnaea shares important associative learning characteristics with vertebrates, including stimulus generalization, generalization of extinction and discriminative learning, opening the possibility to use snails as animal models for neuroscience translational research.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Cristina Benatti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of Calgary3330 Hospital Dr NWCalgaryABT2N 4N1Canada
| | - Chiara Colliva
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Silvia Alboni
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Fabio Tascedda
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- CIB, Consorzio Interuniversitario BiotecnologieTriesteItaly
| | - Johanna M.C. Blom
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| |
Collapse
|
4
|
Rivi V, Batabyal A, Juego K, Kakadiya M, Benatti C, Blom JMC, Lukowiak K. To eat or not to eat: a Garcia effect in pond snails (Lymnaea stagnalis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:479-495. [PMID: 34052874 DOI: 10.1007/s00359-021-01491-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
Taste aversion learning is universal. In animals, a single presentation of a novel food substance followed hours later by visceral illness causes animals to avoid that taste. This is known as bait-shyness or the Garcia effect. Humans demonstrate this by avoiding a certain food following the development of nausea after ingesting that food ('Sauce Bearnaise effect'). Here, we show that the pond snail Lymnaea stagnalis is capable of the Garcia effect. A single 'pairing' of a novel taste, a carrot slurry followed hours later by a heat shock stressor (HS) is sufficient to suppress feeding response elicited by carrot for at least 24 h. Other food tastes are not suppressed. If snails had previously been exposed to carrot as their food source, the Garcia-like effect does not occur when carrot is 'paired' with the HS. The HS up-regulates two heat shock proteins (HSPs), HSP70 and HSP40. Blocking the up-regulation of the HSPs by a flavonoid, quercetin, before the heat shock, prevented the Garcia effect in the snails. Finally, we found that snails exhibit Garcia effect following a period of food deprivation but the long-term memory (LTM) phenotype can be observed only if the animals are tested in a food satiated state.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Karla Juego
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mili Kakadiya
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
5
|
Deryabina IB, Andrianov VV, Muranova LN, Bogodvid TK, Gainutdinov KL. Effects of Thryptophan Hydroxylase Blockade by P-Chlorophenylalanine on Contextual Memory Reconsolidation after Training of Different Intensity. Int J Mol Sci 2020; 21:E2087. [PMID: 32197439 PMCID: PMC7139692 DOI: 10.3390/ijms21062087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
The processes of memory formation and its storage are extremely dynamic. Therefore, the determination of the nature and temporal evolution of the changes that underlie the molecular mechanisms of retrieval and cause reconsolidation of memory is the key to understanding memory formation. Retrieval induces the plasticity, which may result in reconsolidation of the original memory and needs critical molecular events to stabilize the memory or its extinction. 4-Chloro-DL-phenylalanine (P-chlorophenylalanine-PCPA) depresses the most limiting enzyme of serotonin synthesis the tryptophan hydroxylase. It is known that PCPA reduces the serotonin content in the brain up to 10 times in rats (see Methods). We hypothesized that the PCPA could behave the similar way in snails and could reduce the content of serotonin in snails. Therefore, we investigated the effect of PCPA injection on contextual memory reconsolidation using a protein synthesis blocker in snails after training according to two protocols of different intensities. The results obtained in training according to the first protocol using five electrical stimuli per day for 5 days showed that reminding the training environment against the background of injection of PCPA led to a significant decrease in contextual memory. At the same time, the results obtained in training according to the second protocol using three electrical stimuli per day for 5 days showed that reminding the training environment against the injection of PCPA did not result in a significant change in contextual memory. The obtain results allowed us to conclude that the mechanisms of processes developed during the reconsolidation of contextual memory after a reminding depend both on the intensity of learning and on the state of the serotonergic system.
