1
|
Koloski MF, O'Hearn CM, Frankot M, Giesler LP, Ramanathan DS, Vonder Haar C. Behavioral Interventions Can Improve Brain Injury-Induced Deficits in Behavioral Flexibility and Impulsivity Linked to Impaired Reward-Feedback Beta Oscillations. J Neurotrauma 2024; 41:e1721-e1737. [PMID: 38450560 PMCID: PMC11339556 DOI: 10.1089/neu.2023.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Traumatic brain injury (TBI) affects a large population, resulting in severe cognitive impairments. Although cognitive rehabilitation is an accepted treatment for some deficits, studies in patients are limited in ability to probe physiological and behavioral mechanisms. Therefore, animal models are needed to optimize strategies. Frontal TBI in a rat model results in robust and replicable cognitive deficits, making this an ideal candidate for investigating various behavioral interventions. In this study, we report three distinct frontal TBI experiments assessing behavior well into the chronic post-injury period using male Long-Evans rats. First, we evaluated the impact of frontal injury on local field potentials recorded simultaneously from 12 brain regions during a probabilistic reversal learning (PbR) task. Next, a set of rats were tested on a similar PbR task or an impulsivity task (differential reinforcement of low-rate behavior [DRL]) and half received salient cues associated with reinforcement contingencies to encourage engagement in the target behavior. After intervention on the PbR task, brains were stained for markers of activity. On the DRL task, cue relevance was decoupled from outcomes to determine if beneficial effects persisted on impulsive behavior. TBI decreased the ability to detect reinforced outcomes; this was evident in task performance and reward-feedback signals occurring at beta frequencies in lateral orbitofrontal cortex (OFC) and associated frontostriatal regions. The behavioral intervention improved flexibility and increased OFC activity. Intervention also reduced impulsivity, even after cues were decoupled, which was partially mediated by improvements in timing behavior. The current study established a platform to begin investigating cognitive rehabilitation in rats and identified a strong role for dysfunctional OFC signaling in probabilistic learning after frontal TBI.
Collapse
Affiliation(s)
- Miranda F. Koloski
- Mental Health, VA San Diego Medical Center, San Diego, California, USA
- Center of Excellence for Stress and Mental Health, San Diego, California, USA
- Department of Psychiatry, University of California-San Diego, San Diego, California, USA
| | | | - Michelle Frankot
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, Ohio, USA
| | - Lauren P. Giesler
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Dhakshin S. Ramanathan
- Mental Health, VA San Diego Medical Center, San Diego, California, USA
- Center of Excellence for Stress and Mental Health, San Diego, California, USA
- Department of Psychiatry, University of California-San Diego, San Diego, California, USA
| | - Cole Vonder Haar
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Abbas H, Sayed NSE, Youssef NAHA, M. E. Gaafar P, Mousa MR, Fayez AM, Elsheikh MA. Novel Luteolin-Loaded Chitosan Decorated Nanoparticles for Brain-Targeting Delivery in a Sporadic Alzheimer's Disease Mouse Model: Focus on Antioxidant, Anti-Inflammatory, and Amyloidogenic Pathways. Pharmaceutics 2022; 14:1003. [PMID: 35631589 PMCID: PMC9148113 DOI: 10.3390/pharmaceutics14051003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Preparation and evaluation of a non-invasive intranasal luteolin delivery for the management of cognitive dysfunction in Alzheimer's disease (AD) using novel chitosan decorated nanoparticles. Development of luteolin-loaded chitosomes was followed by full in vitro characterization. In vivo efficacy was evaluated using a sporadic Alzheimer's disease (SAD) animal model via intracerebroventricular injection of 3 mg/kg streptozotocin (ICV-STZ). Treatment groups of luteolin suspension and chitosomes (50 mg/kg) were then intranasally administered after 5 h of ICV-STZ followed by everyday administration for 21 consecutive days. Behavioral, histological, immunohistochemical, and biochemical studies were conducted. Chitosomes yielded promising quality attributes in terms of particle size (PS) (412.8 ± 3.28 nm), polydispersity index (PDI) (0.378 ± 0.07), Zeta potential (ZP) (37.4 ± 2.13 mv), and percentage entrapment efficiency (EE%) (86.6 ± 2.05%). Behavioral findings showed obvious improvement in the acquisition of short-term and long-term spatial memory. Furthermore, histological evaluation revealed an increased neuronal survival rate with a reduction in the number of amyloid plaques. Biochemical results showed improved antioxidant effects and reduced pro-inflammatory mediators' levels. In addition, a suppression by half was observed in the levels of both Aβ aggregation and hyperphosphorylated-tau protein in comparison to the model control group which in turn confirmed the capability of luteolin-loaded chitosomes (LUT-CHS) in attenuating the pathological changes of AD. The prepared nanoparticles are considered a promising safe, effective, and non-invasive nanodelivery system that improves cognitive function in SAD albino mice as opposed to luteolin suspension.
