1
|
Neves BHSD, Lima KR, de Souza da Rosa AC, Liao G, Perretto AC, Carrazoni GS, Mello-Carpes PB. Effects of NMDA glutamatergic receptors pharmacological stimulation of the ventral tegmental area on the memory deficits induced by maternal deprivation. Brain Res 2024; 1848:149316. [PMID: 39522742 DOI: 10.1016/j.brainres.2024.149316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Maternal deprivation (MD) is a potent stressor during early life and can lead to behavioral changes during adulthood. Several neurochemical mechanisms underlying MD-induced stress have been proposed; among them is the damage caused to dopaminergic neurons in the ventral tegmental area (VTA). We hypothesized that pharmacological stimulation of dopaminergic neurons in VTA by the infusion of an N-Methyl-D-Aspartate (NMDA) receptors agonist (used considering the wide distribution of these glutamatergic receptors in the VTA neurons) can reverse MD-induced memory deficits. Here, we demonstrated that MD affects male and female rats distinctly, with females being more resilient to early-life stress. Furthermore, NMDA pharmacological stimulation of the VTA promotes object recognition (OR) memory persistence in male and female non-MD rats. In males, infusion of NMDA into the VTA immediately after the learning session reverses recognition memory deficits related to MD. Although MD female rats have not shown deficits in OR memory consolidation, the NMDA infusion immediately after the learning session promotes memory persistence. We verified that MD leads to memory deficits in adult male rats, while the females are resilient to early life stress. Furthermore, NMDA pharmacological stimulation of dopaminergic VTA neurons reveals the dopaminergic modulation of OR memory in MD rats, even in females that did not exhibit memory deficits.
Collapse
Affiliation(s)
- Ben-Hur Souto das Neves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Karine Ramires Lima
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Guilherme Liao
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Anna Cecília Perretto
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Guilherme Salgado Carrazoni
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
2
|
Lima KR, Alves N, Lopes LF, Picua SS, da Silva de Vargas L, Daré LR, Ramborger B, Roehrs R, de Gomes MG, Mello-Carpes PB. Novelty facilitates the persistence of aversive memory extinction by dopamine regulation in the hippocampus and ventral tegmental area. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110832. [PMID: 37463639 DOI: 10.1016/j.pnpbp.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Aversive memory extinction comprises a novel learning that blocks retrieving a previously formed traumatic memory. In this sense, aversive memory extinction is an excellent tool for decreasing fear responses. However, this tool it's not effective in the long term because of original memory spontaneous recovery. Thus, searching for alternative strategies that strengthen extinction learning is essential. In the current study, we evaluated the effects of a novel context (i.e., novelty) exposure on aversive memory extinction enhancement over days and the dopaminergic system requirement. Given the purpose, experiments were conducted using 3-month-old male Wistar rats. Animals were trained in inhibitory avoidance (IA). Twenty-four hours later, rats were submitted to a weak extinction protocol. Still, 30 min before the first extinction session, animals were submitted to an exploration of a novel context for 5 min. After, memory retention and persistence were evaluated 24 h, 3, 7, 14, and 21 days later. The exposition of a novel context caused a decrease in aversive responses in all days analyzed and an increase in dopamine levels in the hippocampus. The intrahippocampal infusion of dopamine in the CA1 area or the stimulation of the ventral tegmental area (VTA) by a glutamatergic agonist (NMDA) showed similar effects of novelty. In contrast, VTA inhibition by a gabaergic agonist (muscimol) impaired the persistence of extinction learning induced by novelty exposition and caused a decrease in hippocampal dopamine levels. In summary, we show that novel context exposure promotes persistent aversive memory extinction, revealing the significant role of the dopaminergic system.
Collapse
Affiliation(s)
- Karine Ramires Lima
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Niege Alves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Luiza Freitas Lopes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Steffanie Severo Picua
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Liane da Silva de Vargas
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Bruna Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
3
|
Lima KR, Neves BHSD, Carrazoni GS, Rosa ACDSD, Carriço MRS, Roehrs R, Mello-Carpes PB. Acute physical exercise improves recognition memory via locus coeruleus activation but not via ventral tegmental area activation. Physiol Behav 2023; 272:114370. [PMID: 37797663 DOI: 10.1016/j.physbeh.2023.114370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Both animals and humans have been studied to explore the impact of acute physical exercise (PE) on memory. In rats, a single session of PE enhances the persistence of novel object recognition (NOR) memory, which depends on dopamine and noradrenaline activity in the hippocampus. However, limited research has examined the involvement of other brain regions in this phenomenon. In this study, we investigated the role of the ventral tegmental area (VTA) and locus coeruleus (LC) in modulating the persistence of NOR memory induced by acute PE. After NOR training, some animals underwent a 30 min treadmill PE session, followed by infusion of either vehicle (VEH) or muscimol (MUS) in either the VTA or LC. Other animals did not undergo PE and only received VEH, MUS, or NMDA within the same time window. We evaluated memory recall 1, 7, and 14 days later. Acute PE promoted memory persistence for up to 14 days afterward, similar to NMDA glutamatergic stimulation of the VTA or LC. Moreover, only the LC region was required for the memory improvement induced by acute PE since blocking this region with MUS impaired NOR encoding. Our findings suggest that acute PE can improve learning within a closed time window, and this effect depends on LC, but not VTA, activity.
Collapse
Affiliation(s)
- Karine Ramires Lima
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ben-Hur Souto das Neves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Guilherme Salgado Carrazoni
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Murilo Ricardo Sigal Carriço
- Laboratory of Environmental Chemical and Toxicological Analysis, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Environmental Chemical and Toxicological Analysis, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
4
|
Lapointe T, Francis T, Doray K, Leri F. Enhancement of memory consolidation by an avoidance conditioned stimulus: Modulation by the D3 receptor. Neuropharmacology 2023; 235:109572. [PMID: 37149214 DOI: 10.1016/j.neuropharm.2023.109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Conditioned stimuli (CS) paired with foot-shock can enhance memory consolidation. Because the dopamine D3R has been implicated in mediating various responses to CSs, the current study explored its potential role in modulation of memory consolidation by an avoidance CS. Male Sprague-Dawley rats trained to avoid foot-shocks in a two-way signalled active avoidance task (8 sessions, 30 trials per session, 0.8 mA foot-shock) were pre-treated with the D3R antagonist NGB-2904 (Vehicle, 0.1 or 5 mg/kg) and exposed to the CS immediately after the sample phase of an object recognition memory task. Discrimination ratios were assessed 72 h later. Immediate, but not delayed (6 h), post-sample exposure to the CS enhanced object recognition memory and this effect was dose-dependently blocked by NGB-2904. Control experiments with the beta-noradrenergic receptor antagonist propranolol (10 or 20 mg/kg) and D2R antagonist pimozide (0.2 or 0.6 mg/kg) indicated that NGB-2904 targeted post-training memory consolidation. Exploring the pharmacological selectivity of the D3R effect, it was found that: 1) 5 mg/kg NGB-2904 blocked conditioned memory modulation produced by post-sample exposure to a "weak" CS (one day of avoidance training) and concurrent stimulation of catecholamine activity by 10 mg/kg bupropion; 2) post-sample exposure to a "weak" CS and concurrent administration of the D3R agonist 7-OH-DPAT (1 mg/kg) enhanced consolidation of object memory. Finally, because 5 mg/kg NGB-2904 had no effect on modulation by avoidance training in the presence of foot-shocks, the findings herein support the hypothesis that the D3R plays an important role in modulation of memory consolidation by CSs.
