1
|
Iskhakova J, Mustac T, Yuabov A, Macanian J, Israel E, Dohnalova P, Iskhakov B, Lulu EB, Aminov S, Fazylov D, Bodnar RJ. Acquisition and expression of fat conditioned flavor preferences following dopamine D1, opioid and NMDA receptor antagonism in C57BL/6 mice. Nutr Neurosci 2020; 25:137-145. [PMID: 32050863 DOI: 10.1080/1028415x.2020.1724706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Inbred mouse strains differ in the pharmacology mediating sugar and fat intake and conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice are differentially sensitive to dopamine (DA) D1, opioid and muscarinic receptor antagonism of sucrose, saccharin or fat intake, and to DA, opioid, muscarinic and N-methyl-D-aspartate (NMDA) receptor antagonism of acquisition of sucrose-CFP. DA D1, opioid and NMDA receptor antagonists differentially alter fat (Intralipid)-CFP in BALB/c and SWR mice. The present study examined whether naltrexone, SCH23390 or MK-801 altered acquisition and expression of Intralipid-CFP in C57BL/6 mice.Methods: In acquisition, groups of male food-restricted C57BL/6 mice received vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 μg/kg) before 10 training sessions in which mice alternately consumed two novel-flavored 5% (CS+) and 0.5% (CS-) Intralipid solutions. Six two-bottle CS choice tests followed with both flavors mixed in 0.5% Intralipid without injections. In expression, C57BL/6 mice underwent the 10 training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 μg/kg).Results: Fat-CFP acquisition in C57BL/6 mice was significantly though marginally reduced following naltrexone, SCH23390 and MK-801. Fat-CFP expression was similarly reduced by naltrexone, SCH23390 and MK-801 in C57BL/6 mice. Discussion: C57BL/6 mice were more sensitive to DA D1, opioid and NMDA antagonists in the expression of fat-CFP relative to sugar-CFP, but were less sensitive to DA D1 and NMDA antagonists in the acquisition of fat-CFP relative to sugar-CFP.
Collapse
Affiliation(s)
- Julia Iskhakova
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Tatjana Mustac
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Asnat Yuabov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Jason Macanian
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Emanuel Israel
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Petra Dohnalova
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Eden Ben Lulu
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Sonya Aminov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - David Fazylov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA.,CUNY Neuroscience Collaborative and Psychology Doctoral Program, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
2
|
Johnson LR, Battle AR, Martinac B. Remembering Mechanosensitivity of NMDA Receptors. Front Cell Neurosci 2019; 13:533. [PMID: 31866826 PMCID: PMC6906178 DOI: 10.3389/fncel.2019.00533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
An increase in post-synaptic Ca2+ conductance through activation of the ionotropic N-methyl-D-aspartate receptor (NMDAR) and concomitant structural changes are essential for the initiation of long-term potentiation (LTP) and memory formation. Memories can be initiated by coincident events, as occurs in classical conditioning, where the NMDAR can act as a molecular coincidence detector. Binding of glutamate and glycine, together with depolarization of the postsynaptic cell membrane to remove the Mg2+ channel pore block, results in NMDAR opening for Ca2+ conductance. Accumulating evidence has implicated both force-from-lipids and protein tethering mechanisms for mechanosensory transduction in NMDAR, which has been demonstrated by both, membrane stretch and application of amphipathic molecules such as arachidonic acid (AA). The contribution of mechanosensitivity to memory formation and consolidation may be to increase activity of the NMDAR leading to facilitated memory formation. In this review we look back at the progress made toward understanding the physiological and pathological role of NMDA receptor channels in mechanobiology of the nervous system and consider these findings in like of their potential functional implications for memory formation. We examine recent studies identifying mechanisms of both NMDAR and other mechanosensitive channels and discuss functional implications including gain control of NMDA opening probability. Mechanobiology is a rapidly growing area of biology with many important implications for understanding form, function and pathology in the nervous system.
