1
|
Trauma-like exposure alters neuronal apoptosis, Bin1, Fkbp5 and NR2B expression in an amyloid-beta (1-42) rat model of Alzheimer's disease. Neurobiol Learn Mem 2022; 190:107611. [DOI: 10.1016/j.nlm.2022.107611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
|
2
|
Faborode OS, Dalle E, Mabandla MV. Inescapable footshocks induce molecular changes in the prefrontal cortex of rats in an amyloid-beta-42 model of Alzheimer's disease. Behav Brain Res 2022; 419:113679. [PMID: 34826515 DOI: 10.1016/j.bbr.2021.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) affects several brain areas, including the prefrontal cortex (PFC) involved in execution, working memory, and fear extinction. Despite these critical roles, the PFC is understudied in AD pathology. People with post-traumatic stress disorder (PTSD) have twice the risk of developing AD, and the underlying mechanisms linking these two diseases are less understood. Here, we investigated the effect of footshock stress on behavioural vis-a-vis molecular changes in the PFC of an amyloid-beta (Aβ)-42 lesion rat model of AD. Trauma-like conditions were induced by exposing the animals to several footshocks. AD-like condition was induced via intra-hippocampal injection of Aβ-42 peptide. Following Aβ-42 injections, animals were tested for behavioural changes using the Open Field Test (OFT) and Y-maze test. The PFC was later harvested for neurochemical analyses. Our results showed an interactive effect of footshocks and Aβ-42 lesion on: reduced percentage alternation in the Y-maze test, suggesting memory impairment; reduced number of line crosses and time spent in the centre square of the OFT, indicating anxiogenic responses. Similarly, there was an interactive effect of footshocks and Aβ-42 lesion on: increased FK506 binding protein 51 (FKBP5) expression, which can be associated with stress-induced anxiogenic behaviours; and increased neuronal apoptosis in the PFC of the animals. In addition, footshocks, as well as Aβ-42 lesion, reduced superoxide dismutase levels and Bridging Integrator-1 (BIN1) expression in the PFC of the animals, which can be linked to the observed memory impairment. In conclusion, our findings indicate that footshocks exaggerate PFC-associated behavioural and molecular changes induced by an AD-like pathology.
Collapse
MESH Headings
- Alzheimer Disease/chemically induced
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/pharmacology
- Animals
- Anxiety/chemically induced
- Anxiety/etiology
- Anxiety/metabolism
- Anxiety/physiopathology
- Apoptosis/drug effects
- Apoptosis/physiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Electroshock
- Male
- Memory Disorders/chemically induced
- Memory Disorders/etiology
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Peptide Fragments/pharmacology
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- Rats
- Rats, Sprague-Dawley
- Stress Disorders, Post-Traumatic/chemically induced
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Tacrolimus Binding Proteins/metabolism
Collapse
Affiliation(s)
- Oluwaseun Samuel Faborode
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Ernest Dalle
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
3
|
Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N. Neuroprotective effects of brain-derived neurotrophic factor against amyloid beta 1-40-induced retinal and optic nerve damage. Eur J Neurosci 2020; 51:2394-2411. [PMID: 31883161 DOI: 10.1111/ejn.14662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) could be considered a potential neuroprotective therapy in amyloid beta (Aβ)-associated retinal and optic nerve degeneration. Hence, in this study we investigated the neuroprotective effect of BDNF against Aβ1-40-induced retinal and optic nerve injury. In this study, exposure to Aβ1-40 was associated with retinal and optic nerve injury. TUNEL staining showed significant reduction in the apoptotic cell count in the BDNF-treated group compared with Aβ1-40 group. H&E-stained retinal sections also showed a striking reduction in neuronal cells in the ganglion cell layer (GCL) of retinas fourteen days after Aβ1-40 exposure. By contrast, number of retinal cells was preserved in the retinas of BDNF-treated animals. After Aβ1-40 exposure, visible axonal swelling was observed in optic nerve sections. However, the BDNF-treated group showed fewer changes in optic nerve; axonal swelling was less frequent and less marked. In the present study, exposure to Aβ was associated with oxidative stress, whereas levels of retinal glutathione (GSH), superoxide dismutase (SOD) and catalase were significantly increased in BDNF-treated than in Aβ1-40-treated rats. Both visual object recognition tests using an open-field arena and a Morris water maze showed that BDNF improved rats' ability to recognise visual cues (objects with different shapes) after Aβ1-40 exposure, thus demonstrating that the visual performance of rats was relatively preserved following BDNF treatment. In conclusion, intravitreal treatment with BDNF prevents Aβ1-40-induced retinal cell apoptosis and axon loss in the optic nerve of rats by reducing retinal oxidative stress and restoring retinal BDNF levels.