Collapse
Affiliation(s)
- Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza11562, Egypt
| | | | - Passent M. E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21500, Egypt;
| | - Mohamed R. Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed M. Fayez
- Department of Pharmacology and Toxicology, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt;
| | - Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
4
|
OTHMAN MZ, HASSAN Z, CHE HAS AT. Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory. Exp Anim 2022; 71:264-280. [PMID: 35314563 PMCID: PMC9388345 DOI: 10.1538/expanim.21-0120] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Since its development about 40 years ago (1981–2021), Morris water maze has turned into a very popular tool for assessing spatial learning and memory. Its many advantages have ensured its
pertinence to date. These include its effectiveness in evaluating hippocampal-dependent learning and memory, exemption from motivational differences across diverse experimental
manipulations, reliability in various cross-species studies, and adaptability to many experimental conditions with various test protocols. Nonetheless, throughout its establishment, several
experimental and analysis loopholes have galvanized researchers to assess ways in which it could be improved and adapted to fill this gap. Therefore, in this review, we briefly summarize
these developments since the early years of its establishment through to the most recent advancements in computerized analysis, offering more comprehensive analysis paradigms. In addition,
we discuss the adaptability of the Morris water maze across different test versions and analysis paradigms, providing suggestions with regard to the best paradigms for particular
experimental conditions. Hence, the proper selection of the experimental protocols, analysis paradigms, and consideration of the assay’s limitations should be carefully considered. Given
that appropriate measures are taken, with various adaptations made, the Morris water maze will likely remain a relevant tool to assess the mechanisms of spatial learning and memory.
Collapse
|
5
|
Mepham JR, MacFabe DF, Boon FH, Foley KA, Cain DP, Ossenkopp KP. Examining the non-spatial pretraining effect on a water maze spatial learning task in rats treated with multiple intracerebroventricular (ICV) infusions of propionic acid: Contributions to a rodent model of ASD. Behav Brain Res 2021; 403:113140. [PMID: 33508348 DOI: 10.1016/j.bbr.2021.113140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Propionic acid (PPA) is produced by enteric gut bacteria and is a dietary short chain fatty acid. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioural changes, including adverse effects on cognition, similar to those seen in autism spectrum disorders (ASD). Previous research has shown that repeated ICV infusions of PPA result in impaired spatial learning in a Morris water maze (MWM) as evidenced by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than control rats. In the current study rats were first given non-spatial pretraining (NSP) in the water maze in order to familiarize the animals with the general requirements of the non-spatial aspects of the task before spatial training was begun. Then the effects of ICV infusions of PPA on acquisition of spatial learning were examined. PPA treated rats failed to show the positive effects of the non-spatial pretraining procedure, relative to controls, as evidenced by increased search latencies, longer distances travelled, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. Thus, PPA treatment blocked the effects of the pretraining procedure, likely by impairing sensorimotor components or memory of the pretraining.
Collapse
Affiliation(s)
- Jennifer R Mepham
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Derrick F MacFabe
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Francis H Boon
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Kelly A Foley
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Donald P Cain
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada.
| |
Collapse
|
6
|
Buatois A, Gerlai R. Elemental and Configural Associative Learning in Spatial Tasks: Could Zebrafish be Used to Advance Our Knowledge? Front Behav Neurosci 2020; 14:570704. [PMID: 33390911 PMCID: PMC7773606 DOI: 10.3389/fnbeh.2020.570704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Spatial learning and memory have been studied for several decades. Analyses of these processes pose fundamental scientific questions but are also relevant from a biomedical perspective. The cellular, synaptic and molecular mechanisms underlying spatial learning have been intensively investigated, yet the behavioral mechanisms/strategies in a spatial task still pose unanswered questions. Spatial learning relies upon configural information about cues in the environment. However, each of these cues can also independently form part of an elemental association with the specific spatial position, and thus spatial tasks may be solved using elemental (single CS and US association) learning. Here, we first briefly review what we know about configural learning from studies with rodents. Subsequently, we discuss the pros and cons of employing a relatively novel laboratory organism, the zebrafish in such studies, providing some examples of methods with which both elemental and configural learning may be explored with this species. Last, we speculate about future research directions focusing on how zebrafish may advance our knowledge. We argue that zebrafish strikes a reasonable compromise between system complexity and practical simplicity and that adding this species to the studies with laboratory rodents will allow us to gain a better understanding of both the evolution of and the mechanisms underlying spatial learning. We conclude that zebrafish research will enhance the translational relevance of our findings.
