1
|
Hong J, Choi K, Fuccillo MV, Chung S, Weber F. Infralimbic activity during REM sleep facilitates fear extinction memory. Curr Biol 2024; 34:2247-2255.e5. [PMID: 38714199 PMCID: PMC11111341 DOI: 10.1016/j.cub.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Grigoryan GA. The systemic effects of the enriched environment on the conditioned fear reaction. Front Behav Neurosci 2023; 17:1227575. [PMID: 37674611 PMCID: PMC10477375 DOI: 10.3389/fnbeh.2023.1227575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
In this review, a hypothesis is proposed to explain the beneficial effect of an enriched environment (EE) on the conditioned fear reaction (CFR) from the perspective of a functional system of behavioral control. According to the hypothesis, the EE affects all behavioral act components, including the processing of sensory information, memory, motivational and reinforcing systems, and motor activities, which weakens the CFR. Animals raised in the EE have effects that are comparable to those of context (CTX) and CS pre-exposures at latent inhibition. An abundance of stimuli in the EE and constant contact with them provide the formation of CS-noUS and CTX-noUS connections that later, during CFR learning, slow down and diminish fear. The EE also contributes to faster processing of information and habituation to it. As a result, many stimuli in the context lose their significance, and subjects simply ignore them. And finally, the EE affects the motivational and reinforcing brain mechanisms, induces an impairment of search activity, and worsens memory consolidation, which leads to a reduction of CFR.
Collapse
Affiliation(s)
- Grigory A. Grigoryan
- The Laboratory of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Wen YJ, Yang WJ, Guo CN, Qiu MH, Kroeger D, Niu JG, Zhan SQ, Yang XF, Gisabella B, Vetrivelan R, Lu J. Pontine control of rapid eye movement sleep and fear memory. CNS Neurosci Ther 2023; 29:1602-1614. [PMID: 36794544 PMCID: PMC10173714 DOI: 10.1111/cns.14123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
AIMS We often experience dreams of strong irrational and negative emotional contents with postural muscle paralysis during rapid eye movement (REM) sleep, but how REM sleep is generated and its function remain unclear. In this study, we investigate whether the dorsal pontine sub-laterodorsal tegmental nucleus (SLD) is necessary and sufficient for REM sleep and whether REM sleep elimination alters fear memory. METHODS To investigate whether activation of SLD neurons is sufficient for REM sleep induction, we expressed channelrhodopsin-2 (ChR2) in SLD neurons by bilaterally injecting AAV1-hSyn-ChR2-YFP in rats. We next selectively ablated either glutamatergic or GABAergic neurons from the SLD in mice in order to identify the neuronal subset crucial for REM sleep. We finally investigated the role of REM sleep in consolidation of fear memory using rat model with complete SLD lesions. RESULTS We demonstrate the sufficiency of the SLD for REM sleep by showing that photo-activation of ChR2 transfected SLD neurons selectively promotes transitions from non-REM (NREM) sleep to REM sleep in rats. Diphtheria toxin-A (DTA) induced lesions of the SLD in rats or specific deletion of SLD glutamatergic neurons but not GABAergic neurons in mice completely abolish REM sleep, demonstrating the necessity of SLD glutamatergic neurons for REM sleep. We then show that REM sleep elimination by SLD lesions in rats significantly enhances contextual and cued fear memory consolidation by 2.5 and 1.0 folds, respectively, for at least 9 months. Conversely, fear conditioning and fear memory trigger doubled amounts of REM sleep in the following night, and chemo-activation of SLD neurons projecting to the medial septum (MS) selectively enhances hippocampal theta activity in REM sleep; this stimulation immediately after fear acquisition reduces contextual and cued fear memory consolidation by 60% and 30%, respectively. CONCLUSION SLD glutamatergic neurons generate REM sleep and REM sleep and SLD via the hippocampus particularly down-regulate contextual fear memory.