Collapse
Affiliation(s)
- Mohd Aizuddin Mohd Lazaldin
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Igor Iezhitsa
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Research Centre for Innovative Medicines, Volgograd State Medical University, Volgograd, Russia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Nor Salmah Bakar
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N. Time- and dose-related effects of amyloid beta1-40 on retina and optic nerve morphology in rats. Int J Neurosci 2018; 128:952-965. [PMID: 29488424 DOI: 10.1080/00207454.2018.1446953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Amyloid beta (Aβ) is known to contribute to the pathophysiology of retinal neurodegenerative diseases such as glaucoma. Effects of intravitreal Aβ(1-42) on retinal and optic nerve morphology in animal models have widely been studied but not those of Aβ(1-40). Hence, we evaluated the time- and dose-related effects of intravitreal Aβ(1-40) on retinal and optic nerve morphology. Since oxidative stress and brain derived neurotrophic factor (BDNF) are associated with Aβ-induced neuronal damage, we also studied dose and time-related effects of Aβ(1-40) on retinal oxidative stress and BDNF levels. MATERIALS AND METHODS Five groups of rats were intravitreally administered with vehicle or Aβ(1-40) in doses of 1.0, 2.5, 5 and 10 nmol. Animals were sacrificed and eyes were enucleated at weeks 1, 2 and 4 post-injection. The retinae were subjected to morphometric analysis and TUNEL staining. Optic nerve sections were stained with toluidine blue and were graded for neurodegenerative effects. The estimation of BDNF and markers of oxidative stress in retina were done using ELISA technique. RESULTS AND CONCLUSIONS It was observed that intravitreal Aβ(1-40) causes significant retinal and optic nerve damage up to day 14 post-injection and there was increasing damage with increase in dose. However, on day 30 post-injection both the retinal and optic nerve morphology showed a trend towards normalization. The observations made for retinal cell apoptosis, retinal glutathione, superoxide dismutase activity and BDNF were in accordance with those of morphological changes with deterioration till day 14 and recovery by day 30 post-injection. The findings of this study may provide a guide for selection of appropriate experimental conditions for future studies.
Collapse
Affiliation(s)
- Mohd Aizuddin Mohd Lazaldin
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Igor Iezhitsa
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia.,b Research Institute of Pharmacology, Volgograd State Medical University , Volgograd , Russia
| | - Renu Agarwal
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Nor Salmah Bakar
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Puneet Agarwal
- c IMU Clinical School, International Medical University , Seremban , Malaysia
| | - Nafeeza Mohd Ismail
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| |
Collapse
|
5
|
Glucocorticoid-Induced Leucine Zipper in Central Nervous System Health and Disease. Mol Neurobiol 2016; 54:8063-8070. [PMID: 27889894 DOI: 10.1007/s12035-016-0277-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/30/2016] [Indexed: 12/31/2022]
Abstract
The central nervous system (CNS) is a large network of intercommunicating cells that function to maintain tissue health and homeostasis. Considerable evidence suggests that glucocorticoids exert both neuroprotective and neurodegenerative effects on the CNS. Glucocorticoids act by binding two related receptors in the cytoplasm, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The glucocorticoid receptor complex mediates cellular responses by transactivating target genes and by protein: protein interactions. The paradoxical effects of glucocorticoids on neuronal survival and death have been attributed to the concentration and the ratio of mineralocorticoid to glucocorticoid receptor activation. Glucocorticoid-induced leucine zipper (GILZ) is a recently identified protein transcriptionally upregulated by glucocorticoids. Constitutively, expressed in many tissues including brain, GILZ mediates many of the actions of glucocorticoids. It mimics the anti-inflammatory and anti-proliferative effects of glucocorticoids but exerts differential effects on stem cell differentiation and lineage development. Recent experimental data on the effects of GILZ following induced stress or trauma suggest potential roles in CNS diseases. Here, we provide a short overview of the role of GILZ in CNS health and discuss three potential rationales for the role of GILZ in Alzheimer's disease pathogenesis.
