1
|
Santos TB, Kramer-Soares JC, de Oliveira Coelho CA, Oliveira MGM. Functional network of contextual and temporal memory has increased amygdala centrality and connectivity with the retrosplenial cortex, thalamus, and hippocampus. Sci Rep 2023; 13:13087. [PMID: 37567967 PMCID: PMC10421896 DOI: 10.1038/s41598-023-39946-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In fear conditioning with time intervals between the conditioned (CS) and unconditioned (US) stimuli, a neural representation of the CS must be maintained over time to be associated with the later US. Usually, temporal associations are studied by investigating individual brain regions. It remains unknown, however, the effect of the interval at the network level, uncovering functional connections cooperating for the CS transient memory and its fear association. We investigated the functional network supporting temporal associations using a task in which a 5-s interval separates the contextual CS from the US (CFC-5s). We quantified c-Fos expression in forty-nine brain regions of male rats following the CFC-5s training, used c-Fos correlations to generate functional networks, and analyzed them by graph theory. Control groups were trained in contextual fear conditioning, in which CS and US overlap. The CFC-5s training additionally activated subdivisions of the basolateral, lateral, and medial amygdala; prelimbic, infralimbic, perirhinal, postrhinal, and intermediate entorhinal cortices; ventral CA1 and subiculum. The CFC-5s network had increased amygdala centrality and higher amygdala internal and external connectivity with the retrosplenial cortex, thalamus, and hippocampus. Amygdala and thalamic nuclei were network hubs. Functional connectivity among these brain regions could support CS transient memories and their association.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
| | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | | | | |
Collapse
|
2
|
Ponomareva OY, Fenster RJ, Ressler KJ. Enhancing Fear Extinction: Pharmacological Approaches. Curr Top Behav Neurosci 2023; 64:289-305. [PMID: 37584834 DOI: 10.1007/7854_2023_443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Extinction is the process by which the memory of a learned conditioned association decreases over time and with introduction of new associations. It is a vital part of fear learning, and it is critical to recovery in multiple fear-related disorders, including Specific and Social Phobias, Panic Disorder, Obsessive Compulsive Disorder (OCD), and Posttraumatic Stress Disorder (PTSD). The process of extinction is also the underlying mechanism for recovery in gold-standard therapies for PTSD, including prolonged exposure, cognitive processing therapy, eye movement desensitization and procession, as well as other empirically-based paradigms. Pharmacological modulators of extinction are thus promising targets for treatment of fear-related disorders. We focus here on emerging psychopharmacological treatments to facilitate extinction: D-cycloserine, scopolamine, losartan, ketamine, and 3,4-methylenedioxymethamphetamine. We also provide an overview of recent advances in molecular pathways that show promise as targets for extincion and inhibitory learning, including pathways related to cannabinoid, brain-derived neurotrophic factor, hypothalamic-pituitary-adrenal signaling, and promising work in neurosteroid compounds.
Collapse
|
3
|
Marks WD, Yokose J, Kitamura T, Ogawa SK. Neuronal Ensembles Organize Activity to Generate Contextual Memory. Front Behav Neurosci 2022; 16:805132. [PMID: 35368306 PMCID: PMC8965349 DOI: 10.3389/fnbeh.2022.805132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Contextual learning is a critical component of episodic memory and important for living in any environment. Context can be described as the attributes of a location that are not the location itself. This includes a variety of non-spatial information that can be derived from sensory systems (sounds, smells, lighting, etc.) and internal state. In this review, we first address the behavioral underpinnings of contextual memory and the development of context memory theory, with a particular focus on the contextual fear conditioning paradigm as a means of assessing contextual learning and the underlying processes contributing to it. We then present the various neural centers that play roles in contextual learning. We continue with a discussion of the current knowledge of the neural circuitry and physiological processes that underlie contextual representations in the Entorhinal cortex-Hippocampal (EC-HPC) circuit, as the most well studied contributor to contextual memory, focusing on the role of ensemble activity as a representation of context with a description of remapping, and pattern separation and completion in the processing of contextual information. We then discuss other critical regions involved in contextual memory formation and retrieval. We finally consider the engram assembly as an indicator of stored contextual memories and discuss its potential contribution to contextual memory.