Collapse
Affiliation(s)
- Thomas Lapointe
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Travis Francis
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Kamrani Doray
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
5
|
Ramirez-Mejia G, Gil-Lievana E, Urrego-Morales O, Galvez-Marquez D, Hernández-Ortiz E, Carrillo-Lorenzo JA, Bermúdez-Rattoni F. Salience to remember: VTA-IC dopaminergic pathway activity is necessary for object recognition memory formation. Neuropharmacology 2023; 228:109464. [PMID: 36804534 DOI: 10.1016/j.neuropharm.2023.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Previous studies have shown that dopaminergic activity modulates the salience of novel stimuli enabling the formation of recognition memories. In this work, we hypothesize that dopamine released into the insular cortex (IC) from the ventral tegmental area (VTA) inputs enables the acquisition to consolidate object recognition memory. It has been reported that short training produces weak recognition memories; on the contrary, longer training produces lasting and robust recognition memories. Using a Cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model, we photostimulated the VTA-IC dopaminergic pathway during short training or photoinhibited the same pathway during long training while mice explored objects. Our results showed that the photostimulation of the VTA-IC pathway during a short training enables the acquisition of recognition memory. Conversely, photoinhibition of the same pathway during a long training prevents the acquisition of recognition memory. Interestingly, the exploration time of the objects under photoinhibition or photostimulation of the dopaminergic VTA-IC pathway was not altered. Significantly, this enhancement of acquisition of the object recognition memory through the photostimulation of the VTA dopaminergic neurons could be impaired by the blockage of the D1-like receptors into the IC, either before or after the photostimulation. Altogether, our results suggest that dopamine released by the VTA is required during the acquisition to consolidate the object recognition memory through D1-like receptors into the IC without affecting the activity or the motivation to explore objects.
Collapse
Affiliation(s)
- Gerardo Ramirez-Mejia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Oscar Urrego-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Donovan Galvez-Marquez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Eduardo Hernández-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - José Alberto Carrillo-Lorenzo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Rossato JI, Radiske A, Gonzalez MC, Bevilaqua LRM, Cammarota M. On the effect of hippocampal c-Jun N-terminal kinase inhibition on object recognition memory. Front Behav Neurosci 2022; 16:1052124. [PMID: 36578877 PMCID: PMC9790984 DOI: 10.3389/fnbeh.2022.1052124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) phosphorylates the transcription factor c-Jun in response to stress stimuli and contributes to both hippocampal synaptic plasticity and memory processing in mammals. Object recognition memory (ORM) is essential for remembering facts and events. In rodents, ORM consolidation and reconsolidation require a functional hippocampus. However, the possible involvement of hippocampal JNK on ORM processing has not yet been studied. Here we show that when injected into dorsal CA1 5 min, but not 6 h, after training adult male rats in the novel object recognition learning task, the JNK inhibitor SP600125 impaired ORM for at least 7 days without affecting exploratory activity, short-term ORM retention, or the functional integrity of the hippocampus. SP600125 did not hinder ORM retention when given in CA1 after a memory reactivation session carried out 24 h post-training in the presence of the same two objects presented during the training session, but caused time-dependent amnesia when one of the objects presented at training was replaced by a different but behaviorally equivalent novel one. Taken together, our results indicate that hippocampal JNK activity is necessary for ORM consolidation and reconsolidation but not for ORM recall or short-term retention.
Collapse
Affiliation(s)
- Janine I. Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil,Department of Physiology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil,Edmond and Lily Safra International Institute of Neuroscience, Macaíba, Rio Grande do Norte, Brazil
| | - Maria Carolina Gonzalez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil,Edmond and Lily Safra International Institute of Neuroscience, Macaíba, Rio Grande do Norte, Brazil
| | - Lia R. M. Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil,*Correspondence: Martín Cammarota,
| |
Collapse
|
7
|
Francis T, Wolter M, Leri F. The effects of passive and active administration of heroin, and associated conditioned stimuli, on consolidation of object memory. Sci Rep 2022; 12:20351. [PMID: 36437288 PMCID: PMC9701675 DOI: 10.1038/s41598-022-24585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Mode of administration (i.e., active vs passive) could influence the modulatory action that drugs of abuse exert on memory consolidation. Similarly, drug conditioned stimuli modulate memory consolidation and, therefore, acquisition and extinction of this conditioned response could also be influenced by mode of drug administration. Exploring these questions in male Sprague-Dawley rats, Study 1 assessed memory modulation by post-training 0, 0.3 and 1 mg/kg heroin injected subcutaneously in operant chambers (i.e., drug conditioned context). Study 2 asked a similar question but in rats trained to self-administer 0.05 mg/kg/infusion heroin intravenously, as well as in rats that received identical amounts of intravenous heroin but passively, using a yoked design. The period of heroin exposure was followed by repeated drug-free confinement in the conditioned context, and by sessions during which responses on the active lever had no scheduled consequences. Study 2 also included a cue-induced reinstatement session during which lever responses reactivated a light cue previously paired with intravenous heroin infusions. The post-training effects of injected/self-administered/yoked heroin, extinction and reinstatement sessions on memory consolidation were tested using the object location memory task. It was found that post-sample heroin enhanced memory in injected and yoked, but not self-administering, rats. However, post-sample exposure to the heroin cues (i.e., context or/and light cue) modulated memory equally in all groups. Taken together, these data support the conclusion that mode of administration impacts the cognitive consequences of exposure to drugs but not of environmental stimuli linked to their reinforcing effects.
Collapse
Affiliation(s)
- Travis Francis
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Michael Wolter
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Francesco Leri
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| |
Collapse
|
8
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
Grochecki P, Smaga I, Surowka P, Marszalek-Grabska M, Kalaba P, Dragacevic V, Kotlinska P, Filip M, Lubec G, Kotlinska JH. Novel Dopamine Transporter Inhibitor, CE-123, Ameliorates Spatial Memory Deficits Induced by Maternal Separation in Adolescent Rats: Impact of Sex. Int J Mol Sci 2022; 23:ijms231810718. [PMID: 36142621 PMCID: PMC9503873 DOI: 10.3390/ijms231810718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal separation (MS) is a key contributor to neurodevelopmental disorders, including learning disabilities. To test the hypothesis that dopamine signaling is a major factor in this, an atypical new dopamine transporter (DAT) inhibitor, CE-123, was assessed for its potential to counteract the MS-induced spatial learning and memory deficit in male and female rats. Hence, neonatal rats (postnatal day (PND)1 to 21) were exposed to MS (180 min/day). Next, the acquisition of spatial learning and memory (Barnes maze task) and the expression of dopamine D1 receptor, dopamine transporter (DAT), and the neuronal GTPase, RIT2, which binds DAT in the vehicle-treated rats were evaluated in the prefrontal cortex and hippocampus in the adolescent animals. The results show that MS impairs the acquisition of spatial learning and memory in rats, with a more severe effect in females. Moreover, the MS induced upregulation of DAT and dopamine D1 receptors expression in the prefrontal cortex and hippocampus in adolescent rats. Regarding RIT2, the expression was decreased in the hippocampus for both the males and females, however, in the prefrontal cortex, reduction was found only in the females, suggesting that there are region-specific differences in DAT endocytic trafficking. CE-123 ameliorated the behavioral deficits associated with MS. Furthermore, it decreased the MS-induced upregulation of D1 receptor expression level in the hippocampus. These effects were more noted in females. Overall, CE-123, an atypical DAT inhibitor, is able to restore cognitive impairment and dopamine signaling in adolescent rats exposed to MS—with more evident effect in females than males.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Surowka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
| | | | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81-448-7255; Fax: +48-81-448-7250
| |
Collapse
|
10
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Dopamine activity on the perceptual salience for recognition memory. Front Behav Neurosci 2022; 16:963739. [PMID: 36275849 PMCID: PMC9583835 DOI: 10.3389/fnbeh.2022.963739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