Collapse
|
6
|
Deibel S, Weishaupt N, Regis A, Hong N, Keeley R, Balog R, Bye C, Himmler S, Whitehead S, McDonald R. Subtle learning and memory impairment in an idiopathic rat model of Alzheimer's disease utilizing cholinergic depletions and β-amyloid. Brain Res 2016; 1646:12-24. [DOI: 10.1016/j.brainres.2016.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/02/2023]
|
7
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
8
|
Huang HJ, Chen SL, Hsieh-Li HM. Administration of NaHS Attenuates Footshock-Induced Pathologies and Emotional and Cognitive Dysfunction in Triple Transgenic Alzheimer's Mice. Front Behav Neurosci 2015; 9:312. [PMID: 26635562 PMCID: PMC4658416 DOI: 10.3389/fnbeh.2015.00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuropsychiatric symptoms. Increasing evidence indicates that environmental risk factors in young adults may accelerate cognitive loss in AD and that Hydrogen Sulfide (H2S) may represent an innovative treatment to slow the progression of AD. Therefore, the aim of this study was to evaluate the effects of NaHS, an H2S donor, in a triple transgenic AD mouse model (3×Tg-AD) under footshock with situational reminders (SRs). Inescapable footshock with SRs induced anxiety and cognitive dysfunction as well as a decrease in the levels of plasma H2S and GSH and an increase in IL-6 levels in 3×Tg-AD mice. Under footshock with SR stimulus, amyloid deposition, tau protein hyperphosphorylation, and microgliosis were highly increased in the stress-responsive brain structures, including the hippocampus and amygdala, of the AD mice. Oxidative stress, inflammatory response, and β-site APP cleaving enzyme 1 (BACE1) levels were also increased, and the level of inactivated glycogen synthase kinase-3β (GSK3β) (pSer9) was decreased in the hippocampi of AD mice subjected to footshock with SRs. Furthermore, the numbers of cholinergic neurons in the medial septum/diagonal band of Broca (MS/DB) and noradrenergic neurons in the locus coeruleus (LC) were also decreased in the 3×Tg-AD mice under footshock with SRs. These biochemical hallmarks and pathological presentations were all alleviated by the semi-acute administration of NaHS in the AD mice. Together, these findings suggest that footshock with SRs induces the impairment of spatial cognition and emotion, which involve pathological changes in the peripheral and central systems, including the hippocampus, MS/DB, LC, and BLA, and that the administration of NaHS may be a candidate strategy to ameliorate the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
9
|
Gidyk DC, Deibel SH, Hong NS, McDonald RJ. Barriers to developing a valid rodent model of Alzheimer's disease: from behavioral analysis to etiological mechanisms. Front Neurosci 2015; 9:245. [PMID: 26283893 PMCID: PMC4518326 DOI: 10.3389/fnins.2015.00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most prevalent form of age-related dementia. As such, great effort has been put forth to investigate the etiology, progression, and underlying mechanisms of the disease. Countless studies have been conducted, however, the details of this disease remain largely unknown. Rodent models provide opportunities to investigate certain aspects of AD that cannot be studied in humans. These animal models vary from study to study and have provided some insight, but no real advancements in the prevention or treatment of the disease. In this Hypothesis and Theory paper, we discuss what we perceive as barriers to impactful discovery in rodent AD research and we offer potential solutions for moving forward. Although no single model of AD is capable of providing the solution to the growing epidemic of the disease, we encourage a comprehensive approach that acknowledges the complex etiology of AD with the goal of enhancing the bidirectional translatability from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Darryl C. Gidyk