Collapse
Affiliation(s)
- Luke R Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
3
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
4
|
Galaj E, Seepersad N, Dakmak Z, Ranaldi R. Blockade of NMDA receptors blocks the acquisition of cocaine conditioned approach in rats. Eur J Pharmacol 2017; 818:480-485. [PMID: 29157983 DOI: 10.1016/j.ejphar.2017.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
Conditioned stimuli (CSs) exert motivational effects on both adaptive and pathological reward-related behaviors, including drug taking and seeking. We developed a paradigm that allows us to investigate the neuropharmacology by which previously neutral stimuli acquire the capacity to function as CSs and elicit (intravenous) cocaine conditioned approach and used this paradigm to test the role of NMDA receptor stimulation in the acquisition of cocaine conditioned approach. Rats were injected systemically with the NMDA receptor antagonist, MK-801, before the start of 4 consecutive conditioning sessions, each of which consisted of 20 randomly presented light/tone (CS) presentations paired with cocaine infusion contingent upon nose pokes. Rats later were subjected to a CS-only test. To test the role of NMDA receptor stimulation in the already established conditioned approach, rats were injected with MK-801 prior to the CS-only test that occurred after 18 CS-cocaine conditioning sessions. Blockade of NMDA receptors significantly impaired the acquisition of cocaine-conditioned approach as indicated by the emission of significantly fewer nose pokes and significantly longer latencies to nose poke during CS presentations. When MK-801 treatment was applied after the acquisition of conditioned approach responding it had no effect on these measures. These results suggest that NMDA receptor stimulation plays an important role in the acquisition of reward-related conditioned responses driven by intravenous cocaine-associated CSs.
Collapse
Affiliation(s)
- Ewa Galaj
- Neuropsychology Doctoral Program, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Neal Seepersad
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Zena Dakmak
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Robert Ranaldi
- Neuropsychology Doctoral Program, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Psychology, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
5
|
Kraft TT, Huang D, LaMagna S, Warshaw D, Natanova E, Sclafani A, Bodnar RJ. Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. Eur J Pharmacol 2017; 799:26-32. [PMID: 28132914 DOI: 10.1016/j.ejphar.2017.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Conditioned flavor preferences are elicited by fat (Intralipid) in inbred mouse strains with BALB/c and SWR mice displaying among the most robust preferences. Dopamine D1 and opioid receptor antagonism differentially reduces the acquisition (learning) and expression (maintenance) of fat-conditioned flavor preferences in these two strains. Because noncompetitive NMDA receptor antagonism with MK-801 differentially altered sugar-conditioned flavor preferences in these strains, and because NMDA receptors are involved in fat intake, the present study examined whether MK-801 differentially altered expression and acquisition of fat (Intralipid)-conditioned flavor preferences in BALB/c and SWR mice. In expression studies, food-restricted male mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 5% Intralipid solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.5% Intralipid solution. Two-bottle CS choice tests occurred following vehicle or MK-801 (100, 200µg/kg). MK-801 blocked expression of Intralipid-CFP at both doses in BALB/c mice, but only at the 100µg/kg dose in SWR mice. In acquisition studies, groups of BALB/c (0, 100µg/kg) and SWR (0, 100µg/kg) male mice were treated prior to the ten acquisition training sessions followed by six 2-bottle CS choice tests without injections. MK-801 eliminated acquisition of Intralipid-conditioned flavor preferences in BALB/c mice, and actually changed the preference to an avoidance response in SWR mice. Thus, NMDA receptor signaling appears essential especially for the learning of fat-conditioned flavor preferences in both mouse strains.