Collapse
Affiliation(s)
- Irina B. Deryabina
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
| | - Viatcheslav V. Andrianov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia
| | - Lyudmila N. Muranova
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
| | - Tatiana K. Bogodvid
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Department of Biomedical Sciences, Volga Region State Academy of Physical Culture, Sport and Tourism, 420000 Kazan, Russia
| | - Khalil L. Gainutdinov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia
| |
Collapse
|
6
|
Gonzalez H, Bloise L, Maza FJ, Molina VA, Delorenzi A. Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Res Bull 2020; 157:108-118. [PMID: 32017969 DOI: 10.1016/j.brainresbull.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories. However, several pieces of evidence in rodents show that either robust fear memories or stressful events applied before acquisition promote reconsolidation-resistant memories, i.e., memories that are resistant to the interfering effect of drugs on memory reconsolidation. Conceivably, the generation of these reconsolidation-resistant fear memories also occurs in humans. Is the induction of reconsolidation-resistant memories part of the dynamics of memory processes conserved throughout evolution? In the semiterrestrial crab Neohelice granulata, memory reconsolidation is triggered by a short reminder without reinforcement. Here, we show that an increase in the salience of the aversive stimulus augmented the memory strength; nonetheless, the protein synthesis inhibitor cycloheximide still disrupted the reconsolidation process. However, crabs stressed by a water-deprivation episode before a strong training session built up a memory that was now reconsolidation-resistant. We tested whether these reconsolidation-resistant effects can be challenged by changing parametric conditions of memory-reminder sessions; multiple memory reactivations without reinforcement were not able to trigger the labilization-reconsolidation of this resistant memory. Overall, the present findings suggest that generation of reconsolidation-resistant memories can be another part of the dynamics of memory processes conserved throughout evolution that protects privileged information from change.
Collapse
Affiliation(s)
- Heidi Gonzalez
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Leonardo Bloise
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Francisco J Maza
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Víctor A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - Alejandro Delorenzi
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
7
|
Swinton C, Swinton E, Shymansky T, Hughes E, Zhang J, Kakadiya CRM, Lukowiak K. Configural learning: a higher form of learning in Lymnaea. J Exp Biol 2019; 222:jeb.190405. [DOI: 10.1242/jeb.190405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
Events typically occur in a specific context and the ability to assign importance to this occurrence plays a significant role in memory formation and recall. When the scent of a crayfish predator (CE) is encountered in Lymnaea strains known to be predator-experienced (e.g. the W-strain), enhancement of memory formation and depression of feeding occurs, which are part of a suite of anti-predator behaviours. We hypothesized that Lymnaea possess a form of higher-order conditioning, namely configural learning. We tested this by simultaneously exposing W-strain Lymnaea to a carrot food-odour (CO) and predator scent (CE). Two hours later we operantly conditioned these snails with a single 0.5h training session in CO to determine whether training in CO results in long-term memory (LTM). In W-strain snails two 0.5h training sessions are required to cause LTM formation. A series of control experiments followed and demonstrated that only the CO+CE snails trained in CO had acquired enhanced memory forming ability. Additionally, following CE+CO pairing, CO no longer elicited an increased feeding response. Hence, snails have the ability to undergo configural learning. Following configural learning, CO becomes risk-signaling and evokes behavioural responses phenotypically similar to those elicited by exposure to CE.
Collapse
Affiliation(s)
- Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jack Zhang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Deryabina IB, Muranova LN, Andrianov VV, Gainutdinov KL. Impairing of Serotonin Synthesis by P-Chlorphenylanine Prevents the Forgetting of Contextual Memory After Reminder and the Protein Synthesis Inhibition. Front Pharmacol 2018; 9:607. [PMID: 29946257 PMCID: PMC6005873 DOI: 10.3389/fphar.2018.00607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
HIGHLIGHTSThe injection of p-chlorophenylalanine, specific blocker of 5-HT synthesis 3 days before reminder with anisomycin administration prevented forgetting.
It is known that the reminder cause reactivation of the long-term memory and it leads to reconsolidation of memory. We showed earlier that the disruption of the reconsolidation of contextual memory in terrestrial snail was caused by anisomycin, the inhibitor of protein syntheses (Gainutdinova et al., 2005; Balaban et al., 2014). In this paper we investigated the possible changes of the memory reconsolidation under the conditions of serotonin deficit, caused by administration of p-chlorophenylalanine, the inhibitor of tryptophan hydroxylase synthesis (intermediate stage of the synthesis of serotonin). It was shown that the forgetting process for contextual memory after reminder and inhibition of protein synthesis did not occur if the serotonin transmission in nervous system was impaired. This effect was significantly different from the direct action of anisomycin, which blocked the reconsolidation of contextual memory. We concluded that the serotonin system was included to the process of memory reconsolidation.