To survive, animals must recognize relevant stimuli and distinguish them from inconspicuous information. Usually, the properties of the stimuli, such as intensity, duration, frequency, and novelty, among others, determine the salience of the stimulus. However, previously learned experiences also facilitate the perception and processing of information to establish their salience. Here, we propose “perceptual salience” to define how memory mediates the integration of inconspicuous stimuli into a relevant memory trace without apparently altering the recognition of the physical attributes or valence, enabling the detection of stimuli changes in future encounters. The sense of familiarity is essential for successful recognition memory; in general, familiarization allows the transition of labeling a stimulus from the novel (salient) to the familiar (non-salient). The novel object recognition (NOR) and object location recognition (OLRM) memory paradigms represent experimental models of recognition memory that allow us to study the neurobiological mechanisms involved in episodic memory. The catecholaminergic system has been of vital interest due to its role in several aspects of recognition memory. This review will discuss the evidence that indicates changes in dopaminergic activity during exposure to novel objects or places, promoting the consolidation and persistence of memory. We will discuss the relationship between dopaminergic activity and perceptual salience of stimuli enabling learning and consolidation processes necessary for the novel-familiar transition. Finally, we will describe the effect of dopaminergic deregulation observed in some pathologies and its impact on recognition memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
- *Correspondence: Federico Bermúdez-Rattoni
| |
Collapse
|
11
|
de Landeta AB, Medina JH, Katche C. Dopamine D1/D5 Receptors in the Retrosplenial Cortex Are Necessary to Consolidate Object Recognition Memory. Front Behav Neurosci 2022; 16:922971. [PMID: 35874647 PMCID: PMC9301477 DOI: 10.3389/fnbeh.2022.922971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
The retrosplenial cortex (RSC) has been widely related to spatial and contextual memory. However, we recently demonstrated that the anterior part of the RSC (aRSC) is required for object recognition (OR) memory consolidation. In this study, we aimed to analyze the requirement of dopaminergic inputs into the aRSC for OR memory consolidation in male rats. We observed amnesia at 24-h long-term memory when we infused SCH23390, a D1/D5 dopamine receptors antagonist, into aRSC immediately after OR training session. However, the same infusion had no effect on OR short-term memory. Then, we analyzed whether the ventral tegmental area (VTA) is necessary for OR consolidation. VTA inactivation by intra-VTA administration of muscimol, a GABAA agonist, immediately after an OR training session induced amnesia when animals were tested at 24 h. Moreover, we observed that this VTA inactivation-induced amnesia was reversed by the simultaneous intra-aRSC delivery of SKF38393, a D1/D5 receptor agonist. Altogether, our results suggest that VTA dopaminergic inputs to aRSC play an important modulatory role in OR memory consolidation.
Collapse
Affiliation(s)
- Ana Belén de Landeta
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Jorge H. Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Cynthia Katche
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- *Correspondence: Cynthia Katche
| |
Collapse
|
12
|
Florido A, Moreno E, Canela EI, Andero R. Nk3R blockade has sex-divergent effects on memory in mice. Biol Sex Differ 2022; 13:28. [PMID: 35690790 PMCID: PMC9188709 DOI: 10.1186/s13293-022-00437-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
Background Memory consolidation is a process required for the formation of long-term memories. The G-protein-coupled receptor (GPCR) neurokinin-3-receptor (Nk3R) and its interactions with sex hormones seem important for the modulation of fear memory consolidation: Nk3R antagonism in male mice impairs fear memory, but enhances it in females. However, the involvement of the Nk3R as a modulator of other memories in both sexes remains unexplored. Methods We use the novel object recognition paradigm to test the effect of a systemic blockade of Nk3R during memory consolidation. Further, we assess the expression of estrogen receptor α, estrogen receptor β, and androgen receptor and heterodimerization with Nk3R in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DH) of mice. Results Nk3R systemic antagonism elicited decreased memory consolidation in males while it enhanced it in females during proestrus. Nk3R analysis in the different subregions of the mPFC and the DH showed a higher expression in males than females. Moreover, females presented upregulation of the androgen receptor in the CA1 and the estrogen receptor beta in the cingulate cortex, CA1, and dentate gyrus. Overall, males presented an upregulation of the estrogen receptor alpha. We also explored the heterodimerization of GCPR membrane sex hormone receptors with the Nk3R. We found a higher percentage of Nk3R-membrane G-protein estrogen receptors heterodimers in the prelimbic cortex of the mPFC in females, suggesting an interaction of estradiol with Nk3R in memory consolidation. However, males presented a higher percentage of Nk3R-membrane G-protein androgen receptors heterodimers compared to females, pointing to an interaction of testosterone with Nk3R in memory consolidation. Conclusion These data propose novel ideas on functional interactions between Nk3R, sex hormones, estrogen receptors, and androgen receptors in memory consolidation. Nk3R antagonism reduces recognition memory consolidation in male mice and increases it in proestrus females. Androgen receptor expression is higher in the CA1 compared to DG, CA3, and the mPFC. Estrogen repcetor α expression is higher in males than in females in the DH and mPFC. Estrogen receptor β expression is greater in females than in males in the DG, CA1, and CG. Over 60% of Nk3R in the DH and mPFC is heterodimerized with membrane estrogen receptor and androgen receptor. Nk3R–GPAR is more abundant in males than in proestrus females, whereas Nk3R–GPER is greater in proestrus females compared to males.
Collapse
Affiliation(s)
- Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Estefanía Moreno
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - Enric I Canela
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028, Barcelona, Spain.,Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain. .,Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain. .,Unitat de Neurociència Translacional, Parc Taulí Hospital Universitari, Institut d'Investigació I Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain. .,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
13
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
14
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
15
|
de Landeta AB, Pereyra M, Miranda M, Bekinschtein P, Medina JH, Katche C. Functional connectivity of anterior retrosplenial cortex in object recognition memory. Neurobiol Learn Mem 2021; 186:107544. [PMID: 34737148 DOI: 10.1016/j.nlm.2021.107544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Recognition memory can rely on three components: "what", "where" and "when". Recently we demonstrated that the anterior retrosplenial cortex (aRSC), like the perirhinal cortex (PRH) and unlike the hippocampus (HP), is required for consolidation of the "what" component. Here, we aimed at studying which brain structures interact with the aRSC to process object recognition (OR) memory in rats. We studied the interaction of six brain structures that are connected to the aRSC during OR memory processing: PRH, medial prefrontal cortex (mPFC), anteromedial thalamic nuclei (AM), medial entorhinal cortex (MEC), anterior cingulate cortex (ACC) and the dorsal HP (dHP). We previously described the role of the PRH and dHP, so we first studied the participation of the mPFC, AM, MEC and ACC in OR memory consolidation by bilateral microinfusions of the GABAA receptor agonist muscimol. We observed an impairment in OR long-term memory (LTM) when inactivating the mPFC, the AM and the MEC, but not the ACC. Then, we studied the functional connections by unilateral inactivation of the aRSC and each one of the six structures in the same (ipsilateral) or the opposite (contralateral) hemisphere. Our results showed an amnesic LTM effect in rats with ipsilateral inactivations of aRSC-PRH, aRSC-mPFC, aRSC-AM, or aRSC-MEC. On the other hand, we observed memory impairment when aRSC-ACC were inactivated in opposite hemispheres, and no effect when the aRSC-dHP connection was inactivated. Thus, our ipsilateral inactivation findings reveal that the aRSC and, at least one brain region required in OR LTM processing are essential to consolidate OR memory. In conclusion, our results show that several cortico-cortical and cortico-thalamic pathways are important for OR memory consolidation.
Collapse
Affiliation(s)
- Ana Belén de Landeta
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Pereyra
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Jorge H Medina
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function. Mol Psychiatry 2021; 26:6427-6450. [PMID: 33879865 PMCID: PMC8526653 DOI: 10.1038/s41380-021-01099-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.