Collapse
Affiliation(s)
- Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Diacylglycerol Lipase-Alpha Regulates Hippocampal-Dependent Learning and Memory Processes in Mice. J Neurosci 2019; 39:5949-5965. [PMID: 31127001 DOI: 10.1523/jneurosci.1353-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022] Open
Abstract
Diacylglycerol lipase-α (DAGL-α), the principal biosynthetic enzyme of the endogenous cannabinoid 2-arachidonylglycerol (2-AG) on neurons, plays a key role in CB1 receptor-mediated synaptic plasticity and hippocampal neurogenesis, but its contribution to global hippocampal-mediated processes remains unknown. Thus, the present study examines the role that DAGL-α plays on LTP in hippocampus, as well as in hippocampal-dependent spatial learning and memory tasks, and on the production of endocannabinoid and related lipids through the use of complementary pharmacologic and genetic approaches to disrupt this enzyme in male mice. Here we show that DAGL-α gene deletion or pharmacological inhibition disrupts LTP in CA1 of the hippocampus but elicits varying magnitudes of behavioral learning and memory deficits in mice. In particular, DAGL-α-/- mice display profound impairments in the Object Location assay and Morris Water Maze (MWM) acquisition engaging in nonspatial search strategies. In contrast, WT mice administered the DAGL-α inhibitor DO34 show delays in MWM acquisition and reversal learning, but no deficits in expression, extinction, forgetting, or perseveration processes in this task, as well as no impairment in Object Location. The deficits in synaptic plasticity and MWM performance occur in concert with decreased 2-AG and its major lipid metabolite (arachidonic acid), but increases of a 2-AG diacylglycerol precursor in hippocampus, PFC, striatum, and cerebellum. These novel behavioral and electrophysiological results implicate a direct and perhaps selective role of DAGL-α in the integration of new spatial information.SIGNIFICANCE STATEMENT Here we show that genetic deletion or pharmacologic inhibition of diacylglycerol lipase-α (DAGL-α) impairs hippocampal CA1 LTP, differentially disrupts spatial learning and memory performance in Morris water maze (MWM) and Object Location tasks, and alters brain levels of endocannabinoids and related lipids. Whereas DAGL-α-/- mice exhibit profound phenotypic spatial memory deficits, a DAGL inhibitor selectively impairs the integration of new information in MWM acquisition and reversal tasks, but not memory processes of expression, extinction, forgetting, or perseveration, and does not affect performance in the Objection Location task. The findings that constitutive or short-term DAGL-α disruption impairs learning and memory at electrophysiological and selective in vivo levels implicate this enzyme as playing a key role in the integration of new spatial information.
Collapse
|
8
|
Lin LW, Tsai FS, Yang WT, Lai SC, Shih CC, Lee SC, Wu CR. Differential change in cortical and hippocampal monoamines, and behavioral patterns in streptozotocin-induced type 1 diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1026-1034. [PMID: 30524676 PMCID: PMC6281071 DOI: 10.22038/ijbms.2018.29810.7197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objectives Diabetes mellitus (DM) is a widespread metabolic disorder worldwide. Clinical physicians have found diabetic patients have mild to middle cognitive dysfunction and an alteration of brain monoaminergic function. This study explored the change in various patterns of behavioral models and brain monoamine function under streptozotocin (STZ)-induced type 1 diabetes. Materials and Methods We established a type 1 DM model via intravenous injection with STZ (65 mg/kg) in rats. Three weeks after the STZ injection, various behavioral measurements including the inhibitory avoidance test, active avoidance test and Morris water maze were conducted. Finally, all rats were dissected and the concentrations of monoamines and their metabolites in cortex and hippocampus were measured by high performance liquid chromatography with electrochemical detection. Results We found that STZ induced type 1 diabetes (hyperglycemia and lack of insulin) in rats. STZ-induced diabetic rats had cognitive impairment in acquisition sessions and long-term retention of the active avoidance test. STZ-induced diabetic rats also had cognitive impairment in spatial learning, reference and working memory of the Morris water maze. STZ significantly reduced concentrations of norepinephrine (NE) in the cortex and dopamine (DA) in the hippocampus, but increased concentrations of DA and serotonin (5-HT) in the cortex 35 days after injection. The concentration of 5-HT in the hippocampus was also significantly increased. Conclusion The data suggested that this cognitive impairment after a short-term period of STZ injection might be related to cortical NE dysfunction, differential alteration of cortical and hippocampal DA function, and brain 5-HT hyperfunction.