Collapse
Affiliation(s)
- Irina B Deryabina
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lyudmila N Muranova
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Vyatcheslav V Andrianov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Khalil L Gainutdinov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
9
|
Abstract
Scientific advances in the last decades uncovered that memory is not a stable, fixed entity. Apparently stable memories may become transiently labile and susceptible to modifications when retrieved due to the process of reconsolidation. Here, we review the initial evidence and the logic on which reconsolidation theory is based, the wide range of conditions in which it has been reported and recent findings further revealing the fascinating nature of this process. Special focus is given to conceptual issues of when and why reconsolidation happen and its possible outcomes. Last, we discuss the potential clinical implications of memory modifications by reconsolidation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill University, Montreal, Canada
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Canada.
| |
Collapse
|
10
|
Larrosa PNF, Ojea A, Ojea I, Molina VA, Zorrilla-Zubilete MA, Delorenzi A. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation. Neurobiol Learn Mem 2017; 142:135-145. [PMID: 28285131 DOI: 10.1016/j.nlm.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/25/2022]
Abstract
Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term.
Collapse
Affiliation(s)
- Pablo Nicolás Fernández Larrosa
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Alejandro Ojea
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Ignacio Ojea
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Inst. de Investigaciones Matemáticas "Luis A. Santalo ́", CONICET-UBA, Argentina.
| | - Victor Alejandro Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - María Aurelia Zorrilla-Zubilete
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO - CONICET), Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | - Alejandro Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
11
|
Sunada H, Lukowiak K, Ito E. Cerebral Giant Cells are Necessary for the Formation and Recall of Memory of Conditioned Taste Aversion inLymnaea. Zoolog Sci 2017; 34:72-80. [DOI: 10.2108/zs160152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Aonuma H, Kaneda M, Hatakeyama D, Watanabe T, Lukowiak K, Ito E. Relationship between the grades of a learned aversive-feeding response and the dopamine contents in Lymnaea. Biol Open 2016; 5:1869-1873. [PMID: 27815244 PMCID: PMC5200912 DOI: 10.1242/bio.021634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pond snail Lymnaea learns conditioned taste aversion (CTA) and remembers not to respond to food substances that initially cause a feeding response. The possible relationship between how well snails learn to follow taste-aversion training and brain dopamine contents is not known. We examined this relationship and found the following: first, snails in the act of eating just before the commencement of CTA training were poor learners and had the highest dopamine contents in the brain; second, snails which had an ad libitum access to food, but were not eating just before training, were average learners and had lower dopamine contents; third, snails food-deprived for one day before training were the best learners and had significantly lower contents of dopamine compared to the previous two cohorts. There was a negative correlation between the CTA grades and the brain dopamine contents in these three cohorts. Fourth, snails food-deprived for five days before training were poor learners and had higher dopamine contents. Thus, severe hunger increased the dopamine content in the brain. Because dopamine functions as a reward transmitter, CTA in the severely deprived snails (i.e. the fourth cohort) was thought to be mitigated by a high dopamine content.
Collapse
Affiliation(s)
- Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0811, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Mugiho Kaneda
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Dai Hatakeyama
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0811, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
Qualitatively different memory states in Lymnaea as shown by differential responses to propranolol. Neurobiol Learn Mem 2016; 136:63-73. [DOI: 10.1016/j.nlm.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
|
14
|
Knezevic B, Komatsuzaki Y, de Freitas E, Lukowiak K. A flavanoid component of chocolate quickly reverses an imposed memory deficit. ACTA ACUST UNITED AC 2016; 219:816-23. [PMID: 26823103 DOI: 10.1242/jeb.130765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/30/2015] [Indexed: 01/27/2023]
Abstract
The ability to remember is influenced by environmental and lifestyle factors, such as stress and diet. A flavanol contained in chocolate, epicatechin (Epi), has been shown to enhance long-term memory (LTM) formation in Lymnaea. Combining two stressors (low-calcium pond water and crowding) blocks learning and all forms of memory; that is, this combination of environmentally relevant stressors creates a memory-unfriendly state. We tested the hypothesis that Epi will immediately reverse the memory-unfriendly state, i.e. that snails in the memory-deficit state when trained in Epi will immediately become competent to learn and form memory. We found that Epi not only reverses the memory-deficit state but also further enhances LTM formation. Thus, a naturally occurring bioactive plant compound can overcome a memory-unfriendly state. This supports the idea that bioactive substances may mitigate memory-making deficits that, for example, occur with ageing.