Collapse
|
17
|
Wolter M, Lapointe T, Melanson B, Baidoo N, Francis T, Winters BD, Leri F. Memory enhancing effects of nicotine, cocaine, and their conditioned stimuli; effects of beta-adrenergic and dopamine D2 receptor antagonists. Psychopharmacology (Berl) 2021; 238:2617-2628. [PMID: 34175982 DOI: 10.1007/s00213-021-05884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is evidence that post-training exposure to nicotine, cocaine, and their conditioned stimuli (CS), enhance memory consolidation in rats. The present study assessed the effects of blocking noradrenergic and dopaminergic receptors on nicotine and cocaine unconditioned and conditioned memory modulation. METHODS Males Sprague-Dawley rats tested on the spontaneous object recognition task received post-sample exposure to 0.4 mg/kg nicotine, 20 mg/kg cocaine, or their CSs, in combination with 5-10 mg/kg propranolol (PRO; beta-adrenergic antagonist) or 0.2-0.6 mg/kg pimozide (PIM; dopamine D2 receptor antagonist). The CSs were established by confining rats in a chamber (the CS +) after injections of 0.4 mg/kg nicotine, or 20 mg/kg cocaine, for 2 h and in another chamber (the CS -) after injections of vehicle, repeated over 10 days (5 drug/CS + and 5 vehicle/CS - pairings in total). Object memory was tested 72 h post sample in drug-free animals. RESULTS Co-administration of PRO or PIM blocked the memory-enhancing effects of post-training injections of nicotine, cocaine, and, importantly, exposure to their CSs. CONCLUSIONS These data suggest that nicotine, cocaine as well as their conditioned stimuli share actions on overlapping noradrenergic and dopaminergic systems to modulate memory consolidation.
Collapse
Affiliation(s)
- Michael Wolter
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Thomas Lapointe
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Brett Melanson
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Nana Baidoo
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Travis Francis
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
18
|
Muratori BG, Zamberlam CR, Mendes TB, Nozima BHN, Cerutti JM, Cerutti SM. BDNF as a Putative Target for Standardized Extract of Ginkgo biloba-Induced Persistence of Object Recognition Memory. Molecules 2021; 26:3326. [PMID: 34206011 PMCID: PMC8198829 DOI: 10.3390/molecules26113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Despite considerable progress on the study of the effect of standardized extract of Gingko biloba (EGb) on memory processes, our understanding of its role in the persistence of long-term memory (LTM) and the molecular mechanism underlying its effect, particularly episodic-like memory, is limited. We here investigated the effects of EGb on the long-term retention of recognition memory and its persistence and BDNF expression levels in the dorsal hippocampal formation (DHF). Adult male Wistar rats (n = 10/group) were handled for 10 min/5 day. On day 6, the animals were treated with vehicle or 0.4 mg/kg diazepam (control groups) or with EGb (250, 500 or 100 mg/kg) 30 min before the training session (TR1), in which the animals were exposed to two sample objects. On day 7, all rats underwent a second training session (TR2) as described in the TR1 but without drug treatment. Object recognition memory (ORM) was evaluated on day 8 (retention test, T1) and day 9 (persistence test, T2). At the end of T1or T2, animals were decapitated, and DHF samples were frozen at -80 °C for analyses of the differential expression of BDNF by Western blotting. EGb-treated groups spent more time exploring the novel object in T2 and showed the highest recognition index (RI) values during the T1 and T2, which was associated with upregulation of BDNF expression in the DHF in a dose-and session-dependent manner. Our data reveal, for the first time, that EGb treatment before acquisition of ORM promotes persistence of LTM by BDNF differential expression.
Collapse
Affiliation(s)
- Beatriz G. Muratori
- Cellular and Behavioral Pharmacology Laboratory, The Graduate Program in Biological Chemistry, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil; (B.G.M.); (C.R.Z.)
| | - Cláudia R. Zamberlam
- Cellular and Behavioral Pharmacology Laboratory, The Graduate Program in Biological Chemistry, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil; (B.G.M.); (C.R.Z.)
| | - Thaís B. Mendes
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, São Paulo 04039-032, Brazil; (T.B.M.); (B.H.N.N.); (J.M.C.)
| | - Bruno H. N. Nozima
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, São Paulo 04039-032, Brazil; (T.B.M.); (B.H.N.N.); (J.M.C.)
| | - Janete M. Cerutti
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, São Paulo 04039-032, Brazil; (T.B.M.); (B.H.N.N.); (J.M.C.)
| | - Suzete M. Cerutti
- Cellular and Behavioral Pharmacology Laboratory, The Graduate Program in Biological Chemistry, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil; (B.G.M.); (C.R.Z.)
- Department of Biological Science, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
| |
Collapse
|
19
|
Iaccarino L, Sala A, Caminiti SP, Presotto L, Perani D. In vivo MRI Structural and PET Metabolic Connectivity Study of Dopamine Pathways in Alzheimer's Disease. J Alzheimers Dis 2021; 75:1003-1016. [PMID: 32390614 DOI: 10.3233/jad-190954] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by an involvement of brain dopamine (DA) circuitry, the presence of which has been associated with emergence of both neuropsychiatric symptoms and cognitive deficits. OBJECTIVE In order to investigate whether and how the DA pathways are involved in the pathophysiology of AD, we assessed by in vivo neuroimaging the structural and metabolic alterations of subcortical and cortical DA pathways and targets. METHODS We included 54 healthy control participants, 53 amyloid-positive subjects with mild cognitive impairment due to AD (MCI-AD), and 60 amyloid-positive patients with probable dementia due to AD (ADD), all with structural 3T MRI and 18F-FDG-PET scans. We assessed MRI-based gray matter reductions in the MCI-AD and ADD groups within an anatomical a priori-defined Nigrostriatal and Mesocorticolimbic DA pathways, followed by 18F-FDG-PET metabolic connectivity analyses to evaluate network-level metabolic connectivity changes. RESULTS We found significant tissue loss in the Mesocorticolimbic over the Nigrostriatal pathway. Atrophy was evident in the ventral striatum, orbitofrontal cortex, and medial temporal lobe structures, and already plateaued in the MCI-AD stage. Degree of atrophy in Mesocorticolimbic regions positively correlated with the severity of depression, anxiety, and apathy in MCI-AD and ADD subgroups. Additionally, we observed significant alterations of metabolic connectivity between the ventral striatum and fronto-cingulate regions in ADD, but not in MCI-AD. There were no metabolic connectivity changes within the Nigrostriatal pathway. CONCLUSION Our cross-sectional data support a clinically-meaningful, yet stage-dependent, involvement of the Mesocorticolimbic system in AD. Longitudinal and clinical correlation studies are needed to further establish the relevance of DA system involvement in AD.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
20
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. AMPA receptors mediate the pro-cognitive effects of electrical and optogenetic stimulation of the medial prefrontal cortex in antidepressant non-responsive Wistar-Kyoto rats. J Psychopharmacol 2020; 34:1418-1430. [PMID: 33200659 PMCID: PMC7708672 DOI: 10.1177/0269881120967857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The chronic mild stress (CMS) procedure is a widely used animal model of depression, and its application in Wistar-Kyoto (WKY) rats has been validated as a model of antidepressant-refractory depression. While not responding to chronic treatment with antidepressant drugs, WKY rats do respond to acute deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC). In antidepressant-responsive strains there is evidence suggesting a role for AMPA subtype of glutamate receptor in the action mechanism of both antidepressants and DBS. METHODS Animals were subjected to CMS for 6 to 8 weeks; sucrose intake was monitored weekly and novel object recognition (NOR) test was conducted following recovery from CMS. Wistars were treated chronically with venlafaxine (VEN), while WKY were treated acutely with either DBS, optogenetic stimulation (OGS) of virally-transduced (AAV5-hSyn-ChR2-EYFP) mPFC or ventral hippocampus, or acute intra-mPFC injection of the AMPA receptor positive allosteric modulator CX-516. The AMPA receptor antagonist NBQX was administered, at identical sites in mPFC, immediately following the exposure trial in the NOR. RESULTS Sucrose intake and NOR were suppressed by CMS, and restored by VEN in Wistars and by DBS, OGS, or CX-516 in WKY. However, OGS of the ventral hippocampal afferents to mPFC was ineffective. A low dose of NBQX selectively blocked the procognitive effect of VEN, DBS and OGS. CONCLUSIONS These results suggest that activation of AMPA receptors in the mPFC represents a common pathway for the antidepressant effects of both conventional (VEN) and novel (DBS, OGS) antidepressant modalities, in both antidepressant responsive (Wistar) and antidepressant-resistant (WKY) rats.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