Collapse
Affiliation(s)
- William D. Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sachie K. Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Epinephrine modulates memory of latent learning in an inhibitory avoidance task. Neurobiol Learn Mem 2021; 182:107447. [PMID: 33915301 DOI: 10.1016/j.nlm.2021.107447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022]
Abstract
The present study examined the memory modulatory effect of epinephrine on latent learning of an inhibitory avoidance task. Male Sprague-Dawley rats on the first day were subjected to one of three conditions (no, short or long) in pre-exposure to the task apparatus. One day or several days later, they received the typical inhibitory avoidance training with a 0.5 mA/0.5 s foot shock. Memory of the inhibitory avoidance response was tested one day after the foot-shock training. The long pre-exposure group showed better memory than the no or short pre-exposure group, and this latent memory could last for 6 days: Retention scores of the long pre-exposure group were significantly better than those of the no pre-exposure group if the shock training was given 3 or 6 days, but not 12 or 21 days, after the pre-exposure. Epinephrine injected after the pre-exposure training modulated the latent memory in a dose- and time-dependent manner: 0.01 mg/kg given shortly after the short pre-exposure enhanced the memory, but 0.5 mg/kg given shortly after the long pre-exposure impaired it. Epinephrine injected 4 h after the pre-exposure had no effect, neither did that given to rats pre-exposed to a different context. Epinephrine (0.01 mg/kg) also made the latent memory lasting longer as the rats treated with it showed significant avoidance behavior when they had the shock training at 12 or 21 days after the pre-exposure. These findings suggest that epinephrine could modulate memory formed in the latent learning.
Collapse
|
5
|
The dorsal subiculum is required for contextual fear conditioning consolidation in rats. Behav Brain Res 2020; 390:112661. [PMID: 32407819 DOI: 10.1016/j.bbr.2020.112661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
The hippocampal formation has a well-known role in contextual fear conditioning. The dorsal subiculum connects the hippocampus to the entorhinal cortex through pathways that seemingly rely on NMDA-dependent synaptic plasticity. The role of the dorsal subiculum in contextual fear conditioning retrieval, but not acquisition, has been previously reported. However, most of the critical biological phenomena involved in memory formation occur in the consolidation phase. The present study aimed to assess the effects of intra-dorsal subiculum muscimol or AP5 infusion on contextual fear conditioning consolidation. Our data show that dorsal subiculum integrity, as well as NMDA transmission in this region, seem to be necessary for contextual fear conditioning consolidation.
Collapse
|
6
|
Lebois LAM, Seligowski AV, Wolff JD, Hill SB, Ressler KJ. Augmentation of Extinction and Inhibitory Learning in Anxiety and Trauma-Related Disorders. Annu Rev Clin Psychol 2019; 15:257-284. [PMID: 30698994 DOI: 10.1146/annurev-clinpsy-050718-095634] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the fear response is an adaptive response to threatening situations, a number of psychiatric disorders feature prominent fear-related symptoms caused, in part, by failures of extinction and inhibitory learning. The translational nature of fear conditioning paradigms has enabled us to develop a nuanced understanding of extinction and inhibitory learning based on the molecular substrates to systems neural circuitry and psychological mechanisms. This knowledge has facilitated the development of novel interventions that may augment extinction and inhibitory learning. These interventions include nonpharmacological techniques, such as behavioral methods to implement during psychotherapy, as well as device-based stimulation techniques that enhance or reduce activity in different regions of the brain. There is also emerging support for a number of psychopharmacological interventions that may augment extinction and inhibitory learning specifically if administered in conjunction with exposure-based psychotherapy. This growing body of research may offer promising novel techniques to address debilitating transdiagnostic fear-related symptoms.
Collapse
Affiliation(s)
- Lauren A M Lebois
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Antonia V Seligowski
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Jonathan D Wolff
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Sarah B Hill
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
7
|
Finnie PSB, Gamache K, Protopoulos M, Sinclair E, Baker AG, Wang SH, Nader K. Cortico-hippocampal Schemas Enable NMDAR-Independent Fear Conditioning in Rats. Curr Biol 2018; 28:2900-2909.e5. [PMID: 30197087 DOI: 10.1016/j.cub.2018.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023]
Abstract
The neurobiology of memory formation has been studied primarily in experimentally naive animals, but the majority of learning unfolds on a background of prior experience. Considerable evidence now indicates that the brain processes initial and subsequent learning differently. In rodents, a first instance of contextual fear conditioning requires NMDA receptor (NMDAR) activation in the dorsal hippocampus, but subsequent conditioning to another context does not. This shift may result from a change in molecular plasticity mechanisms or in the information required to learn the second task. To clarify how related events are encoded, it is critical to identify which aspect of a first task engages NMDAR-independent learning and the brain regions that maintain this state. Here, we show in rats that the requirement for NMDARs in hippocampus depends neither on prior exposure to context nor footshock alone but rather on the procedural similarity between two conditioning tasks. Importantly, NMDAR-independent learning requires the memory of the first task to remain hippocampus dependent. Furthermore, disrupting memory maintenance in the anterior cingulate cortex after the first task also reinstates NMDAR dependency. These results reveal cortico-hippocampal interactions supporting experience-dependent learning.