Collapse
Affiliation(s)
- Bogdan Knezevic
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Yoshimasa Komatsuzaki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Emily de Freitas
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
15
|
Dodd SX, Lukowiak K. Sequential exposure to a combination of stressors blocks memory reconsolidation in Lymnaea. J Exp Biol 2015; 218:923-30. [PMID: 25617463 DOI: 10.1242/jeb.114876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Stress alters the formation of long-term memory (LTM) in Lymnaea. When snails are exposed to more than one stressor, however, how the memory is altered becomes complicated. Here, we investigated how multiple stressors applied in a specific pattern affect an aspect of memory not often studied in regards to stress - reconsolidation. We hypothesized that the application of a sequence of stressors would block the reconsolidation process. Reconsolidation occurs following activation of a previously formed memory. Sequential crowding and handling were used as the stressors to block reconsolidation. When the two stressors were sequentially presented immediately following memory activation, reconsolidation was blocked. However, if the sequential presentation of the stressors was delayed for 1 h after memory activation, reconsolidation was not blocked. That is, LTM was observed. Finally, presentation of either stressor alone did not block reconsolidation. Thus, stressors can block reconsolidation, which may be preferable to pharmacological manipulations.
Collapse
Affiliation(s)
- Shawn Xavier Dodd
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
16
|
Lukowiak K, Sunada H, Teskey M, Lukowiak K, Dalesman S. Environmentally relevant stressors alter memory formation in the pond snail Lymnaea. J Exp Biol 2014; 217:76-83. [DOI: 10.1242/jeb.089441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stress alters adaptive behaviours such as learning and memory. Stressors can either enhance or diminish learning, memory formation and/or memory recall. We focus attention here on how environmentally relevant stressors alter learning, memory and forgetting in the pond snail, Lymnaea stagnalis. Operant conditioning of aerial respiration causes associative learning that may lead to long-term memory (LTM) formation. However, individual ecologically relevant stressors, combinations of stressors, and bio-active substances can alter whether or not learning occurs or memory forms. While the behavioural memory phenotype may be similar as a result of exposure to different stressors, how each stressor alters memory formation may occur differently. In addition, when a combination of stressors are presented it is difficult to predict ahead of time what the outcome will be regarding memory formation. Thus, how combinations of stressors act is an emergent property of how the snail perceives the stressors.
Collapse
Affiliation(s)
- Ken Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Morgan Teskey
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Kai Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Sarah Dalesman
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
17
|
Spencer G, Rothwell C. Behavioural and network plasticity following conditioning of the aerial respiratory response of a pulmonate mollusc. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most molluscs perform respiration using gills, but the pulmonate molluscs have developed a primitive lung with which they perform pulmonary respiration. The flow of air into this lung occurs through an opening called the pneumostome, and pulmonate molluscs travel to the surface of the water to obtain oxygen from the surrounding atmosphere. The aerial respiratory behaviour of the pulmonate mollusc, the great pond snail (Lymnaea stagnalis (L., 1758)), has been well studied, and a three-neuron central pattern generator (CPG) controlling this rhythmic behaviour has been identified. The aerial respiratory behaviour of L. stagnalis can be operantly conditioned and plasticity within the CPG has been associated with the conditioned response. In this review, we describe both the aerial respiratory behaviour and the underlying neuronal network of this pulmonate mollusc, and then discuss both the behavioural and network plasticity that results from the conditioning of this behaviour.