Collapse
Affiliation(s)
- Li-Wei Lin
- School of Chinese Medicines for Post-Baccal aureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Fan-Shiu Tsai
- School of Chinese Medicines for Post-Baccal aureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Wen-Ta Yang
- Taichung Hospital, Ministry of Health and Welfare, Taichung 402, Taiwan
| | - Shang-Chih Lai
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97071, Taiwan
| | - Chun-Chuan Shih
- School of Chinese Medicines for Post-Baccal aureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Sheng-Chi Lee
- Pintung Branch, Kaohsiung Veterans General Hospital, Pintung 91245, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 402, Taiwan
| |
Collapse
|
9
|
Zou H, Hurwitz M, Fowler L, Wagner AK. Abbreviated levetiracetam treatment effects on behavioural and histological outcomes after experimental TBI. Brain Inj 2016; 29:78-85. [PMID: 25255156 DOI: 10.3109/02699052.2014.955528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Long-term prophylactic treatment with levetiracetam (LEV) has multiple neuroprotective effects in a traumatic brain injury (TBI) rat model. Although a rational time-frame of seizure prophylactic treatment with LEV for after TBI is not well established, clinical prophylaxis with LEV often includes treatment duration similar to clinical treatment guidelines with Phenytoin. Thus, this study investigated the effects of abbreviated LEV treatment on behavioural function and histological evidence of neuroprotection. RESEARCH DESIGN Pre-clinical trial of abbreviated LEV dosing in an experimental model of TBI Methods: After either controlled cortical impact (CCI) injury or sham surgery, rats received three 50 mg kg(-1) doses over 24 hours or vehicle. After injury/sham surgery, beam performance, spatial learning, contusion volume size and hippocampal neuron survival were assessed. RESULTS Abbreviated LEV did not improve motor or cognitive performance after TBI. Further, abbreviated LEV did not improve hippocampal neuron sparing or contusion volumes compared with vehicle controls. CONCLUSIONS Together with previous work assessing daily LEV treatment, these results suggest that longer-term therapy may be required to confer beneficial effects within these domains. These findings may guide (1) future experimental studies assessing minimal effective dosing for neuroprotection and anti-epileptogenesis and (2) treatment guideline updates for seizure prophylaxis post-TBI.
Collapse
Affiliation(s)
- Huichao Zou
- a Department of Physical Medicine and Rehabilitation and
| | | | | | | |
Collapse
|
10
|
Zou J, Wang M, Uchiumi O, Shui Y, Ishigaki Y, Liu X, Tajima N, Akai T, Iizuka H, Kato N. Learning impairment by minimal cortical injury in a mouse model of Alzheimer׳s disease. Brain Res 2016; 1637:56-63. [DOI: 10.1016/j.brainres.2016.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 11/17/2022]
|
11
|
Olmos-Serrano JL, Tyler WA, Cabral HJ, Haydar TF. Longitudinal measures of cognition in the Ts65Dn mouse: Refining windows and defining modalities for therapeutic intervention in Down syndrome. Exp Neurol 2016; 279:40-56. [PMID: 26854932 DOI: 10.1016/j.expneurol.2016.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
Mouse models have provided insights into adult changes in learning and memory in Down syndrome, but an in-depth assessment of how these abnormalities develop over time has never been conducted. To address this shortcoming, we conducted a longitudinal behavioral study from birth until late adulthood in the Ts65Dn mouse model to measure the emergence and continuity of learning and memory deficits in individuals with a broad array of tests. Our results demonstrate for the first time that the pace at which neonatal and perinatal milestones are acquired is correlated with later cognitive performance as an adult. In addition, we find that life-long behavioral indexing stratifies mice within each genotype. Our expanded assessment reveals that diminished cognitive flexibility, as measured by reversal learning, is the most robust learning and memory impairment in both young and old Ts65Dn mice. Moreover, we find that reversal learning degrades with age and is therefore a useful biomarker for studying age-related decline in cognitive ability. Altogether, our results indicate that preclinical studies aiming to restore cognitive function in Ts65Dn should target both neonatal milestones and reversal learning in adulthood. Here we provide the quantitative framework for this type of approach.