Collapse
Affiliation(s)
- Peter S B Finnie
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Karine Gamache
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Maria Protopoulos
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Elizabeth Sinclair
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Andrew G Baker
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building GU507c, Edinburgh EH16 4SB, UK.
| | - Karim Nader
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
8
|
Craske MG, Hermans D, Vervliet B. State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170025. [PMID: 29352025 PMCID: PMC5790824 DOI: 10.1098/rstb.2017.0025] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 01/10/2023] Open
Abstract
Through advances in both basic and clinical scientific research, Pavlovian fear conditioning and extinction have become an exemplary translational model for understanding and treating anxiety disorders. Discoveries in associative and neurobiological mechanisms underlying extinction have informed techniques for optimizing exposure therapy that enhance the formation of inhibitory associations and their consolidation and retrieval over time and context. Strategies that enhance formation include maximizing prediction-error correction by violating expectancies, deepened extinction, occasional reinforced extinction, attentional control and removal of safety signals/behaviours. Strategies that enhance consolidation include pharmacological agonists of NMDA (i.e. d-cycloserine) and mental rehearsal. Strategies that enhance retrieval include multiple contexts, retrieval cues, and pharmacological blockade of contextual encoding. Stimulus variability and positive affect are posited to influence the formation and the retrieval of inhibitory associations. Inhibitory regulation through affect labelling is considered a complement to extinction. The translational value of extinction will be increased by more investigation of elements central to extinction itself, such as extinction generalization, and interactions with other learning processes, such as instrumental avoidance reward learning, and with other clinically relevant cognitive-emotional processes, such as self-efficacy, threat appraisal and emotion regulation, will add translational value. Moreover, framing fear extinction and related processes within a developmental context will increase their clinical relevance.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Michelle G Craske
- Department of Psychology, University of California, 405 Hilgard Avenue, Los Angeles, CA, USA
| | - Dirk Hermans
- Center for Excellence on Generalization, University of Leuven, Leuven, Belgium
| | - Bram Vervliet
- Center for Excellence on Generalization, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Robinson-Drummer PA, Chakraborty T, Heroux NA, Rosen JB, Stanton ME. Age and experience dependent changes in Egr-1 expression during the ontogeny of the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 150:1-12. [PMID: 29452227 DOI: 10.1016/j.nlm.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which acquisition of the contextual representation and association of the retrieved contextual memory with an immediate foot-shock are separated by 24 h. During the CPFE, learning- related expression patterns of the early growth response-1 gene (Egr-1) vary based on training phase and brain sub-region in adult and adolescent rats (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014; Chakraborty, Asok, Stanton, & Rosen, 2016). The current experiments extended our previous findings by examining Egr-1 expression in infant (PD17) and juvenile (PD24) rats during the CPFE using preexposure protocols involving single-exposure (SE) or multiple-exposure (ME) to context. Following a 5 min preexposure to the training context (i.e. the SE protocol), Egr-1 expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC) and lateral nucleus of the amygdala (LA) was differentially increased in PD24 rats relative to PD17 rats. In contrast, increased Egr-1 expression following an immediate foot-shock (2s, 1.5 mA) did not differ between PD17 and PD24 rats, and was not learning-related. Interestingly, increasing the number of exposures to the training chamber on the preexposure day (i.e. ME protocol) altered training-day expression such that a learning-related increase in expression was observed in the mPFC in PD24 but not PD17 rats. Together, these results illustrate a clear maturation of Egr-1 expression that is both age- and experience-dependent. In addition, the data suggest that regional activity and plasticity within the mPFC on the preexposure but not the training day may contribute to the ontogenetic profile of the effect. Further studies are necessary to elucidate the causal role of sub-region-specific neuroplasticity in the ontogeny of the CPFE.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - T Chakraborty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - J B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
10
|