Collapse
Affiliation(s)
- G.E. Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| | - C.M. Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
18
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
19
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
20
|
Winters BD, Tucci MC, Jacklin DL, Reid JM, Newsome J. On the dynamic nature of the engram: evidence for circuit-level reorganization of object memory traces following reactivation. J Neurosci 2011; 31:17719-28. [PMID: 22131432 PMCID: PMC6623795 DOI: 10.1523/jneurosci.2968-11.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/02/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022] Open
Abstract
Research has implicated the perirhinal cortex (PRh) in several aspects of object recognition memory. The specific role of the hippocampus (HPC) remains controversial, but its involvement in object recognition may pertain to processing contextual information in relation to objects rather than object representation per se. Here we investigated the roles of the PRh and HPC in object memory reconsolidation using the spontaneous object recognition task for rats. Intra-PRh infusions of the protein synthesis inhibitor anisomycin immediately following memory reactivation prevented object memory reconsolidation. Similar deficits were observed when a novel object or a salient contextual change was introduced during the reactivation phase. Intra-HPC infusions of anisomycin, however, blocked object memory reconsolidation only when a contextual change was introduced during reactivation. Moreover, disrupting functional interaction between the HPC and PRh by infusing anisomycin unilaterally into each structure in opposite hemispheres also impaired reconsolidation when reactivation was done in an altered context. These results show for the first time that the PRh is critical for reconsolidation of object memory traces and provide insight into the dynamic process of object memory storage; the selective requirement for hippocampal involvement following reactivation in an altered context suggests a substantial circuit level object trace reorganization whereby an initially PRh-dependent object memory becomes reliant on both the HPC and PRh and their interaction. Such trace reorganization may play a central role in reconsolidation-mediated memory updating and could represent an important aspect of lingering consolidation processes proposed to underlie long-term memory modulation and stabilization.
Collapse
Affiliation(s)
- Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | |
Collapse
|
21
|
Braun MH, Lukowiak K, Karnik V, Lukowiak K. Differences in neuronal activity explain differences in memory forming abilities of different populations of Lymnaea stagnalis. Neurobiol Learn Mem 2011; 97:173-82. [PMID: 22146779 DOI: 10.1016/j.nlm.2011.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022]
Abstract
The ability to learn and form long-term memory (LTM) can enhance an animal's fitness, for example, by allowing them to remember predators, food sources or conspecific interactions. Here we use the pond snail, Lymnaea stagnalis, to assess whether variability between natural populations (i.e., strains) in memory forming capabilities correlates with electrophysiological properties at the level of a single neuron, RPeD1. RPeD1 is a necessary site of LTM formation of aerial respiratory behaviour following operant conditioning. We used strains from two small, separate permanent ponds (TC1 and TC2). A comparison of the two populations showed that the TC1 strain had enhanced memory forming capabilities. Further, the behavioural phenotype of enhanced memory strain was explained, in part, by differences in the electrophysiology of RPeD1. Compared to RPeD1 from the naive TC2 strain, RPeD1 from the TC1 strain has both a decreased resistance and decreased excitability. Moreover, 24h after a single 0.5h training session, those membrane properties, as well as the firing and bursting rate, decrease further in the TC1 strain but not in the TC2 strain. The initial differences in RPeD1 properties in the TC1 strain coupled with their ability to further change these properties with a single training session suggests that RPeD1 neurons from the TC1 strain are "primed" to rapidly form memory.
Collapse
Affiliation(s)
- Marvin H Braun
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | |
Collapse
|
22
|
Smal L, Suárez LD, Delorenzi A. Enhancement of long-term memory expression by a single trial during consolidation. Neurosci Lett 2011; 487:36-40. [DOI: 10.1016/j.neulet.2010.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/24/2010] [Accepted: 09/25/2010] [Indexed: 11/26/2022]
|
23
|
Orr MV, Hittel K, Lukowiak K. Predator detection enables juvenile Lymnaea to form long-term memory. ACTA ACUST UNITED AC 2010; 213:301-7. [PMID: 20038665 DOI: 10.1242/jeb.032110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Learning and memory provide the flexibility an organism requires to respond to changing social and ecological conditions. Juvenile Lymnaea have previously been shown to have a diminished capacity to form long-term memory (LTM) following operant conditioning of aerial respiratory behavior. Juvenile Lymnaea, however, can form LTM following classical conditioning of appetitive behaviors. Here, we demonstrate that laboratory-reared juvenile Lymnaea have the ability to detect the presence of a sympatric predator (i.e. crayfish) and respond to the predator by altering their aerial respiratory behavior. In addition to increasing their total breathing time, predator detection confers on juvenile Lymnaea an enhanced capability to form LTM following operant conditioning of aerial respiratory behavior. That is, these juveniles now have the ability to form long-lasting memory. These data support the hypothesis that biologically relevant levels of stress associated with predator detection induce behavioral phenotypic alterations (i.e. enhanced LTM formation) in juveniles, which may increase their fitness. These data also support the notion that learning and memory formation in conjunction with predator detection is a form of inducible defense.