- *Correspondence: Darryl C. Gidyk, Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6W4, Canada
| | | | | | | |
Collapse
|
10
|
Dong H, Wang S, Zeng Z, Li F, Montalvo-Ortiz J, Tucker C, Akhtar S, Shi J, Meltzer HY, Rice KC, Csernansky JG. Effects of corticotrophin-releasing factor receptor 1 antagonists on amyloid-β and behavior in Tg2576 mice. Psychopharmacology (Berl) 2014; 231:4711-22. [PMID: 24862368 PMCID: PMC4233002 DOI: 10.1007/s00213-014-3629-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 05/14/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Previous studies indicate that psychosocial stressors could accelerate amyloid-β (Aβ) levels and accelerate plaque deposition in mouse models of Alzheimer disease (AD). Stressors enhanced the release of corticotrophin-releasing factor (CRF), and exogenous CRF administration mimicked the effects of stress on Aβ levels in mouse models of AD. However, whether CRF receptor 1 (CRF1) antagonists could influence the stress-induced acceleration of an AD-like process in mouse models has not been well studied. OBJECTIVE We sought to examine whether CRF1 antagonists inhibit the effects of isolation stress on tissue Aβ levels, Aβ plaque deposition, and behaviors related to anxiety and memory in Tg2576 mice, and to investigate the molecular mechanism underlying such effects. METHODS Cohorts of Tg2576 mouse pups were isolated or group-housed at 21 days of age, and then the subgroups of these cohorts received daily intraperitoneal injections of the CRF1 antagonists, antalarmin or R121919 (5, 10, and 20 mg/kg), or vehicle for 1 week. Other cohorts of Tg2576 mouse pups were isolated or group-housed at 21 days of age, and then at 4 months of age, subgroups of these mice were administered antalarmin (20 mg/kg) or vehicle in their drinking water for 6 months. Finally, cultured primary hippocampal neurons from regular Tg2576 pups (P0) were incubated with CRF (0.1, 1, and 10 nM), antalarmin (100 nM) or H-89 (1 μM) for 48 h. Brain tissues or cultured neurons were collected for histological and biochemical analyses, and behavioral measures were collected in the cohorts of mice that were chronically stressed. RESULTS Administration of antalarmin at 20 mg/kg dose for 1 week significantly reduced Aβ1-42 levels in isolation stressed mice. Administration of antalarmin for 6 months significantly decreased plasma corticosterone levels, tissue Aβ1-42 levels, and Aβ plaque deposition in the brain and blocked the effects of isolation stress on behaviors related to anxiety and memory. Finally, incubation of neurons with 100 nM antalarmin inhibited the ability of 10 nM CRF to increase Aβ1-42 levels and protein kinase A IIβ expression. The effect of CRF1 on Aβ1-42 levels was also diminished by treatment with H-89, a c-AMP/PKA inhibitor. CONCLUSIONS These results suggest that CRF1 antagonists can slow an AD-like process in Tg2576 mice and that the c-AMP/PKA signaling pathway may be involved in this effect.