Collapse
Affiliation(s)
- Tamar T Kraft
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Anthony Sclafani
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Brooklyn College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Queens College, CUNY, New York, NY, USA.
| |
Collapse
|
6
|
Bodnar RJ. Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite 2016; 122:17-25. [PMID: 27988368 DOI: 10.1016/j.appet.2016.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
The elucidation of the behavioral, neurochemical, neuroanatomical and genetic substrates mediating the development of conditioned flavor preferences (CFP) is one of the multi-faceted scientific contributions that Dr. Anthony Sclafani has made to the study of food intake. This review summarizes the results of thirty-five publications over nearly twenty years of collaborations between the Sclafani and Bodnar laboratories. This includes the different approaches employed to study the orosensory (flavor-flavor) and post-ingestive (flavor-nutrient) processes underlying CFP including its acquisition (learning) and expression. It describes how CFP is elicited by different sugars (sucrose, glucose, fructose) and fats (corn oil) in rats, and how strain-specific CFP effects can be observed through the use of inbred mouse strains to evaluate genetic variance. The roles of pharmacological substrates (dopamine, glutamate, opioids, acetylcholine, GABA, cannabinoids) mediating sugar- and fat-CFP acquisition and expression are elucidated. Finally, neuroanatomical sites of action (nucleus accumbens, amygdala, medial prefrontal and orbital frontal cortices, lateral hypothalamus) are evaluated at which dopamine signaling mediates acquisition and expression of different forms of CFP.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College and the Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States.
| |
Collapse
|
7
|
Rotella FM, Olsson K, Martinez N, Mordo A, Kohen I, Aminov A, Pagirsky J, Yu A, Vig V, Bodnar RJ. Muscarinic, nicotinic and GABAergic receptor signaling differentially mediate fat-conditioned flavor preferences in rats. Pharmacol Biochem Behav 2016; 150-151:14-21. [DOI: 10.1016/j.pbb.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
|
8
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Dela Cruz J, Coke T, Karagiorgis T, Sampson C, Icaza-Cukali D, Kest K, Ranaldi R, Bodnar R. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats. Brain Res Bull 2015; 111:9-19. [DOI: 10.1016/j.brainresbull.2014.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 11/27/2022]
|
10
|
Effects of genetic deletion of endogenous opioid system components on the reinstatement of cocaine-seeking behavior in mice. Neuropsychopharmacology 2014; 39:2974-88. [PMID: 24943644 PMCID: PMC4229567 DOI: 10.1038/npp.2014.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 12/11/2022]
Abstract
The repeated cycles of cessation of consumption and relapse remain the major clinical concern in treating drug addiction. The endogenous opioid system is a crucial component of the reward circuit that participates in the adaptive changes leading to relapse in the addictive processes. We have used genetically modified mice to evaluate the involvement of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) and their main endogenous ligands, the enkephalins derived from proenkephalin (PENK) and prodynorphin (PDYN), in the reinstatement of cocaine-seeking behavior. Constitutive knockout mice of MOR, DOR, PENK, and PDYN, and their wild-type littermates were trained to self-administer cocaine or to seek for palatable food, followed by a period of extinction and finally tested on a cue-induced reinstatement of seeking behavior. The four lines of knockout mice acquired operant cocaine self-administration behavior, although DOR and PENK knockout mice showed less motivation for cocaine than wild-type littermates. Moreover, cue-induced relapse was significantly decreased in MOR and DOR knockout mice. In contrast, PDYN knockout mice showed a slower extinction and increased relapse than wild-type littermates. C-Fos expression analysis revealed differential activation in brain areas related with memory and reward in these knockout mice. No differences were found in any of the four genotypes in operant responding to obtain palatable food, indicating that the changes revealed in knockout mice were not due to unspecific deficit in operant performance. Our results indicate that MOR, DOR, and PDYN have a differential role in cue-induced reinstatement of cocaine-seeking behavior.