Collapse
Affiliation(s)
- Yu Jun Wen
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Jia Yang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Shanghai Yueyang Integrated Medicine Hospital, Shanghai, China
| | - Chun Ni Guo
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Mei Hong Qiu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Jian Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Shu Qin Zhan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Fei Yang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Barbara Gisabella
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Stroke Center, Department of Neurology, 1st Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Thiede KI, Born J, Vorster APA. Sleep and conditioning of the siphon withdrawal reflex in Aplysia. J Exp Biol 2021; 224:271187. [PMID: 34346500 DOI: 10.1242/jeb.242431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022]
Abstract
Sleep is essential for memory consolidation after learning as shown in mammals and invertebrates such as bees and flies. Aplysia californica displays sleep, and sleep in this mollusk was also found to support memory for an operant conditioning task. Here, we investigated whether sleep in Aplysia is also required for memory consolidation in a simpler type of learning, i.e. the conditioning of the siphon withdrawal reflex. Two groups of animals (Wake, Sleep, each n=11) were conditioned on the siphon withdrawal reflex, with the training following a classical conditioning procedure where an electrical tail shock served as the unconditioned stimulus (US) and a tactile stimulus to the siphon as the conditioned stimulus (CS). Responses to the CS were tested before (pre-test), and 24 and 48 h after training. While Wake animals remained awake for 6 h after training, Sleep animals had undisturbed sleep. The 24 h test in both groups was combined with extinction training, i.e. the extended presentation of the CS alone over two blocks. At the 24 h test, siphon withdrawal duration in response to the CS was distinctly enhanced in both Sleep and Wake groups with no significant difference between groups, consistent with the view that consolidation of a simple conditioned reflex response does not require post-training sleep. Surprisingly, extinction training did not reverse the enhancement of responses to the CS. On the contrary, at the 48 h test, withdrawal duration in response to the CS was even further enhanced across both groups. This suggests that processes of sensitization, an even simpler non-associative type of learning, contributed to the withdrawal responses. Our study provides evidence for the hypothesis that sleep preferentially benefits consolidation of more complex learning paradigms than conditioning of simple reflexes.
Collapse
Affiliation(s)
- Kathrin I Thiede
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany.,German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen 72076, Germany
| | - Albrecht P A Vorster
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany.,Training Centre of Neuroscience (GTC)/International Max Planck Research School (IMPRS) at the University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
5
|
Nasehi M, Shirkhodaei A, Ebrahimi-Ghiri M, Zarrindast MR. Abolishment of fear memory-disruptive effects REM sleep deprivation by harmane. Biomed Pharmacother 2019; 109:1563-1568. [DOI: 10.1016/j.biopha.2018.10.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
|
6
|
Schroyens N, Bender CL, Alfei JM, Molina VA, Luyten L, Beckers T. Post-weaning housing conditions influence freezing during contextual fear conditioning in adult rats. Behav Brain Res 2018; 359:172-180. [PMID: 30391556 PMCID: PMC6314464 DOI: 10.1016/j.bbr.2018.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/14/2023]
Abstract
The present study aimed to investigate the influence of housing conditions on contextual fear memory malleability. Male Wistar rats were housed in enriched, standard, or impoverished conditions after weaning and remained in these conditions throughout the entire experiment. After six weeks into those housing conditions, all animals underwent a 3-day protocol including contextual fear conditioning (day 1), memory reactivation followed by systemic administration of midazolam or vehicle (day 2), and a retention test (day 3). Percentage freezing was used as a behavioral measure of contextual fear. There was no evidence for an effect of housing conditions on the sensitivity of contextual fear memory to amnestic effects of post-reactivation midazolam administration, and no indication for amnestic effects of post-reactivation midazolam overall (including in the standard group). The inability to replicate previous demonstrations of post-reactivation amnesia using the same protocol underscores the subtle nature of post-reactivation pharmacological memory interference. Notably, impoverished housing resulted in a decrease in contextual freezing during contextual fear conditioning, reactivation and retention testing, compared to enriched and standard housing conditions. This observation warrants caution when interpreting the results from experiments regarding effects of housing on fear memory processes, particularly when freezing is used as a measure of fear.
Collapse
Affiliation(s)
- Natalie Schroyens
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium.
| | - Crhistian Luis Bender
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Joaquín Matias Alfei
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium.