21
|
Kheyrkhah H, Soltani Zangbar H, Salimi O, Shahabi P, Alaei H. Prefrontal dopaminergic system and its role in working memory and cognition in spinal cord‐injured rats. Exp Physiol 2020; 105:1579-1587. [DOI: 10.1113/ep088537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Hasan Kheyrkhah
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and CognitionFaculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Omid Salimi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Parviz Shahabi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - HojjatAllah Alaei
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
22
|
Freudenthal RAM, Romano A, Baez MV. Editorial: Changes in Molecular Expression After Memory Acquisition and Plasticity. Looking for the Memory Trace. Front Mol Neurosci 2020; 13:50. [PMID: 32317930 PMCID: PMC7146821 DOI: 10.3389/fnmol.2020.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ramiro A M Freudenthal
- CONICET Institute of Physiology, Molecular Biology and Neurosciences (IFIBYNE), Buenos Aires, Argentina.,Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Arturo Romano
- CONICET Institute of Cell Biology and Neuroscience (IBCN), Buenos Aires, Argentina
| | - Maria Veronica Baez
- CONICET Institute of Cell Biology and Neuroscience (IBCN), Buenos Aires, Argentina.,Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
24
|
Functional lateralization in the prefrontal cortex of dopaminergic modulation of memory consolidation. Behav Pharmacol 2020; 30:514-520. [PMID: 31033526 DOI: 10.1097/fbp.0000000000000483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is increasing evidence of functional lateralization within the rat brain. Here, we have examined the lateralization of dopamine (DA) function in the medial prefrontal cortex (PFC) in relation to memory consolidation in the novel object recognition test (NOR). Male Wistar rats received single bilateral or unilateral injections into prelimbic-PFC of agonists (SKF81297; 0.2 µg, quinpirole; 1 µg, SB277,011; 0.5 µg) and antagonists (SCH23390; 3 µg, L-741,626; 1 µg, 7-OH-DPAT; 3 µg) at DA D1, D2, or D3 receptors, immediately following the exposure trial in the NOR, and were tested either 1 or 24 h later for discrimination between a novel and a familiar object. As previously reported, bilateral injection of a D1 antagonist (SCH23390, 3 µg/side), a D2 antagonist (L-741,626, 1 µg/side) or a D3 agonist (7-OH-DPAT, 3 µg/side) impaired NOR at 1 h, while a D1 agonist (SKF81297, 0.2 µg/side), a D2 agonist (quinpirole, 1 µg/side) or a D3 antagonist (SB277,011, 0.5 µg/side) improved NOR at 24 h. The same effects were seen with left-sided unilateral injections. No effects were seen with right-sided unilateral injections. Endogenous DA release in the prelimbic-PFC promotes memory consolidation in the NOR, but only on the left side of the brain.
Collapse
|
25
|
Bernstein DL, Nayak SU, Oliver CF, Rawls SM, Rom S. Methylenedioxypyrovalerone (MDPV) impairs working memory and alters patterns of dopamine signaling in mesocorticolimbic substrates. Neurosci Res 2019; 155:56-62. [PMID: 31302200 DOI: 10.1016/j.neures.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Knowledge remains limited about how chronic cathinone exposure impacts dopamine systems in brain reward circuits. In the present study, a binge-like MDPV exposure that impaired novel object recognition (NOR) dysregulated dopamine markers in mesocorticolimbic substrates of rats, with especially profound effects on D1 and D2 receptor's and VMAT gene expression. Our data suggested that dopamine receptivity was reduced in the NAc but increased in the PFC and dopamine-producing VTA. The MDPV-induced impairment of NOR was prevented by a D1 receptor antagonist, suggesting that chronic MDPV exposure produces site-specific dysregulation of dopamine markers in the mesocorticolimbic circuit and memory deficits in the NOR test that are influenced by D1 receptors.
Collapse
Affiliation(s)
- David L Bernstein
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Sunyl U Nayak
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chicora F Oliver
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Papp M, Gruca P, Lason M, Niemczyk M, Willner P. The role of prefrontal cortex dopamine D2 and D3 receptors in the mechanism of action of venlafaxine and deep brain stimulation in animal models of treatment-responsive and treatment-resistant depression. J Psychopharmacol 2019; 33:748-756. [PMID: 30789286 DOI: 10.1177/0269881119827889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIMS The Wistar-Kyoto rat has been validated as an animal model of treatment-resistant depression. Here we investigated a role of dopamine D2 and D3 receptors in the ventro-medial prefrontal cortex in the mechanism of action of deep brain stimulation in Wistar-Kyoto rats and venlafaxine in Wistar rats. METHODS Wistar or Wistar-Kyoto rats were exposed chronically to chronic mild stress. Wistar rats were treated chronically with venlafaxine (10 mg/kg) beginning after two weeks of chronic mild stress; Wistar-Kyoto rats received two sessions of deep brain stimulation before behavioural tests. L-742,626 (1 µg), a D2 receptor agonist, or 7-OH DPAT (3 µg), a D3 receptor antagonist, were infused into the ventro-medial prefrontal cortex immediately following the exposure trial in the Novel Object Recognition Test, and discrimination between novel and familiar object was tested one hour later. RESULTS Chronic mild stress decreased sucrose intake and impaired memory consolidation; these effects were reversed by venlafaxine in Wistar rats and deep brain stimulation in Wistar-Kyoto rats. In control animals, L-742,626 and 7-OH DPAT also impaired memory consolidation. In Wistar rats, venlafaxine reversed the effect of L-742,626 in controls, but not in the chronic mild stress group, and venlafaxine did not reverse the effect of 7-OH DPAT in either group. In Wistar-Kyoto rats, deep brain stimulation reversed the effect of both L-742,626 and 7-OH DPAT in both control and chronic mild stress groups. CONCLUSIONS We conclude that the action of venlafaxine to reverse the impairment of memory consolidation caused by chronic mild stress in Wistar rats involves D2 receptors in the ventro-medial prefrontal cortex; but the effect of deep brain stimulation to reverse the same effect in Wistar-Kyoto rats does not.
Collapse
Affiliation(s)
- Mariusz Papp
- 1 Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Gruca
- 1 Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- 1 Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Monika Niemczyk
- 1 Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paul Willner
- 2 Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
27
|
Wolter M, Huff E, Speigel T, Winters BD, Leri F. Cocaine, nicotine, and their conditioned contexts enhance consolidation of object memory in rats. ACTA ACUST UNITED AC 2019; 26:46-55. [PMID: 30651377 PMCID: PMC6340119 DOI: 10.1101/lm.048579.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
To test the hypothesis that drugs of abuse and their conditioned stimuli (CSs) enhance memory consolidation, the effects of post-training exposure to cocaine and nicotine were compared to the effects of post-training exposure to contextual stimuli that were paired with the effects of these drugs. Using the object recognition (OR) task, it was first demonstrated that both 10 and 20 mg/kg cocaine, and 0.2 and 0.4 mg/kg nicotine, enhanced recognition memory when administered immediately after, but not 6 h after the sample phase. To establish the drug CSs, rats were confined for 2 h in a chamber (the CS+) after injections of 20 mg/kg cocaine, or 0.4 mg/kg nicotine, and in another chamber (the CS−) after injections of vehicle. This was repeated over 10 d (5 drug/CS+ and 5 vehicle/CS− pairings in total). At the end of this conditioning period, when tested in a drug-free state, rats displayed conditioned hyperactivity in the CS+ relative to the CS−. More important, immediate, but not delayed, post-sample exposure to the cocaine CS+, or nicotine CS+, enhanced OR memory. Therefore, this study reports for the first time that contextual stimuli paired with cocaine and nicotine, like the drugs themselves, have the ability to enhance memory consolidation.