Collapse
Affiliation(s)
- M V Orr
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | | | | |
Collapse
|
24
|
Winters BD, Tucci MC, DaCosta-Furtado M. Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learn Mem 2009; 16:545-53. [DOI: 10.1101/lm.1509909] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Lukowiak K, Martens K, Rosenegger D, Browning K, de Caigny P, Orr M. The perception of stress alters adaptive behaviours in Lymnaea stagnalis. ACTA ACUST UNITED AC 2008; 211:1747-56. [PMID: 18490390 DOI: 10.1242/jeb.014886] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stress can alter adaptive behaviours, and as well either enhance or diminish learning, memory formation and/or memory recall. We show here that two different stressors have the ability to alter such behaviours in our model system, Lymnaea stagnalis. One, a naturally occurring stressor - the scent of a predator (crayfish) - and the other an artificially controlled one - 25 mmol l(-1) KCl - significantly alter adaptive behaviours. Both the KCl stressor and predator detection enhance long-term memory (LTM) formation; additionally predator detection alters vigilance behaviours. The predator-induced changes in behaviour are also accompanied by specific and significant alterations in the electrophysiological properties of RPeD1 - a key neuron in mediating both vigilance behaviours and memory formation. Naive lab-bred snails exposed to crayfish effluent (CE; i.e. the scent of the predator) prior to recording from RPeD1 demonstrated both a significantly reduced spontaneous firing rate and fewer bouts of bursting activity compared with non-exposed snails. Importantly, in the CE experiments we used laboratory-reared snails that have not been exposed to a naturally occurring predator for over 250 generations. These data open a new avenue of research, which may allow a direct investigation from the behavioral to the neuronal level as to how relevant stressful stimuli alter adaptive behaviours, including memory formation and recall.
Collapse
Affiliation(s)
- Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Intrahippocampal anisomycin infusions disrupt previously consolidated spatial memory only when memory is updated. Neurobiol Learn Mem 2008; 89:352-9. [DOI: 10.1016/j.nlm.2007.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/08/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
|
27
|
Flint RW, Valentine S, Papandrea D. Reconsolidation of a long-term spatial memory is impaired by cycloheximide when reactivated with a contextual latent learning trial in male and female rats. Neuroscience 2007; 148:833-44. [PMID: 17766047 DOI: 10.1016/j.neuroscience.2007.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/06/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
Reconsolidation of long-term memory has become a topic of great interest in recent years, and has the potential to provide important information regarding memory processes and the treatment of memory-related disorders. The present study examined the role of systemic protein synthesis inhibition in reconsolidation of a long-term spatial memory reactivated by a contextual latent learning trial in male and female rats. Using the Morris water maze, we demonstrate that: 1) a contextual latent reactivation treatment enhances memory, 2) systemic protein synthesis inhibition selectively impairs test performance when administered in conjunction with a memory reactivation treatment, and 3) that these effects are more pronounced in female rats. These findings indicate a role for protein synthesis in the reconsolidation of a contextually reactivated long-term spatial memory using the water maze, and a potential differential effect of sex in this apparatus. The role of the strength of the memory trace is discussed and the relevance of these findings to theories of reconsolidation and therapeutic treatment of post-traumatic stress disorder is discussed.
Collapse
Affiliation(s)
- R W Flint
- Department of Psychology, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203-1490, USA.
| | | | | |
Collapse
|