Heroux NA, Osborne BF, Miller LA, Kawan M, Buban KN, Rosen JB, Stanton ME. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 147:128-138. [PMID: 29222058 PMCID: PMC6314028 DOI: 10.1016/j.nlm.2017.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases (context preexposure, immediate-shock training, and retention). The current study examined changes in the expression of plasticity-associated immediate early genes (IEGs) during context and contextual fear memory formation on the preexposure and training days of the CPFE, respectively. Using adolescent Long-Evans rats, preexposure and training day expression of the IEGs c-Fos, Arc, Egr-1, and Npas4 in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (BLA) was analyzed using qPCR as an extension of previous studies from our lab examining Egr-1 via in situ hybridization (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014). In Expt. 1, context preexposure induced expression of c-Fos, Arc, Egr-1 and Npas4 significantly above that of home-cage (HC) controls in all three regions. In Expt. 2, immediate-shock was followed by a post-shock freezing test, resulting in increased mPFC c-Fos expression in a group preexposed to the training context but not a control group preexposed to an alternate context, indicating expression related to associative learning. This was not seen with other IEGs in mPFC or with any IEG in dHPC or BLA. Finally, when the post-shock freezing test was omitted in Expt. 3, training-related increases were observed in prefrontal c-Fos, Arc, Egr-1, and Npas4, hippocampal c-Fos, and amygdalar Egr-1 expression. These results indicate that context exposure in a post-shock freezing test re-engages IEG expression that may obscure associatively-induced expression during contextual fear conditioning. Additionally, these studies suggest a key role for long-term synaptic plasticity in the mPFC in supporting the CPFE.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Brittany F Osborne
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Lauren A Miller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Malak Kawan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Katelyn N Buban
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
11
|
Abstract
Cholinergic neurotransmission plays a key role in learning and memory. Prior research with rats indicated that a low dose of pre-training scopolamine (0.1 mg/kg), a cholinergic receptor antagonist, did not affect cued fear conditioning, but did block renewal when injected before extinguishing a conditioned tone, opening up opportunities to pharmacologically improve exposure therapy for anxiety patients. Before translating these findings to the clinic, it is important to carefully examine how scopolamine affects contextual fear memories. Here, we investigated the effects of scopolamine on encoding of contextual anxiety and its generalization in male Wistar rats. We found a profound disruption of context conditioning, suggesting that, even at a low dose, systemic scopolamine may influence contextual encoding in the hippocampus, particularly when the context is the best predictor for the presence of shocks.
Collapse
Affiliation(s)
- Laura Luyten
- Research Group Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium
| | - Shauni Nuyts
- Research Group Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium
| | - Tom Beckers
- Research Group Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Maleki M, Hassanpour-Ezatti M, Navaeian M. Cross State-dependent Learning Interaction Between Scopolamine and Morphine in Mice: The Role of Dorsal Hippocampus. Basic Clin Neurosci 2017; 8:193-202. [PMID: 28781727 PMCID: PMC5535325 DOI: 10.18869/nirp.bcn.8.3.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The current study aimed at investigating the existence of the cross state-dependent learning between morphine and scopolamine (SCO) in mice by passive avoidance method, pointing to the role of CA1 area. METHODS The effects of pre-training SCO (0.75, 1.5, and 3 μg, Intra-CA1), or morphine (1, 3, and 6 mg/kg, intraperitoneal (i.p.) was evaluated on the retrieval of passive avoidance learning using step-down task in mice (n=10). Then, the effect of pretest administration of morphine (1.5, 3, and 6 mg/kg, i.p.) was examined on passive avoidance retrieval impairment induced by pre-training SCO (3 μg/mice, Intra-CA1). Next, the effect of pretest Intra-CA1 injection of scopolamine (0.75, 1.5, and 3 μg/mice) was evaluated on morphine (6 mg/kg, i.p.) pre-training deficits in this task in mice. RESULTS The pre-training Intra-CA1 injection of scopolamine (1.5 and 3 μg/mouse), or morphine (3 and 6 mg/kg, i.p.) impaired the avoidance memory retrieval when it was tested 24 hours later. Pretest injection of both drugs improved its pre-training impairing effects on mice memory. Moreover, the amnesia induced by the pre-training injections of scopolamine (3 μg/mice) was restored significantly (P<0.01) by pretest injections of morphine (3 and 6 mg/kg, i.p.). Similarly, pretest injection of scopolamine (3 μg/mice) restored amnesia induced by the pre-training injections of morphine (6 mg/kg, i.p.), significantly (P<0.01). CONCLUSION The current study findings indicated a cross state-dependent learning between SCO and morphine at CA1 level. Therefore, it seems that muscarinic and opioid receptors may act reciprocally on modulation of passive avoidance memory retrieval, at the level of dorsal hippocampus, in mice.