Collapse
Affiliation(s)
- Michael Wolter
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ethan Huff
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Talia Speigel
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
28
|
PKMζ Inhibition Disrupts Reconsolidation and Erases Object Recognition Memory. J Neurosci 2019; 39:1828-1841. [PMID: 30622166 DOI: 10.1523/jneurosci.2270-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022] Open
Abstract
Object recognition memory (ORM) confers the ability to discriminate the familiarity of previously encountered items. Reconsolidation is the process by which reactivated memories become labile and susceptible to modifications. The hippocampus is specifically engaged in reconsolidation to integrate new information into the original ORM through a mechanism involving activation of brain-derived neurotrophic factor (BDNF) signaling and induction of LTP. It is known that BDNF can control LTP maintenance through protein kinase Mζ (PKMζ), an atypical protein kinase C isoform that is thought to sustain memory storage by modulating glutamatergic neurotransmission. However, the potential involvement of PKMζ in ORM reconsolidation has never been studied. Using a novel ORM task combined with pharmacological, biochemical, and electrophysiological tools, we found that hippocampal PKMζ is essential to update ORM through reconsolidation, but not to maintain the inactive recognition memory trace stored over time, in adult male Wistar rats. Our results also indicate that hippocampal PKMζ acts downstream of BDNF and controls AMPAR synaptic insertion to elicit reconsolidation and suggest that blocking PKMζ activity during this process deletes active ORM.SIGNIFICANCE STATEMENT Object recognition memory (ORM) is essential to remember facts and events. Reconsolidation integrates new information into ORM through changes in hippocampal plasticity and brain-derived neurotrophic factor (BDNF) signaling. In turn, BDNF enhances synaptic efficacy through protein kinase Mζ (PKMζ), which might preserve memory. Here, we present evidence that hippocampal PKMζ acts downstream of BDNF to regulate AMPAR recycling during ORM reconsolidation and show that this kinase is essential to update the reactivated recognition memory trace, but not to consolidate or maintain an inactive ORM. We also demonstrate that the amnesia provoked by disrupting ORM reconsolidation through PKMζ inhibition is due to memory erasure and not to retrieval failure.
Collapse
|
29
|
Activation of the dopamine D1 receptor can extend long-term spatial memory persistence via PKA signaling in mice. Neurobiol Learn Mem 2018; 155:568-577. [DOI: 10.1016/j.nlm.2018.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/01/2018] [Accepted: 05/23/2018] [Indexed: 01/13/2023]
|
30
|
The role of intraamygdaloid neurotensin and dopamine interaction in conditioned place preference. Behav Brain Res 2018; 344:85-90. [DOI: 10.1016/j.bbr.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
|
31
|
Targa AD, Noseda ACD, Rodrigues LS, Aurich MF, Lima MM. REM sleep deprivation and dopaminergic D2 receptors modulation increase recognition memory in an animal model of Parkinson’s disease. Behav Brain Res 2018; 339:239-248. [DOI: 10.1016/j.bbr.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
|
32
|
Hara Y, Ago Y, Taruta A, Hasebe S, Kawase H, Tanabe W, Tsukada S, Nakazawa T, Hashimoto H, Matsuda T, Takuma K. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice. Psychopharmacology (Berl) 2017; 234:3217-3228. [PMID: 28798977 DOI: 10.1007/s00213-017-4703-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients. OBJECTIVES In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD. RESULTS Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density. CONCLUSIONS These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.
Collapse
Affiliation(s)
- Yuta Hara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsuki Taruta
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruki Kawase
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Wataru Tanabe
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Tsukada
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
33
|
García-Pardo MP, De la Rubia Ortí JE, Aguilar Calpe MA. Differential effects of MDMA and cocaine on inhibitory avoidance and object recognition tests in rodents. Neurobiol Learn Mem 2017; 146:1-11. [PMID: 29081371 DOI: 10.1016/j.nlm.2017.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Drug addiction continues being a major public problem faced by modern societies with different social, health and legal consequences for the consumers. Consumption of psychostimulants, like cocaine or MDMA (known as ecstasy) are highly prevalent and cognitive and memory impairments have been related with the abuse of these drugs. AIM The aim of this work was to review the most important data of the literature in the last 10 years about the effects of cocaine and MDMA on inhibitory avoidance and object recognition tests in rodents. DEVELOPMENT The object recognition and the inhibitory avoidance tests are popular procedures used to assess different types of memory. We compare the effects of cocaine and MDMA administration in these tests, taking in consideration different factors such as the period of life development of the animals (prenatal, adolescence and adult age), the presence of polydrug consumption or the role of environmental variables. Brain structures involved in the effects of cocaine and MDMA on memory are also described. CONCLUSIONS Cocaine and MDMA induced similar impairing effects on the object recognition test during critical periods of lifetime or after abstinence of prolonged consumption in adulthood. Deficits of inhibitory avoidance memory are observed only in adult rodents exposed to MDMA. Psychostimulant abuse is a potential factor to induce memory impairments and could facilitate the development of future neurodegenerative disorders.
Collapse
|
34
|
Castillo Díaz F, Kramar CP, Hernandez MA, Medina JH. Activation of D1/5 Dopamine Receptors in the Dorsal Medial Prefrontal Cortex Promotes Incubated-Like Aversive Responses. Front Behav Neurosci 2017; 11:209. [PMID: 29163081 PMCID: PMC5674926 DOI: 10.3389/fnbeh.2017.00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023] Open
Abstract
It is well established that neurons of the mammalian medial prefrontal cortex (mPFC) modulate different behavioral outputs, including several memory types. This behavioral modulation is, at least in part, under the control of the D1-like Dopamine (DA) receptor (D1/5R) which comprises D1 and D5-specific subtypes (D1R and D5R, respectively). Here, combining a set of behavioral assays with pharmacology, we determined whether the activation of D1/5R in the mPFC during almost neutral or weak negative-valence experiences induces aversive behaviors. The intra mPFC bilateral infusion of the D1/5R agonist SKF 38393 (6.25 μg/side) immediately after exposing rats to the white compartment of a place conditioning apparatus promotes a incubated-like aversive memory when tested 7 days thereafter, but it was not seen 24 h after conditioning. No signs of fear or changes in the anxiety state were observed after the exposure to the white compartment. This aversive response is observed only when the experience paired with the mPFC D1/5R activation has a context component involved. By using specific agonists for D1R or D5R subtypes we suggest that D5R mediate the induction of the aversive behavior. No aversive effects were observed when the D1/5R agonist was infused into the dorsal hippocampus (HP), the nucleus accumbens (NAcc) or the basolateral amygdala (BLA) of rats exposed to the white compartment. Taken together, our present findings endorse the idea that activation of mPFC D1/5R is sufficient to induce incubated-like aversive memories after exposing rats to an apparent neutral or weak negative-valence environment and that mPFC might be considered a key brain region involved in providing adaptive emotional behaviors in response to an ever-changing environment.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Cecilia P Kramar
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Micaela A Hernandez
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Differential modulatory effects of cocaine on marmoset monkey recognition memory. PROGRESS IN BRAIN RESEARCH 2017; 235:155-176. [PMID: 29054287 DOI: 10.1016/bs.pbr.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute and repeated exposure to cocaine alters the cognitive performance of humans and animals. How each administration schedule affects the same memory task has yet to be properly established in nonhuman primates. Therefore, we assessed the performance of marmoset monkeys in a spontaneous object-location (SOL) recognition memory task after acute and repeated exposure to cocaine (COC; 5mg/kg, ip). Two identical neutral stimuli were explored on the 10-min sample trial, after which preferential exploration of the displaced vs the stationary object was analyzed on the 10-min test trial. For the acute treatment, cocaine was given immediately after the sample presentation, and spatial recognition was then tested after a 24-h interval. For the repeated exposure schedule, daily cocaine injections were given on 7 consecutive days. After a 7-day drug-free period, the SOL task was carried out with a 10-min intertrial interval. When given acutely postsample, COC improved the marmosets' recognition memory, whereas it had a detrimental effect after the repeated exposure. Thus, depending on the administration schedule, COC exerted opposing effects on the marmosets' ability to recognize spatial changes. This agrees with recent studies in rodents and the recognition impairment seen in human addicts. Further studies related to the effects of cocaine's acute×prior drug history on the same cognitive domain are warranted.