| | - Victor Alejandro Molina
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Laura Luyten
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium; Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Vorster AP, Born J. Wakefulness rather than sleep benefits extinction of an inhibitory operant conditioning memory in Aplysia. Neurobiol Learn Mem 2018; 155:306-312. [DOI: 10.1016/j.nlm.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/20/2018] [Accepted: 07/27/2018] [Indexed: 01/16/2023]
|
8
|
REM deprivation but not sleep fragmentation produces a sex-specific impairment in extinction. Physiol Behav 2018; 196:84-94. [PMID: 30144468 DOI: 10.1016/j.physbeh.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/31/2023]
Abstract
REM sleep is essential for learning and memory processes, particularly emotional learning. Manipulations of REM sleep impair learning and memory and sleep architecture is often altered following a learning experience; for example, short term REM deprivation immediately after fear conditioning results in impaired extinction. In light of research demonstrating sex-dependent differences in fear conditioning as well as differences in sleep architecture, the present study investigated the effects of short term REM deprivation on the extinction of conditioned fear in male and female rats. In addition, given evidence that sleep fragmentation, which is a consequence of REM deprivation, can negatively impact learning and memory, this manipulation was compared to REM deprivation and a control condition. Male and female rats were exposed to fear conditioning followed by 6 h of REM deprivation, sleep fragmentation, or a control condition. Two extinction sessions were conducted at 48 h intervals after conditioning. REM deprivation, but not sleep fragmentation or the control condition, impaired extinction of conditioned fear. However, this effect was seen only in male rats. This study is the first to explore the effects of sleep manipulations on memory in female rats and suggests that female rats are more resilient to the deleterious effects of REM deprivation. In addition, it demonstrates that REM deprivation but not fragmentation of sleep is responsible for impairment in extinction of conditioned fear.
Collapse
|
9
|
Influence of cued-fear conditioning and its impairment on NREM sleep. Neurobiol Learn Mem 2017; 144:155-165. [PMID: 28733208 DOI: 10.1016/j.nlm.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/30/2017] [Accepted: 07/15/2017] [Indexed: 01/03/2023]
Abstract
Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event.
Collapse
|
10
|
Borquez M, Contreras MP, Vivaldi E, Born J, Inostroza M. Post-Learning Sleep Transiently Boosts Context Specific Operant Extinction Memory. Front Behav Neurosci 2017; 11:74. [PMID: 28491027 PMCID: PMC5405121 DOI: 10.3389/fnbeh.2017.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/10/2017] [Indexed: 11/19/2022] Open
Abstract
Operant extinction is learning to supress a previously rewarded behavior. It is known to be strongly associated with the specific context in which it was acquired, which limits the therapeutic use of operant extinction in behavioral treatments, e.g., of addiction. We examined whether sleep influences contextual memory of operant extinction over time, using two different recall tests (Recent and Remote). Rats were trained in an operant conditioning task (lever press) in context A, then underwent extinction training in context B, followed by a 3-h retention period that contained either spontaneous morning sleep, morning sleep deprivation, or spontaneous evening wakefulness. A recall test was performed either immediately after the 3-h experimental retention period (Recent recall) or after 48 h (Remote), in the extinction context B and in a novel context C. The two main findings were: (i) at the Recent recall test, sleep in comparison with sleep deprivation and spontaneous wakefulness enhanced extinction memory but, only in the extinction context B; (ii) at the Remote recall, extinction performance after sleep was enhanced in both contexts B and C to an extent comparable to levels at Recent recall in context B. Interestingly, extinction performance at Remote recall was also improved in the sleep deprivation groups in both contexts, with no difference to performance in the sleep group. Our results suggest that 3 h of post-learning sleep transiently facilitate the context specificity of operant extinction at a Recent recall. However, the improvement and contextual generalization of operant extinction memory observed in the long-term, i.e., after 48 h, does not require immediate post-learning sleep.
Collapse
Affiliation(s)
| | - María P Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| | - Ennio Vivaldi
- Instituto de Ciencias Biomédicas, Universidad de ChileSantiago, Chile
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany.,German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM)Tübingen, Germany.,Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Marion Inostroza
- Departamento de Psicología, Universidad de ChileSantiago, Chile.,Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| |
Collapse
|
11
|
Harrington MO, Pennington K, Durrant SJ. The 'affect tagging and consolidation' (ATaC) model of depression vulnerability. Neurobiol Learn Mem 2017; 140:43-51. [PMID: 28232148 DOI: 10.1016/j.nlm.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/24/2017] [Accepted: 02/08/2017] [Indexed: 11/24/2022]
Abstract
Since the 1960's polysomnographic sleep research has demonstrated that depressive episodes are associated with REM sleep alterations. Some of these alterations, such as increased REM sleep density, have also been observed in first-degree relatives of patients and remitted patients, suggesting that they may be vulnerability markers of major depressive disorder (MDD), rather than mere epiphenomena of the disorder. Neuroimaging studies have revealed that depression is also associated with heightened amygdala reactivity to negative emotional stimuli, which may also be a vulnerability marker for MDD. Several models have been developed to explain the respective roles of REM sleep alterations and negatively-biased amygdala activity in the pathology of MDD, however the possible interaction between these two potential risk-factors remains uncharted. This paper reviews the roles of the amygdala and REM sleep in the encoding and consolidation of negative emotional memories, respectively. We present our 'affect tagging and consolidation' (ATaC) model, which argues that increased REM sleep density and negatively-biased amygdala activity are two separate, genetically influenced risk-factors for depression which interact to promote the development of negative memory bias - a well-known cognitive vulnerability marker for depression. Predictions of the ATaC model may motivate research aimed at improving our understanding of sleep dependent memory consolidation in depression aetiology.