Collapse
|
11
|
Malkusz DC, Yenko I, Rotella FM, Banakos T, Olsson K, Dindyal T, Vig V, Bodnar RJ. Dopamine receptor signaling in the medial orbital frontal cortex and the acquisition and expression of fructose-conditioned flavor preferences in rats. Brain Res 2014; 1596:116-25. [PMID: 25446441 DOI: 10.1016/j.brainres.2014.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC) antagonists blocked fructose-conditioned flavor preference (CFP) acquisition and expression. Fructose-CFP acquisition was eliminated by medial prefrontal cortex (mPFC) SCH and mPFC or amygdala (AMY) RAC. Fructose-CFP expression was reduced following SCH or RAC in AMY or nucleus accumbens (NAc). The present study examined fructose-CFP acquisition and expression following SCH and RAC in the medial orbital frontal cortex (MOFC), another ventral tegmental area DA target. For fructose-CFP acquisition, five groups of rats received vehicle, SCH (24 or 48 nmol) or RAC (24 or 48 nmol) in the MOFC 0.5h prior to 8 training sessions with one flavor (CS+/Fs) mixed in 8% fructose and 0.2% saccharin, and another flavor (CS-/s) mixed in 0.2% saccharin. In six 2-bottle choice tests in 0.2% saccharin, similar fructose-CFP preferences occurred in groups trained with vehicle (76-77%), SCH24 (69-78%), SCH48 (70-74%) and RAC48 (85-92%). RAC24-trained rats displayed significant CS+ preferences during the first (79%) and third (71%), but not second (58%) test pair. For fructose-CFP expression, rats similarly trained with CS+/Fs and CS- solutions received 2-bottle choice tests following MOFC injections of SCH or RAC (12-48 nmol). CS+ preference expression was significantly reduced by RAC (48 nmol: 58%), but not SCH relative to vehicle (78%). A control group receiving RAC in the dorsolateral prefrontal cortex displayed fructose-CFP expression similar to vehicle. These data demonstrate differential frontal cortical DA mediation of fructose-CFP with mPFC D1 and D2 signaling exclusively mediating acquisition, and MOFC D2 signaling primarily mediating expression.
Collapse
Affiliation(s)
- Danielle C Malkusz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Ira Yenko
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Francis M Rotella
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Theodore Banakos
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Kerstin Olsson
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Trisha Dindyal
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Vishal Vig
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States; Department of Psychology, Queens College, City University of New York, New York, NY, United States.
| |
Collapse
|
12
|
Dela Cruz JAD, Coke T, Icaza-Cukali D, Khalifa N, Bodnar RJ. Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats. Neurobiol Learn Mem 2014; 114:223-30. [PMID: 25065714 DOI: 10.1016/j.nlm.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/02/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
Animals learn to prefer flavors associated with the intake of sugar (sucrose, fructose, glucose) and fat (corn oil: CO) solutions. Conditioned flavor preferences (CFP) have been elicited for sugars based on orosensory (flavor-flavor: e.g., fructose-CFP) and post-ingestive (flavor-nutrient: e.g., intragastric (IG) glucose-CFP) processes. Dopamine (DA) D1, DA D2 and NMDA receptor antagonism differentially eliminate the acquisition and expression of fructose-CFP and IG glucose-CFP. However, pharmacological analysis of fat (CO)-CFP, mediated by both flavor-flavor and flavor-nutrient processes, indicated that acquisition and expression of fat-CFP were minimally affected by systemic DA D1 and D2 antagonists, and were reduced by NMDA antagonism. Therefore, the present study examined whether systemic DA D1 (SCH23390), DA D2 (raclopride) or NMDA (MK-801) receptor antagonists altered acquisition and/or expression of CFP induced by oral glucose that should be mediated by both flavor-flavor and flavor-nutrient processes. Oral glucose-CFP was elicited following by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in 8% glucose and another flavor (CS-, e.g., grape) mixed in 2% glucose. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 2% glucose occurred 0.5 h after systemic administration of vehicle (VEH), SCH23390 (50-800 nmol/kg), raclopride (50-800 nmol/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (94-95%) which was significantly though marginally attenuated by SCH23390 (67-70%), raclopride (77%) or MK-801 (70%) at doses that also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH, SCH23390 (50-400 nmol/kg), raclopride (50-400 nmol/kg) or MK-801 (100 μg/kg) 0.5 h prior to ten 1-bottle training trials with CS+/8%G and CS-/2%G training solutions that was followed by six 2-bottle CS+ vs. CS- tests in 2% glucose conducted without injections. The significant and persistent CS+ preferences observed in the VEH (94-98%) group was significantly reduced by rats receiving SCH23390 at 400 nmol/kg (65-73%), raclopride at 200 or 400 nmol/kg (76-82%) or MK-801 at 100 μg/kg (68-69%). Thus, systemic DA D1 and DA D2 receptor antagonism produced smaller reductions in the expression of oral glucose-CFP relative to fructose-CFP or IG-glucose-CFP. Correspondingly, systemic DA D1, DA D2 and NMDA receptor antagonism also produced smaller reductions in the acquisition of oral glucose-CFP relative to fructose-CFP or IG-glucose-CFP. These data suggest, but do not prove, that the magnitude and persistence of these receptor antagonist effects upon sugar-CFP might depend upon the individual or combined engagement of flavor-flavor and flavor-nutrient processes.