Collapse
|
36
|
Pezze MA, Marshall HJ, Fone KC, Cassaday HJ. Role of the anterior cingulate cortex in the retrieval of novel object recognition memory after a long delay. ACTA ACUST UNITED AC 2017; 24:310-317. [PMID: 28620078 PMCID: PMC5473111 DOI: 10.1101/lm.044784.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20-min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory.
Collapse
Affiliation(s)
- Marie A Pezze
- School of Psychology, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Hayley J Marshall
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Kevin Cf Fone
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Helen J Cassaday
- School of Psychology, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
37
|
Melani R, Chelini G, Cenni MC, Berardi N. Enriched environment effects on remote object recognition memory. Neuroscience 2017; 352:296-305. [DOI: 10.1016/j.neuroscience.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/20/2017] [Accepted: 04/04/2017] [Indexed: 01/20/2023]
|
38
|
McLean SL, Harte MK, Neill JC, Young AM. Dopamine dysregulation in the prefrontal cortex relates to cognitive deficits in the sub-chronic PCP-model for schizophrenia: A preliminary investigation. J Psychopharmacol 2017; 31:660-666. [PMID: 28441905 DOI: 10.1177/0269881117704988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Dopamine dysregulation in the prefrontal cortex (PFC) plays an important role in cognitive dysfunction in schizophrenia. Sub-chronic phencyclidine (scPCP) treatment produces cognitive impairments in rodents and is a thoroughly validated animal model for cognitive deficits in schizophrenia. The aim of our study was to investigate the role of PFC dopamine in scPCP-induced deficits in a cognitive task of relevance to the disorder, novel object recognition (NOR). METHODS Twelve adult female Lister Hooded rats received scPCP (2 mg/kg) or vehicle via the intraperitoneal route twice daily for 7 days, followed by 7 days washout. In vivo microdialysis was carried out prior to, during and following the NOR task. RESULTS Vehicle rats successfully discriminated between novel and familiar objects and this was accompanied by a significant increase in dopamine in the PFC during the retention trial ( p < 0.01). scPCP produced a significant deficit in NOR ( p < 0.05 vs. control) and no PFC dopamine increase was observed. CONCLUSIONS These data demonstrate an increase in dopamine during the retention trial in vehicle rats that was not observed in scPCP-treated rats accompanied by cognitive disruption in the scPCP group. This novel finding suggests a mechanism by which cognitive deficits are produced in this animal model and support its use for investigating disorders in which PFC dopamine is central to the pathophysiology.
Collapse
Affiliation(s)
- Samantha L McLean
- 1 School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Michael K Harte
- 2 Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Joanna C Neill
- 2 Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Andrew Mj Young
- 3 Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
39
|
Helbing C, Tischmeyer W, Angenstein F. Late effect of dopamine D 1/5 receptor activation on stimulus-induced BOLD responses in the hippocampus and its target regions depends on the history of previous stimulations. Neuroimage 2017; 152:119-129. [DOI: 10.1016/j.neuroimage.2017.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022] Open
|
40
|
Memory consolidation and expression of object recognition are susceptible to retroactive interference. Neurobiol Learn Mem 2017; 138:198-205. [DOI: 10.1016/j.nlm.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/20/2022]
|
41
|
Papp M, Gruca P, Lason-Tyburkiewicz M, Litwa E, Niemczyk M, Tota-Glowczyk K, Willner P. Dopaminergic mechanisms in memory consolidation and antidepressant reversal of a chronic mild stress-induced cognitive impairment`. Psychopharmacology (Berl) 2017; 234:2571-2585. [PMID: 28567697 PMCID: PMC5548836 DOI: 10.1007/s00213-017-4651-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/12/2017] [Indexed: 01/27/2023]
Abstract
Cognitive deficits in depression can be modelled using the novel object recognition (NOR) test, performance in which is impaired by chronic mild stress (CMS). We aimed to examine the involvement of mesocorticolimbic DA terminal regions, and to establish the substrate for CMS-induced impairment of NOR and its reversal by chronic antidepressant treatment. In experiments 1 and 2, we examined the effect of infusions into medial PFC, dorsal hippocampus (HPC), and nucleus accumbens (NAc) shell of D1 and D2 antagonists and D3 agonist, which were predicted to impair NOR with a short (1 h) delay, and of D1 and D2 agonists and D3 antagonist, which were predicted to facilitate NOR with a long (24 h) delay. Using optimal doses identified in experiment 2, in experiments 3 and 4, we examined effects on drug-stimulated NOR of CMS and chronic treatment with venlafaxine (VFX) or risperidone (RSP). We found a wide involvement of DA systems in memory for NOR: D1 receptors in PFC, HPC, and NAc; D3 receptors in PFC and HPC; and D2 receptors in PFC. CMS impaired D2- and D3-mediated effects in PFC and HPC; antidepressants rescued those effects in PFC but not HPC. The involvement of DA in NOR is multifaceted, but the effects of CMS and antidepressants are more discrete, involving D2 and D3 receptors in PFC specifically. While raising many difficult questions, these results suggest that the D2 and D3 receptors in the medial PFC may be an important substrate for cognitive deficits in depression and their remediation.
Collapse
Affiliation(s)
- Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | | | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
42
|
Moncada D. Evidence of VTA and LC control of protein synthesis required for the behavioral tagging process. Neurobiol Learn Mem 2016; 138:226-237. [PMID: 27291857 DOI: 10.1016/j.nlm.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023]
Abstract
Several works have shown that the formation of different long-term memories relies on a behavioral tagging process. In other words, to establish a lasting memory, at least two parallel processes must occur: the setting of a learning tag (triggered during learning) that defines where a memory could be stored, and the synthesis of proteins, that once captured at tagged sites will effectively allow the consolidation process to occur. This work focused in studying which brain structures are responsible of controlling the synthesis of those proteins at the brain areas where memory is being stored. It combines electrical activation of the ventral tegmental area (VTA) and/or the locus coeruleus (LC), with local pharmacological interventions and weak and strong behavioral trainings in the inhibitory avoidance and spatial object recognition tasks in rats. The results presented here strongly support the idea that the VTA is a brain structure responsible for regulating the consolidation of memories acting through the D1/D5 dopaminergic receptors of the hippocampus to control the synthesis of new proteins required for this process. Moreover, they provide evidence that the LC may be a second structure with a similar role, acting independently and complementary to the VTA, through the β-adrenergic receptors of the hippocampus.