Collapse
Affiliation(s)
- Morteza Maleki
- Department of Biology, School of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Majid Navaeian
- Department of Biology, Shahr Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Robinson-Drummer PA, Heroux NA, Stanton ME. Antagonism of muscarinic acetylcholine receptors in medial prefrontal cortex disrupts the context preexposure facilitation effect. Neurobiol Learn Mem 2017; 143:27-35. [PMID: 28411153 DOI: 10.1016/j.nlm.2017.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
Cholinergic function plays a role in a variant of context fear conditioning known as the context preexposure facilitation effect (CPFE; Robinson-Drummer, Dokovna, Heroux, & Stanton, 2016). In the CPFE, acquisition of a context representation, the context-shock association, and expression of context fear occur across successive phases, usually 24h apart. Systemic administration of scopolamine, a muscarinic acetylcholine receptor antagonist, prior to each phase (context preexposure, immediate-shock training, and testing) disrupts the CPFE in juvenile rats (Robinson-Drummer et al., 2016). Dorsal hippocampal (dHPC) cholinergic function contributes significantly to this effect, as local infusion of scopolamine into the dHPC prior to any individual phase of the CPFE produces a disruption identical to systemic administration (Robinson-Drummer et al., 2016). The current experiment extended these findings to another forebrain region implicated in the CPFE, the medial prefrontal cortex (mPFC). Adolescent rats received bilateral infusions of scopolamine (35μg/side) or PBS 10min before all three phases of the CPFE or only prior to a single phase. Intra-mPFC administration of scopolamine prior to all three phases significantly impaired fear conditioning suggesting that mPFC cholinergic function is necessary for successful CPFE performance. Analyses of the individual infusion days revealed a significant impairment of the CPFE when infusions occurred prior to preexposure or training (i.e. immediate footshock) but not prior to testing. In total, these findings suggests a role of mPFC cholinergic function in the acquisition and/or consolidation of a contextual representation and the context-shock association but not in retrieval or expression of fear memory. Implications for mPFC involvement in contextual fear conditioning and neurological dysfunction following neonatal alcohol exposure are discussed.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
14
|
Golisch A, Heba S, Glaubitz B, Tegenthoff M, Lissek S. Enhancing Effects of NMDA-Receptor Blockade on Extinction Learning and Related Brain Activation Are Modulated by BMI. Front Behav Neurosci 2017; 11:34. [PMID: 28326025 PMCID: PMC5339306 DOI: 10.3389/fnbeh.2017.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
A distributed network including prefrontal and hippocampal regions is involved in context-related extinction learning as well as in renewal. Renewal describes the recovery of an extinguished response if the context of extinction differs from the context of recall. Animal studies have demonstrated that prefrontal, but not hippocampal N-methyl-D-aspartate receptor (NMDAR) antagonism disrupted extinction learning and processing of task context. However, human studies of NMDAR in extinction learning are lacking, while NMDAR antagonism yielded contradictory results in other learning tasks. This fMRI study investigated the role of NMDAR for human behavioral and brain activation correlates of extinction and renewal. Healthy volunteers received a single dose of the NMDAR antagonist memantine prior to extinction of previously acquired stimulus-outcome associations presented in either identical or novel contexts. We observed better, and partly faster, extinction learning in participants receiving the NMDAR antagonist compared to placebo. However, memantine did not affect renewal. In both extinction and recall, the memantine group showed a deactivation in extinction-related brain regions, particularly in the prefrontal cortex, while hippocampal activity was increased. This higher hippocampal activation was in turn associated with the participants' body mass index (BMI) and extinction errors. Our results demonstrate potentially dose-related enhancing effects of memantine and highlight involvement of hippocampal NMDAR in context-related extinction learning.