Collapse
Affiliation(s)
- Marcus O Harrington
- School of Psychology, College of Social Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom.
| | - Kyla Pennington
- School of Psychology, College of Social Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom.
| | - Simon J Durrant
- School of Psychology, College of Social Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
12
|
Wöhr M, Engelhardt KA, Seffer D, Sungur AÖ, Schwarting RKW. Acoustic Communication in Rats: Effects of Social Experiences on Ultrasonic Vocalizations as Socio-affective Signals. Curr Top Behav Neurosci 2017; 30:67-89. [PMID: 26577915 DOI: 10.1007/7854_2015_410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultrasonic vocalizations (USV) serve important communicative functions as socio-affective signals in rats. In aversive situations, such as inter-male aggression and predator exposure, 22-kHz USV are emitted. They likely function as appeasement signals during fighting and/or as alarm calls to warn conspecifics. In appetitive situations, 50-kHz USV are uttered, most notably during social interactions, such as rough-and-tumble play and mating. It is believed that they fulfill an affiliative function as social contact calls. Social experiences or their lack, such as social isolation, can have profound impact on the emission of 22- and 50-kHz USV by the sender in later life, albeit direction and strength of observed effects vary, with time point of occurrence and duration being critical determinants. Little, however, is known about how social experiences affect the behavioral responses evoked by 22- and 50-kHz USV in the recipient. By means of our 50-kHz USV radial maze playback paradigm, we recently showed that the behavioral response elicited in the recipient is affected by post-weaning social isolation. Rats exposed to four weeks of isolation during the rough-and-tumble play period did not display social approach behavior toward 50-kHz USV but some signs of social avoidance. We further found that physical environmental enrichment providing minimal opportunities for social interactions has similar detrimental effects. Together, this indicates that social experiences can affect socio-affective communication in rodents, both at the level of sender and recipient. Deficits seen following post-weaning social isolation or physical environmental enrichment might be useful to model aspects of neurodevelopmental disorders characterized by social and communication deficits, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany.
| | - K Alexander Engelhardt
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Dominik Seffer
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| |
Collapse
|
13
|
The key role of extinction learning in anxiety disorders: behavioral strategies to enhance exposure-based treatments. Curr Opin Psychiatry 2016; 29:39-47. [PMID: 26575298 DOI: 10.1097/yco.0000000000000220] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Extinction learning is a major mechanism for fear reduction by means of exposure. Current research targets innovative strategies to enhance fear extinction and thereby optimize exposure-based treatments for anxiety disorders. This selective review updates novel behavioral strategies that may provide cutting-edge clinical implications. RECENT FINDINGS Recent studies provide further support for two types of enhancement strategies. Procedural enhancement strategies implemented during extinction training translate to how exposure exercises may be conducted to optimize fear extinction. These strategies mostly focus on a maximized violation of dysfunctional threat expectancies and on reducing context and stimulus specificity of extinction learning. Flanking enhancement strategies target periods before and after extinction training and inform optimal preparation and post-processing of exposure exercises. These flanking strategies focus on the enhancement of learning in general, memory (re-)consolidation, and memory retrieval. SUMMARY Behavioral strategies to enhance fear extinction may provide powerful clinical applications to further maximize the efficacy of exposure-based interventions. However, future replications, mechanistic examinations, and translational studies are warranted to verify long-term effects and naturalistic utility. Future directions also comprise the interplay of optimized fear extinction with (avoidance) behavior and motivational antecedents of exposure.
Collapse
|
14
|
|