Collapse
Affiliation(s)
- Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guidotti G, Calabrese F, Auletta F, Olivier J, Racagni G, Homberg J, Riva MA. Developmental influence of the serotonin transporter on the expression of npas4 and GABAergic markers: modulation by antidepressant treatment. Neuropsychopharmacology 2012; 37:746-58. [PMID: 22012473 PMCID: PMC3260971 DOI: 10.1038/npp.2011.252] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alterations of the serotonergic system are involved in the pathophysiology of mood disorders and represent an important target for its pharmacological treatment. Genetic deletion of the serotonin transporter (SERT) in rodents leads to an anxious and depressive phenotype, and is associated with reduced neuronal plasticity as indicated by decreased brain-derived neurotrophic factor (Bdnf) expression levels. One of the transcription factors regulating Bdnf is the neuronal PAS domain protein 4 (Npas4), which regulates activity-dependent genes and neuroprotection, and has a critical role in the development of GABA synapses. On the basis of these premises, we investigated the expression of Npas4 and GABAergic markers in the hippocampus and prefrontal cortex of homozygous (SERT(-/-)) and heterozygous (SERT(+/-)) knockout rats, and analyzed the effect of long-term duloxetine treatment on the expression of these targets. We found that Npas4 expression was reduced in both the brain structures of adult SERT(+/-) and SERT(-/-) animals. This effect was already present in adolescent SERT(-/-), and could be mimicked by prenatal exposure to the antidepressant fluoxetine. Moreover, SERT(-/-) rats showed a strong impairment of the GABAergic system, as indicated by the reduction of several markers, including the vesicular transporter (Vgat), glutamic acid decarboxylase-67 (Gad67), the receptor subunit GABA A receptor, gamma 2 (GABA(A)-γ2), and calcium-binding proteins that label subgroups of the GABAergic neurons. Interestingly, chronic treatment with the antidepressant duloxetine was able to restore the physiological levels of Npas4 and GABAergic markers in SERT(-/-) rats, although some differences in the modulation of GABAergic genes exist between hippocampus and prefrontal cortex. Our results demonstrate that SERT knockout rats, an animal model of mood disorders, have reduced Npas4 expression that correlates with decreased expression of Bdnf exon I and IV. These changes lead to an impairment of the GABAergic system that may contribute to the anxious and depressive phenotype associated with inherited SERT downregulation.
Collapse
Affiliation(s)
- Gianluigi Guidotti
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Francesca Auletta
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Jocelien Olivier
- Department of Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Giorgio Racagni
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Judith Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marco A Riva
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy,Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy, Tel: +39 02 50318334, Fax: +39 02 50318278, E-mail:
| |
Collapse
|
12
|
Núñez MJ, Novío S, Amigo G, Freire-Garabal M. The antioxidant potential of alprazolam on the redox status of peripheral blood leukocytes in restraint-stressed mice. Life Sci 2011; 89:650-4. [PMID: 21851827 DOI: 10.1016/j.lfs.2011.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 07/22/2011] [Accepted: 07/28/2011] [Indexed: 11/26/2022]
Abstract
AIMS Stress can cause adverse reactions in the body that induce a wide range of biochemical and behavioral changes. Oxidative damage is an established outcome of stress that has been implicated in the pathogenesis of mood and anxiety disorders. Anxiolytic drugs are widely prescribed to treat these conditions; however, no animal study has investigated the effect of benzodiazepines on the levels of intracellular reactive oxygen species (ROS) in the peripheral blood leukocytes of stressed mice. MAIN METHODS Mice were immobilized for a period of 6h. Alprazolam (0.1-0.8 mg/kg of body weight) was administered 30 min before subjecting the animals to acute stress. The level of intracellular ROS in lymphocytes, granulocytes, and monocytes in the peripheral blood of stressed mice was investigated by using a 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe. KEY FINDINGS Our results show that restraint stress significantly increases the generation of ROS in peripheral defense cells. Treatment with alprazolam partially reverses the adverse effects of stress. SIGNIFICANCE Our findings suggest that the therapeutic efficacy of alprazolam may be mediated, at least partially, by the reversal of oxidative damage as demonstrated by the protective enhancement of antioxidant status following a stress-induced decline. Because alprazolam is used for the treatment of anxiety in patients with cancer, neurodegenerative disease, inflammatory bowel diseases, and other diseases, these results may have important clinical implications.