Collapse
Affiliation(s)
- Anne Golisch
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| | - Stefanie Heba
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| | - Benjamin Glaubitz
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| | - Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
15
|
Chang SD, Liang KC. The hippocampus integrates context and shock into a configural memory in contextual fear conditioning. Hippocampus 2016; 27:145-155. [DOI: 10.1002/hipo.22679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Shih-Dar Chang
- Department of Psychology; National Taiwan University; Taipei 10617 Taiwan
| | - K. C. Liang
- Department of Psychology; National Taiwan University; Taipei 10617 Taiwan
- Graduate Institute for Brain and Mind Science, National Taiwan University; Taipei 10617 Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
16
|
Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res 2016; 95:836-852. [PMID: 27704595 DOI: 10.1002/jnr.23840] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Jim R Fadel
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|
17
|
Chen W, Yan M, Wang Y, Wang X, Yuan J, Li M. Effects of 7-nitroindazole, a selective neural nitric oxide synthase inhibitor, on context-shock associative learning in a two-process contextual fear conditioning paradigm. Neurobiol Learn Mem 2016; 134 Pt B:287-93. [DOI: 10.1016/j.nlm.2016.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/28/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
|
18
|
Parent MB. Cognitive control of meal onset and meal size: Role of dorsal hippocampal-dependent episodic memory. Physiol Behav 2016; 162:112-9. [PMID: 27083124 DOI: 10.1016/j.physbeh.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
There is a large gap in our understanding of how top-down cognitive processes, such as memory, influence energy intake. Similarly, there is limited knowledge regarding how the brain controls the timing of meals and meal frequency. Understanding how cognition influences ingestive behavior and how the brain controls meal frequency will provide a more complete explanation of the neural mechanisms that regulate energy intake and may also increase our knowledge of the factors that contribute to diet-induced obesity. We hypothesize that dorsal hippocampal neurons, which are critical for memory of personal experiences (i.e., episodic memory), form a memory of a meal, inhibit meal onset during the period following a meal, and limit the amount ingested at the next meal. In support, we describe evidence from human research suggesting that episodic memory of a meal inhibits intake and review data from human and non-human animals showing that impaired hippocampal function is associated with increased intake. We then describe evidence from our laboratory showing that inactivation of dorsal hippocampal neurons decreases the interval between sucrose meals and increases intake at the next meal. We also describe our evidence suggesting that sweet orosensation is sufficient to induce synaptic plasticity in dorsal hippocampal neurons and raise the possibility that impaired dorsal hippocampal function and episodic memory deficits contribute to the development and/or maintenance of diet-induced obesity. Finally, we raise some critical questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303-5030, United States.
| |
Collapse
|
19
|
Mahboob A, Farhat SM, Iqbal G, Babar MM, Zaidi NUSS, Nabavi SM, Ahmed T. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory. Brain Res Bull 2016; 122:19-28. [PMID: 26912408 DOI: 10.1016/j.brainresbull.2016.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (p<0.05) relative to AlCl3-treated group. ALA enhanced fear memory (p<0.01) and social novelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Ghazala Iqbal
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Najam-us-Sahar Sadaf Zaidi
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| |
Collapse
|
20
|
Robinson-Drummer PA, Dokovna LB, Heroux NA, Stanton ME. Cholinergic mechanisms of the context preexposure facilitation effect in adolescent rats. Behav Neurosci 2016; 130:196-205. [PMID: 26866360 DOI: 10.1037/bne0000134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which context learning, context-shock association, and expression of context conditioning occur in 3 separate phases-preexposure, training, and testing. During the preexposure phase, the CPFE is disrupted by hippocampal NMDA receptor blockade in juvenile rats (Schiffino et al., 2011), and a similar deficit is seen with a subcutaneous injection of the muscarinic receptor antagonist, scopolamine, in adult mice (Brown, Kennard, Sherer, Comalli, & Woodruff-Pak, 2011). As a foundation for further developmental research, the present study examined the role of cholinergic function in the CPFE in adolescent rats during each phase of the CPFE protocol. In Experiment 1, an i.p injection of either 0.5 or 1.0 mg/kg dose of scopolamine administered prior to all 3 phases of the CPFE protocol impaired the CPFE. Experiment 2 further showed that a 0.5 mg/kg injection prior to just 1 of the 3 phases of the CPFE also disrupted contextual fear conditioning. We further showed that the CPFE is impaired by localized scopolamine infusions into dorsal hippocampus on the preexposure day (Experiment 3a), training day (Experiment 3b), and test day (Experiment 3c). These findings demonstrate a role of cholinergic signaling in hippocampus during each of the 3 phases of the CPFE in adolescent rats. Implications for the development and neural basis of the CPFE are discussed. (PsycINFO Database Record