Collapse
Affiliation(s)
- J Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, L-1004, Boston, MA 02118, United States.
| | - William A Tyler
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, L-1004, Boston, MA 02118, United States.
| | - Howard J Cabral
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States.
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, L-1004, Boston, MA 02118, United States.
| |
Collapse
|
12
|
Assessment of Cognitive Function in the Water Maze Task: Maximizing Data Collection and Analysis in Animal Models of Brain Injury. Methods Mol Biol 2016; 1462:553-71. [PMID: 27604738 DOI: 10.1007/978-1-4939-3816-2_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Animal models play a critical role in understanding the biomechanical, pathophysiological, and behavioral consequences of traumatic brain injury (TBI). In preclinical studies, cognitive impairment induced by TBI is often assessed using the Morris water maze (MWM). Frequently described as a hippocampally dependent spatial navigation task, the MWM is a highly integrative behavioral task that requires intact functioning in numerous brain regions and involves an interdependent set of mnemonic and non-mnemonic processes. In this chapter, we review the special considerations involved in using the MWM in animal models of TBI, with an emphasis on maximizing the degree of information extracted from performance data. We include a theoretical framework for examining deficits in discrete stages of cognitive function and offer suggestions for how to make inferences regarding the specific nature of TBI-induced cognitive impairment. The ultimate goal is more precise modeling of the animal equivalents of the cognitive deficits seen in human TBI.
Collapse
|
13
|
Bogachouk AP, Storozheva ZI, Solovjeva OA, Sherstnev VV, Zolotarev YA, Azev VN, Rodionov IL, Surina EA, Lipkin VM. Comparative study of the neuroprotective and nootropic activities of the carboxylate and amide forms of the HLDF-6 peptide in animal models of Alzheimer's disease. J Psychopharmacol 2016; 30:78-92. [PMID: 26628555 DOI: 10.1177/0269881115616393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative study of the neuroprotective and nootropic activities of two pharmaceutical substances, the HLDF-6 peptide (HLDF-6-OH) and its amide form (HLDF-6-NH2), was conducted. The study was performed in male rats using two models of a neurodegenerative disorder. Cognitive deficit in rats was induced by injection of the beta-amyloid fragment 25-35 (βA 25-35) into the giant-cell nucleus basalis of Meynert or by coinjection of βA 25-35 and ibotenic acid into the hippocampus. To evaluate cognitive functions in animals, three tests were used: the novel object recognition test, the conditioned passive avoidance task and the Morris maze. Comparative analysis of the data demonstrated that the neuroprotective activity of HLDF-6-NH2, evaluated by improvement of cognitive functions in animals, surpassed that of the native HLDF-6-OH peptide. The greater cognitive/ behavioral effects can be attributed to improved kinetic properties of the amide form of the peptide, such as the character of biodegradation and the half-life time. The effects of HLDF-6-NH2 are comparable to, or exceed, those of the reference compounds. Importantly, HLDF-6-NH2 exerts its effects at much lower doses than the reference compounds.