Collapse
Affiliation(s)
- María J Núñez
- Lennart Levi Stress and Neuroimmunology Laboratory, Department of Pharmacology, School of Medicine, C/San Francisco, s/n. 15782 Santiago de Compostela, A Coruña, Spain
| | | | | | | |
Collapse
|
13
|
Ghafari M, Patil SS, Höger H, Pollak A, Lubec G. NMDA-complexes linked to spatial memory performance in the Barnes maze in CD1 mice. Behav Brain Res 2011; 221:142-8. [PMID: 21377497 DOI: 10.1016/j.bbr.2011.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
Abstract
The N-methyl-d-aspartic acid receptor (NMDAR) is a well-documented key element in the formation of several memories including spatial, olfactory and contextual memory. Although receptor subunits have been linked to memory formation, data on the involvement of the NMDAR complexes is limited. In previous work CD1 mice were trained in the Barnes maze, a low-stress landmaze, and yoked controls were serving as controls. Hippocampal samples from this behavioural study were taken for comparing NMDAR complexes. Hippocampi were taken and stored until analysis at -80 °C. Membrane proteins were extracted from hippocampi using an ultracentrifugation step and applied on Blue Native gels that in turn were used for immunoblotting with antibodies against subunits NR1, NR2A and NR2B. The subunit content of the complexes was determined by denaturing two-dimensional gel electrophoresis and subsequent immunoblotting. An NMDAR complex with an apparent molecular weight between between 146 and 242 kDa, probably representing an NR1 dimer was the only complex that was significantly different between trained and yoked animals. A series of NMDAR complexes containing modulatory subunits NR2A or NR2B or both were detected. All complexes contained the NR1 subunit. The NR1 dimer complex level, increased in memory formation, may be directly or indirectly involved in the process of spatial memory formation in the CD1 mouse. The results are enabling and challenging further NMDAR studies, both, at the pharmacological and molecular level. Moreover, several NMDAR complexes in the CD1 mouse were shown to be mainly heteropolymers of subunits NR1, NR2A and NR2B, although other recently described subunits were not tested due to unavailability of specific antibodies. Determination of native receptor complexes rather than individual subunits is mandatory and provides the molecular basis for understanding mechanisms of spatial memory.
Collapse
Affiliation(s)
- Maryam Ghafari
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
14
|
Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res 2011; 1371:150-60. [DOI: 10.1016/j.brainres.2010.11.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 11/20/2022]
|
15
|
Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:955-60. [PMID: 20447436 DOI: 10.1016/j.pnpbp.2010.04.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 01/13/2023]
Abstract
Quercetin is a bioflavonoid reported to produce variety of behavioral effects like anxiolytic, antidepressant, etc. Recent gathering evidences indicated that quercetin attenuates stress-induced behavioral and biochemical effects. It also decreases CRF expression in the brain. As CRF is commonly implicated in the high-anxiety and depression, we hypothesized that quercetin may involve CRF in its anxiolytic- and antidepressant-like effects. To support such possibility, we investigated the influence of quercetin on CRF or CRF antagonist (antalarmin) induced changes in social interaction time in social interaction test, and immobility time in forced swim test. Results indicated that quercetin (20-40 mg/kg, p.o.) or antalarmin (2-4 microg/mouse, i.c.v.) dose dependently increased social interaction time and decreased immobility time indicating anxiolytic- and antidepressant-like effect. These effects were comparable with the traditional anxiolytic (diazepam, 1-2mg/kg, i.p.) and antidepressant (fluoxetine, 10-20mg/kg, i.p.) agents. Administration of CRF (0.1 and 0.3 nmol/mouse, i.c.v.) produced just opposite effects to that of quercetin on these parameters. Further, it was seen that pretreatment with quercetin (20 or 40 mg/kg, p.o.) dose dependently antagonized the effects of CRF (0.1 or 0.3 nmol/mouse, i.c.v.) in social interaction and forced swim test. The sub-effective dose of antalarmin (1 microg/mouse) when administered along with the sub-effective dose of quercetin (10mg/kg) produced significant anxiolytic-and antidepressant-like effect. These observations suggest reciprocating role of quercetin on the CRF-induced anxiogenic and depressant-like effects.
Collapse
|
16
|
Riederer P, Bartl J, Laux G, Grünblatt E. Diabetes Type II: A Risk Factor for Depression–Parkinson–Alzheimer? Neurotox Res 2010; 19:253-65. [DOI: 10.1007/s12640-010-9203-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/25/2010] [Accepted: 05/31/2010] [Indexed: 12/29/2022]
|