Collapse
|
21
|
Heroux NA, Robinson-Drummer PA, Rosen JB, Stanton ME. NMDA receptor antagonism disrupts acquisition and retention of the context preexposure facilitation effect in adolescent rats. Behav Brain Res 2015; 301:168-77. [PMID: 26711910 DOI: 10.1016/j.bbr.2015.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated. The current study investigated the involvement of NMDA receptors in contextual fear acquisition, retention, and expression across all phases of the CPFE in adolescent rats. In Experiment 1 systemic injections of 0.1mg/kg MK-801, a non-competitive NMDA receptor antagonist, given before multiple context preexposure disrupted the acquisition of a context representation. In Experiment 2, pre-training MK-801 disrupted both immediate acquisition of contextual fear measured by postshock freezing, as well as retention test freezing 24h later. Experiment 3 showed that expression of contextual fear via a 24h retention freezing test does not depend on NMDA receptors, indicating that MK-801 disrupts learning rather than performance of freezing behavior. In Experiment 4, consolidation of contextual information was partially disrupted by post-preexposure MK-801 whereas consolidation of contextual fear was not disrupted by post-training MK-801. Finally, Experiment 5 employed a dose-response design and found that a pre-training dose of 0.1mg/kg MK-801 disrupted both postshock and retention test freezing while lower pre-training doses of MK-801 (0.025 or 0.05mg/kg) only disrupted retention freezing. This is the first study to distinguish the role of NMDA receptors in acquisition (post-shock freezing), retention, expression, and consolidation of context vs. context-shock learning using the CPFE paradigm in adolescent rats. The findings provide a foundation for similar developmental studies examining these effects from early ontogeny through adulthood.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | | | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
22
|
Medial prefrontal cortex serotonergic and GABAergic mechanisms modulate the expression of contextual fear: Intratelencephalic pathways and differential involvement of cortical subregions. Neuroscience 2015; 284:988-997. [DOI: 10.1016/j.neuroscience.2014.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/02/2014] [Accepted: 11/02/2014] [Indexed: 11/22/2022]
|
23
|
Baas JMP, Heitland I. The impact of cue learning, trait anxiety and genetic variation in the serotonin 1A receptor on contextual fear. Int J Psychophysiol 2014; 98:506-14. [PMID: 25448266 DOI: 10.1016/j.ijpsycho.2014.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/07/2014] [Accepted: 10/28/2014] [Indexed: 01/09/2023]
Abstract
In everyday life, aversive events are usually associated with certain predictive cues. Normally, the acquisition of these contingencies enables organisms to appropriately respond to threat. Presence of a threat cue clearly signals 'danger', whereas absence of such cues signals a period of 'safety'. Failure to identify threat cues may lead to chronic states of anxious apprehension in the context in which the threat has been imminent, which may be instrumental in the pathogenesis of anxiety disorders. In this study, existing data from 150 healthy volunteers in a cue and context virtual reality fear conditioning paradigm were reanalyzed. The aim was to further characterize the impact of cue acquisition and trait anxiety, and of a single nucleotide polymorphism in the serotonin 1A receptor gene (5-HTR1A, rs6295), on cued fear and contextual anxiety before and after fear contingencies were explicitly introduced. Fear conditioned responding was quantified with fear potentiation of the eyeblink startle reflex and subjective fear ratings. First, we replicated previous findings that the inability to identify danger cues during acquisition leads to heightened anxious apprehension in the threat context. Second, in subjects who did not identify the danger cue initially, contextual fear was associated with trait anxiety after the contingencies were explicitly instructed. Third, genetic variability within 5-HTR1A (rs6295) was associated with contextual fear independent of awareness or trait anxiety. These findings confirm that failure to acquire cue contingencies impacts contextual fear responding, in association with trait anxiety. The observed 5-HTR1A effect is in line with models of anxiety, but needs further replication.
Collapse
Affiliation(s)
- Johanna M P Baas
- Experimental Psychology and Helmholtz Institute, Utrecht University, The Netherlands; Helmholtz Research Institute, Utrecht, The Netherlands.