Collapse
Affiliation(s)
- Anna P Bogachouk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | | | | | | | | | - Vyacheslav N Azev
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Pushchino, Russia
| | - Igor L Rodionov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Pushchino, Russia
| | - Elena A Surina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Valery M Lipkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| |
Collapse
|
14
|
Edwards CM, Kumar K, Koesarie K, Brough E, Ritter AC, Brayer SW, Thiels E, Skidmore ER, Wagner AK. Visual Priming Enhances the Effects of Nonspatial Cognitive Rehabilitation Training on Spatial Learning After Experimental Traumatic Brain Injury. Neurorehabil Neural Repair 2015; 29:897-906. [PMID: 25665829 PMCID: PMC4530101 DOI: 10.1177/1545968315570326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous work demonstrates that spatial (explicit) and nonspatial (implicit) elements of place learning in the Morris water maze (MWM) task can be dissociated and examined in the context of experimental traumatic brain injury (TBI). Providing nonspatial cognitive training (CT) after injury can improve place learning compared with untrained controls. In the present study, we hypothesized that brief exposure to extra-maze cues, in conjunction with CT, may further improve MWM performance and extra-maze cue utilization compared with CT alone. Adult male Sprague-Dawley rats (n = 66) received controlled cortical impact (CCI) injury or sham surgery. Beginning day 8 postsurgery, CCI and sham rats received 6 days of no training (NT) or CT with/without brief, noncontextualized exposure to extra-maze cues (BE and CT, respectively). Acquisition (days 14-18), visible platform (VP; day 19), carryover (CO; days 20-26), and periodic probe trials were performed. Platform latencies, peripheral and target zone time allocation, and search strategies were assessed. CCI/BE rats had shorter acquisition trial latencies than CCI/NT (P < .001) and tended to have shorter latencies than CCI/CT rats (P < .10). Both BE and CT reduced peripheral zone swimming for CCI rats versus CCI/NT. CCI/BE animals increased spatial swim strategies from day 14 to day 18 relative to CCI/CT and showed similar swim strategy selection to the Sham/NT group. These data suggest that visual priming improves initial place learning in the MWM. These results support the visual priming response as another clinically relevant experimental rehabilitation construct, to use when assessing injury and treatment effects of behavioral and pharmacological therapies on cognition after TBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edda Thiels
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
15
|
Skidmore ER. Training to Optimize Learning after Traumatic Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2015; 3:99-105. [PMID: 26217546 PMCID: PMC4514532 DOI: 10.1007/s40141-015-0081-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
One of the major foci of rehabilitation after traumatic brain injury is the design and implementation of interventions to train individuals to learn new knowledge and skills or new ways to access and execute previously acquired knowledge and skills. To optimize these interventions, rehabilitation professionals require a clear understanding of how traumatic brain injury impacts learning, and how specific approaches may enhance learning after traumatic brain injury. This brief conceptual review provides an overview of learning, the impact of traumatic brain injury on explicit and implicit learning, and the current state of the science examining selected training approaches designed to advance learning after traumatic brain injury. Potential directions for future scientific inquiry are discussed throughout the review.
Collapse
Affiliation(s)
- Elizabeth R. Skidmore
- Department of Occupational Therapy, University of Pittsburgh, 5012 Forbes Tower, Pittsburgh, PA 15260, Telephone: (412) 383-6617, Telefax: (412) 383-6613
| |
Collapse
|
16
|
Brayer SW, Ketcham S, Zou H, Hurwitz M, Henderson C, Fuletra J, Kumar K, Skidmore E, Thiels E, Wagner AK. Developing a clinically relevant model of cognitive training after experimental traumatic brain injury. Neurorehabil Neural Repair 2014; 29:483-95. [PMID: 25239938 DOI: 10.1177/1545968314550367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Following traumatic brain injury (TBI), clinical cognitive training paradigms harness implicit and explicit learning and memory systems to improve function; however, these systems are differentially affected by TBI, highlighting the need for an experimental TBI model that can test efficacy of cognitive training approaches. OBJECTIVES To develop a clinically relevant experimental cognitive training model using the Morris water maze (MWM) wherein training on implicitly learned task components was provided to improve behavioral performance post-TBI. METHODS Eighty-one adult male rats were divided by injury status (controlled cortical impact [CCI]/Sham), non-spatial cognitive training (CogTrained/No-CogTrained), and extra-maze cues (Cued/Non-Cued) during MWM testing. Platform latencies, thigmotaxis, and search strategies were assessed during MWM trials. RESULTS Cognitive training was associated with improved platform latencies, reduced thigmotaxis, and more effective search strategy use for Sham and CCI rats. In the Cued and Non-Cued MWM paradigm, there were no differences between CCI/CogTrained and Sham/No-CogTrained groups. During novel testing conditions, CogTrained groups applied implicitly learned knowledge/skills; however, sham-cued CogTrained/rats better incorporated extramaze cues into their search strategy than the CCI-Cued group. Cognitive training had no effects on contusion size or hippocampal cell survival. CONCLUSIONS The results provide evidence that CCI-CogTrained rats that learned the nonspatial components of the MWM task applied these skills during multiple conditions of the place-learning task, thereby mitigating cognitive deficits typically associated with this injury model. The results show that a systematic application of clinically relevant constructs associated with cognitive training paradigms can be used with experimental TBI to affect place learning.