Collapse
Affiliation(s)
- Diego Moncada
- Neurophysiology of Learning and Memory Research Group, Leibniz-Institute for Neurobiology, Brenneckstr. 6, 39118 Magdeburg, Germany; Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3° Piso, CP 1121 Buenos Aires, Argentina.
| |
Collapse
|
43
|
Naderi M, Jamwal A, Chivers DP, Niyogi S. Modulatory effects of dopamine receptors on associative learning performance in zebrafish (Danio rerio). Behav Brain Res 2016; 303:109-19. [DOI: 10.1016/j.bbr.2016.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
|
44
|
Moraga-Amaro R, González H, Ugalde V, Donoso-Ramos JP, Quintana-Donoso D, Lara M, Morales B, Rojas P, Pacheco R, Stehberg J. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology 2016; 103:222-35. [DOI: 10.1016/j.neuropharm.2015.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
|
45
|
Li Y, Song Z, Ding Y, Xin Y, Wu T, Su T, He R, Tai F, Lian Z. Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. CHEMOSPHERE 2016; 144:2004-2012. [PMID: 26551198 DOI: 10.1016/j.chemosphere.2015.10.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
Formaldehyde exposure is toxic to the brains of mammals, but the mechanism remains unclear. We investigated the effects of inhaled formaldehyde on anxiety, depression, cognitive capacity and central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. After exposure to 0, 1 or 2 ppm gaseous formaldehyde for one week, we measured anxiety-like behavior using open field and elevated plus-maze tests, depression-like behavior using a forced swimming test, learning and memory using novel object recognition tests, levels of glucocorticoid receptors in the hippocampus and tyrosine hydroxylase in the Arc, MPOA, ZI and VTA using immuhistochemistry. We found that inhalation of 1 ppm formaldehyde reduced levels of anxiety-like behavior. Inhalation of 2 ppm formaldehyde reduced body weight, but increased levels of depression-like behavior, impaired novel object recognition, and lowered the numbers of glucocorticoid receptor immonureactive neurons in the hippocampus and tyrosine hydroxylase immonureactive neurons in the ventral tegmental area and the zona incerta, medial preoptic area. Different concentrations of gaseous formaldehyde result in different effects on anxiety, depression-like behavior and cognition ability which may be associated with alterations in hippocampal glucocorticoid receptors and brain tyrosine hydroxylase levels.
Collapse
Affiliation(s)
- Yani Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China; College of Energy and Environmental Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhuoyi Song
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yujuan Ding
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ye Xin
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Tong Wu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Tao Su
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
46
|
Pezze MA, Marshall HJ, Fone KCF, Cassaday HJ. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex. Eur Neuropsychopharmacol 2015; 25:2145-56. [PMID: 26277743 PMCID: PMC4661036 DOI: 10.1016/j.euroneuro.2015.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/25/2015] [Accepted: 07/24/2015] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory.
Collapse
Affiliation(s)
- Marie A Pezze
- School of Psychology, University of Nottingham, Nottingham, UK.
| | | | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
47
|
Grogan J, Bogacz R, Tsivos D, Whone A, Coulthard E. Dopamine and Consolidation of Episodic Memory: Timing is Everything. J Cogn Neurosci 2015; 27:2035-50. [PMID: 26102227 PMCID: PMC4880040 DOI: 10.1162/jocn_a_00840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Memory consolidation underpins adaptive behavior and dopaminergic networks may be critical for prolonged, selective information storage. To understand the time course of the dopaminergic contribution to memory consolidation in humans, here we investigate the effect of dopaminergic medication on recall and recognition in the short and longer term in Parkinson disease (PD). Fifteen people with PD were each tested on or off dopaminergic medication during learning/early consolidation (Day 1) and/or late consolidation (Day 2). Fifteen age-matched healthy participants were tested only once. On Day 1 participants learned new information, and early episodic memory was tested after 30 min. Then on Day 2, recall and recognition were retested after a 24-hr delay. Participants on medication on Day 1 recalled less information at 30 min and 24 hr. In contrast, patients on medication on Day 2 (8-24 hr after learning) recalled more information at 24 hr than those off medication. Although recognition sensitivity was unaffected by medication, response bias was dependent on dopaminergic state: Medication during learning induced a more liberal bias 24 hr later, whereas patients off medication during learning were more conservative responders 24 hr later. We use computational modeling to propose possible mechanisms for this change in response bias. In summary, dopaminergic medication in PD patients during learning impairs early consolidation of episodic memory and makes delayed responses more liberal, but enhances late memory consolidation presumably through a dopamine-dependent consolidation pathway that may be active during sleep.
Collapse
Affiliation(s)
| | | | | | - Alan Whone
- University of Bristol
- North Bristol NHS Trust
| | | |
Collapse
|
48
|
Medial prefrontal cortex role in recognition memory in rodents. Behav Brain Res 2015; 292:241-51. [DOI: 10.1016/j.bbr.2015.06.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022]
|
49
|
Lee KN, Chirwa S. Blocking Dopaminergic Signaling Soon after Learning Impairs Memory Consolidation in Guinea Pigs. PLoS One 2015; 10:e0135578. [PMID: 26275140 PMCID: PMC4537230 DOI: 10.1371/journal.pone.0135578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 07/25/2015] [Indexed: 11/18/2022] Open
Abstract
Formation of episodic memories (i.e. remembered experiences) requires a process called consolidation which involves communication between the neocortex and hippocampus. However, the neuromodulatory mechanisms underlying this neocortico-hippocampal communication are poorly understood. Here, we examined the involvement of dopamine D1 receptors (D1R) and D2 receptors (D2R) mediated signaling on memory consolidation using the Novel Object Recognition (NOR) test. We conducted the tests in male Hartley guinea pigs and cognitive behaviors were assessed in customized Phenotyper home cages utilizing Ethovision XT software from Noldus enabled for the 3-point detection system (nose, center of the body, and rear). We found that acute intraperitoneal injections of either 0.25 mg/kg SCH23390 to block D1Rs or 1.0 mg/kg sulpiride to block D2Rs soon after acquisition (which involved familiarization to two similar objects) attenuated subsequent discrimination for novel objects when tested after 5-hours in the NOR test. By contrast guinea pigs treated with saline showed robust discrimination for novel objects indicating normal operational processes undergirding memory consolidation. The data suggests that involvement of dopaminergic signaling is a key post-acquisition factor in modulating memory consolidation in guinea pigs.
Collapse
Affiliation(s)
- Kiera-Nicole Lee
- Department of Neuroscience and Pharmacology, Meharry Medical College, 1005 DB Todd Boulevard, Nashville, TN, 37208, United States of America
| | - Sanika Chirwa
- Department of Neuroscience and Pharmacology, Meharry Medical College, 1005 DB Todd Boulevard, Nashville, TN, 37208, United States of America
- Department of Pharmacology, 23 Avenue South & Pierce, Vanderbilt University, Nashville, TN, 37203, United States of America
- * E-mail:
| |
Collapse
|
50
|
Li J, Zhang P, Liu H, Ren W, Song J, Rao E, Takahashi E, Zhou Y, Li W, Chen X. Deficits of learning and memory in Hemojuvelin knockout mice. J Vet Med Sci 2015; 77:1235-40. [PMID: 26027705 PMCID: PMC4638289 DOI: 10.1292/jvms.15-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Iron is involved in various physiological processes of the human body to maintain normal
functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of
several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a
membrane-bound and soluble protein in mammals that is responsible for the iron overload
condition known as juvenile hemochromatosis. Although iron accumulation in brain has been
related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ
gene on cognitive performance. In our studies, HJV(−/−) mice showed deficits in novel
object recognition and Morris water maze tests. Furthermore, the expression ration of
apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal
cortex showed higher levels in HJV(−/−) mice. Our results suggested that deletion of HJV
gene could increase apoptosis in brain which might contribute to learning and memory
deficits in mutant mice. These results indicated that HJV(−/−) mice would be a useful
model to study cognitive impairment induced by iron overload in brain.
Collapse
Affiliation(s)
- Jinglong Li
- College of Life Sciences, Shaanxi Normal University, No.199 South Chang'an Road, Xi'an 710062, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|