Collapse
Affiliation(s)
- J A D Dela Cruz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, United States
| | - T Coke
- Department of Psychology, Queens College, City University of New York, United States
| | - D Icaza-Cukali
- Department of Psychology, Queens College, City University of New York, United States
| | - N Khalifa
- Department of Psychology, Queens College, City University of New York, United States
| | - R J Bodnar
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, United States; Department of Psychology, Queens College, City University of New York, United States.
| |
Collapse
|
13
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Buttigieg A, Flores O, Hernández A, Sáez-Briones P, Burgos H, Morgan C. Preference for high-fat diet is developed by young Swiss CD1 mice after short-term feeding and is prevented by NMDA receptor antagonists. Neurobiol Learn Mem 2013; 107:13-8. [PMID: 24211700 DOI: 10.1016/j.nlm.2013.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 10/01/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Abstract
Obesity is a worldwide epidemic that is increasing at an alarming rate. One of its causes is the increased availability and consumption of diets rich in fat. In the present study, we investigated the effects of short-term consumption of a high fat diet (HFD) on dietary preferences in Swiss CD1 mice and its relation in time to specific metabolic effects. Mice that were weaned 21days postpartum and fed a chow diet for one week were afterward subjected to a diet preference test for 5days, exposed to both a regular diet (RD) and HFD. We found that mice did not show any preferences. In a second experiment, two groups of mice that were weaned 21days postpartum and subjected to a chow diet for one week were fed either RD or HFD for 18days, and a diet preference test was performed for 5days. After this short-term consumption of HFD, mice preferred HFD, while mice subjected to RD did not show any preference. Importantly, no differences in blood glucose levels were found between the groups prior to and after the experiments. The results support our hypothesis that the preference for HFD is not a spontaneous behavior in CD1 mice, but it can be observed after short-term consumption; additionally, this preference develops before metabolic effects appear. Finally, this preference for HFD could not be observed when the mice were i.p. injected daily with low doses of the NMDA receptor antagonists, ketamine, ifenprodil or MK-801 during the HFD feeding period. These data suggest that acquisition of dietary preference for HFD is a NMDA receptor-dependent learning process.
Collapse
Affiliation(s)
- Angie Buttigieg
- Laboratorio de Hormonas y Receptores, sección Neurociencia Nutricional, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile
| | - Osvaldo Flores
- Laboratorio de Hormonas y Receptores, sección Neurociencia Nutricional, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH)
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH)
| | - Héctor Burgos
- Escuela de Psicología, Facultad de Humanidades, Universidad de Santiago de Chile (USACH); Escuela de Psicología, Facultad de Ciencias Jurídicas y Sociales, Universidad Autónoma de Chile
| | - Carlos Morgan
- Laboratorio de Hormonas y Receptores, sección Neurociencia Nutricional, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile.
| |
Collapse
|
15
|
Kraft TT, Yakubov Y, Huang D, Fitzgerald G, Acosta V, Natanova E, Touzani K, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonism effects on the acquisition and expression of fat-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2013; 110:127-36. [DOI: 10.1016/j.pbb.2013.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/19/2013] [Accepted: 06/22/2013] [Indexed: 11/25/2022]
|