Collapse
Affiliation(s)
- Samuel W Brayer
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Scott Ketcham
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Huichao Zou
- Department of Physical Medicine and Rehabilitation, Safar Center for Resuscitation Research, University of Pittsburgh
| | - Max Hurwitz
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | | | - Jay Fuletra
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Krishma Kumar
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | | | - Edda Thiels
- Department of Neurobiology, University of Pittsburgh
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, Safar Center for Resuscitation Research, University of Pittsburgh
| |
Collapse
|
17
|
Uysal N, Kiray M, Sisman AR, Camsari UM, Gencoglu C, Baykara B, Cetinkaya C, Aksu I. Effects of voluntary and involuntary exercise on cognitive functions, and VEGF and BDNF levels in adolescent rats. Biotech Histochem 2014; 90:55-68. [PMID: 25203492 DOI: 10.3109/10520295.2014.946968] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regular treadmill running during adolescence improves learning and memory in rats. During adolescence, the baseline level of stress is thought to be greater than during other periods of life. We investigated the effects of voluntary and involuntary exercise on the prefrontal cortex and hippocampus, vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF) levels, and spatial learning, memory and anxiety in adolescent male and female rats. The voluntary exercise group was given free access to a running wheel for 6 weeks. The involuntary exercise group was forced to run on a treadmill for 30 min at 8 m/min 5 days/week for 6 weeks. Improved learning was demonstrated in both exercise groups compared to controls. Neuron density in the CA1 region of the hippocampus, dentate gyrus and prefrontal cortex were increased. Hippocampal VEGF and BDNF levels were increased in both exercise groups compared to controls. In females, anxiety and corticosterone levels were decreased; BDNF and VEGF levels were higher in the voluntary exercise group than in the involuntary exercise group. The adolescent hippocampus is affected favorably by regular exercise. Although no difference was found in anxiety levels as a result of involuntary exercise in males, females showed increased anxiety levels, and decreased VEGF and BDNF levels in the prefrontal cortex after involuntary exercise.
Collapse
Affiliation(s)
- N Uysal
- Department of Physiology, Dokuz Eylul University , Balcova, Izmir , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wagner AK. A Rehabilomics framework for personalized and translational rehabilitation research and care for individuals with disabilities: Perspectives and considerations for spinal cord injury. J Spinal Cord Med 2014; 37:493-502. [PMID: 25029659 PMCID: PMC4166184 DOI: 10.1179/2045772314y.0000000248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Despite many people having similar clinical presentation, demographic factors, and clinical care, outcome can differ for those sustaining significant injury such as spinal cord injury (SCI) and traumatic brain injury (TBI). In addition to traditional demographic, social, and clinical factors, variability also may be attributable to innate (including genetic, transcriptomic proteomic, epigenetic) biological variation that individuals bring to recovery and their unique response to their care and environment. Technologies collectively called "-omics" enable simultaneous measurement of an enormous number of biomolecules that can capture many potential biological contributors to heterogeneity of injury/disease course and outcome. Due to the nature of injury and complex disease, and its associations with impairment, disability, and recovery, rehabilitation does not lend itself to a singular "protocolized" plan of therapy. Yet, by nature and by necessity, rehabilitation medicine operates as a functional model of "Personalized Care". Thus, the challenge for successful programs of translational rehabilitation care and research is to identify viable approaches to examine broad populations, with varied impairments and functional limitations, and to identify effective treatment responses that incorporate personalized protocols to optimize functional recovery. The Rehabilomics framework is a translational model that provides an "-omics" overlay to the scientific study of rehabilitation processes and multidimensional outcomes. Rehabilomics research provides novel opportunities to evaluate the neurobiology of complex injury or chronic disease and can be used to examine methods and treatments for person-centered care among populations with disabilities. Exemplars for application in SCI and other neurorehabilitation populations are discussed.
Collapse
Affiliation(s)
- Amy K. Wagner
- Correspondence to: Amy K. Wagner, MD Department of Physical Medicine and Rehabilitation, Safar Center for Resuscitation Research, University of Pittsburgh, 3471 5th Avenue Suite 202, Pittsburgh, PA 15213, USA.
| |
Collapse
|