| | - Ivo Heitland
- Experimental Psychology and Helmholtz Institute, Utrecht University, The Netherlands; Helmholtz Research Institute, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Yang FC, Liang K. Interactions of the dorsal hippocampus, medial prefrontal cortex and nucleus accumbens in formation of fear memory: Difference in inhibitory avoidance learning and contextual fear conditioning. Neurobiol Learn Mem 2014; 112:186-94. [DOI: 10.1016/j.nlm.2013.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/10/2013] [Accepted: 07/17/2013] [Indexed: 11/15/2022]
|
25
|
Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 2014; 88:450-67. [PMID: 24462904 PMCID: PMC4014001 DOI: 10.1016/j.bcp.2014.01.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology - assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice - contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Linda Lee
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA
| | - Agostino Palmeri
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Federico II University, Via D. Montesano 49, Naples 80131, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
26
|
Almada RC, Albrechet-Souza L, Brandão ML. Further evidence for involvement of the dorsal hippocampus serotonergic and γ-aminobutyric acid (GABA)ergic pathways in the expression of contextual fear conditioning in rats. J Psychopharmacol 2013; 27:1160-8. [PMID: 23535348 DOI: 10.1177/0269881113482840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intra-dorsal hippocampus (DH) injections of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin-1A (5-hydroxytryptamine (5-HT)-1A) receptor agonist, were previously shown to inhibit the expression of contextual fear when administered six hours after conditioning. However, further understanding of the consolidation and expression of aversive memories requires investigations of these and other mechanisms at distinct time points and the regions of the brain to which they are transferred. Thus, the purpose of the present study was to investigate the role of DH serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the expression of contextual fear 24 h after conditioning, reflected by fear-potentiated startle (FPS) and freezing behavior. The recruitment of the amygdala and medial prefrontal cortex (mPFC) in these processes was also evaluated by measuring Fos protein immunoreactivity. Although intra-DH injections of 8-OH-DPAT did not produce behavioral changes, muscimol reduced both FPS and the freezing response. Fos protein immunoreactivity revealed that contextual fear promoted wide activation of the mPFC, which was significantly reduced after intra-DH infusions of muscimol. The present findings, together with previous data, indicate that in contrast to 5-HT, which appears to play a role during the early phases of contextual aversive memory consolidation, longer-lasting GABA-mediated mechanisms are recruited during the expression of contextual fear memories.
Collapse
Affiliation(s)
- Rafael C Almada
- 1Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
27
|
Feld GB, Wilhelm I, Ma Y, Groch S, Binkofski F, Mölle M, Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. Sleep 2013; 36:1317-26. [PMID: 23997364 DOI: 10.5665/sleep.2954] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Slow wave sleep (SWS) plays a pivotal role in consolidating memories. Tiagabine has been shown to increase SWS in favor of REM sleep without impacting subjective sleep. However, it is unknown whether this effect is paralleled by an improved sleep-dependent consolidation of memory. DESIGN This double-blind within-subject crossover study tested sensitivity of overnight retention of declarative neutral and emotional materials (word pairs, pictures) as well as a procedural memory task (sequence finger tapping) to oral administration of placebo or 10 mg tiagabine (at 22:30). PARTICIPANTS Fourteen healthy young men aged 21.9 years (range 18-28 years). MEASUREMENTS AND RESULTS Tiagabine significantly increased the time spent in SWS and decreased REM sleep compared to placebo. Tiagabine also enhanced slow wave activity (0.5-4.0 Hz) and density of < 1 Hz slow oscillations during NREM sleep. Fast (12-15 Hz) and slow (9-12 Hz) spindle activity, in particular that occurring phase-locked to the slow oscillation cycle, was decreased following tiagabine. Despite signs of deeper and more SWS, overnight retention of memory tested after sleep the next evening (19:30) was generally not improved after tiagabine, but on average even lower than after placebo, with this impairing effect reaching significance for procedural sequence finger tapping. CONCLUSIONS Our data show that increasing slow wave sleep with tiagabine does not improve memory consolidation. Possibly this is due to functional differences from normal slow wave sleep, i.e., the concurrent suppressive influence of tiagabine on phase-locked spindle activity.
Collapse
Affiliation(s)
- Gordon B Feld
- University of Tuebingen, Institute of Medical Psychology and Behavioral Neurobiology, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Information processing in behaving animals has been the target of many studies in the striatum; however, its dynamics and complexity remain to a large extent unknown. Here, we chronically recorded neuronal populations in dorsal striatum as mice were exposed to a novel environment, a paradigm which enables the dissociation of locomotion and environmental recognition. The findings indicate that non-overlapping populations of striatal projection neurons-the medium spiny neurons-reliably encode locomotion and environmental identity, whereas two subpopulations of short-spike interneurons encode distinct information: the fast spiking interneurons preferentially encode locomotion whereas the second type of interneurons preferentially encodes environmental identity. The three neuronal subgroups used cell-type specific coding schemes. This study provides evidence for the existence of parallel processing circuits within the sensorimotor region of the striatum.
Collapse
|
29
|
Azizbeigi R, Zarrindast MR, Ahmadi S. Interaction between gamma-aminobutyric acid type A (GABAA) receptor agents and scopolamine in the nucleus accumbens on impairment of inhibitory avoidance memory performance in rat. Behav Brain Res 2013; 241:191-7. [DOI: 10.1016/j.bbr.2012.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/08/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
|