1
|
Pahlenkemper M, Bernhard H, Reithler J, Roberts MJ. Behavioural interference at event boundaries reduces long-term memory performance in the virtual water maze task without affecting working memory performance. Cognition 2024; 250:105859. [PMID: 38896998 DOI: 10.1016/j.cognition.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Narrative episodic memory of movie clips can be retroactively impaired by presenting unrelated stimuli coinciding with event boundaries. This effect has been linked with rapid hippocampal processes triggered by the offset of the event, that are alternatively related either to memory consolidation or with working memory processes. Here we tested whether this effect extended to spatial memory, the temporal specificity and extent of the interference, and its effect on working- vs long-term memory. In three computerized adaptations of the Morris Water Maze, participants learned the location of an invisible target over three trials each. A second spatial navigation task was presented either immediately after finding the target, after a 10-s delay, or no second task was presented (control condition). A recall session, in which participants indicated the learned target location with 10 'pin-drop' trials for each condition, was performed after a 1-h or a 24-h break. Spatial memory was measured by the mean distance between pins and the true location. Results indicated that the immediate presentation of the second task led to worse memory performance, for both break durations, compared to the delayed condition. There was no difference in performance between the delayed presentation and the control condition. Despite this long-term memory effect, we found no difference in the rate of performance improvement during the learning session, indicating no effect of the second task on working memory. Our findings are in line with a rapid process, linked to the offset of an event, that is involved in the early stages of memory consolidation.
Collapse
Affiliation(s)
- Marie Pahlenkemper
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Hannah Bernhard
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Centre for Integrative Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Joel Reithler
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Lobato-Camacho FJ, Vargas JP, López JC. Effects of the Regular Use of Virtual Environments on Spatial Navigation and Memory. Games Health J 2024. [PMID: 39093833 DOI: 10.1089/g4h.2023.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Introduction: The cognitive effects of video games have garnered increasing attention due to their potential applications in cognitive rehabilitation and evaluation. However, the underlying mechanisms driving these cognitive modifications remain poorly understood. Objectives: This study investigates the fundamental mnemonic processes of spatial navigation, pattern separation, and recognition memory, closely associated with the hippocampus. Our objective is to elucidate the interaction of these cognitive processes and shed light on rehabilitation mechanisms that could inform the design of video games aimed at stimulating the hippocampus. Method: In this study, we assessed 48 young adults, including both video game players and non-players. We utilized virtual reality and cognitive tasks such as the Lobato Virtual Water Maze and the Mnemonic Similarity Task to evaluate their cognitive abilities. Results: Our key findings highlight that gamers exhibit heightened pattern separation abilities and demonstrate quicker and more accurate spatial learning, attributed to the cognitive stimulation induced by video games. Additionally, we uncovered a significant relationship between spatial memory, guided by environmental cues, and pattern separation, which serves as the foundation for more efficient spatial navigation. Conclusions: These results provide valuable insights into the cognitive impact of video games and offer potential for monitoring changes in rehabilitation processes and early signs of cognitive decline through virtual reality-based assessments. Ultimately, we propose that examining the relationships between cognitive processes represents an effective method for evaluating neurodegenerative conditions, offering new possibilities for early diagnosis and intervention.
Collapse
Affiliation(s)
| | - Juan Pedro Vargas
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| | - Juan Carlos López
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Hedayati-Moghadam M, Razazpour F, Pourfridoni M, Mirzaee F, Baghcheghi Y. Ethanol's impact on the brain: a neurobiological perspective on the mechanisms of memory impairment. Mol Biol Rep 2024; 51:782. [PMID: 38918289 DOI: 10.1007/s11033-024-09748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Alcohol consumption is known to have detrimental effects on memory function, with various studies implicating ethanol in the impairment of cognitive processes related to memory retention and retrieval. This review aims to elucidate the complex neurobiological mechanisms underlying ethanol-induced memory impairment. Through a thorough search of existing literature using electronic databases, relevant articles focusing on the neurobiological mechanisms of ethanol on memory were identified and critically evaluated. This review focuses on the molecular and neural pathways through which ethanol exerts its effects on memory formation, consolidation, and recall processes. Key findings from the included studies shed light on the impact of ethanol on neurotransmitter systems, synaptic plasticity, and neuroinflammation in relation to memory impairment. This review contributes to a better understanding of the intricate mechanisms by which alcohol impairs memory function, offering insights for future research directions and the development of targeted interventions to alleviate these cognitive impairments.
Collapse
Affiliation(s)
- Mahdiyeh Hedayati-Moghadam
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Faezeh Mirzaee
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran.
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
4
|
Zorzo C, Arias JL, Méndez M. Are there sex differences in spatial reference memory in the Morris water maze? A large-sample experimental study. Learn Behav 2024; 52:179-190. [PMID: 37723403 PMCID: PMC11186955 DOI: 10.3758/s13420-023-00598-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/20/2023]
Abstract
Sex differences have been found in allocentric spatial learning and memory tasks, with the literature indicating that males outperform females, although this issue is still controversial. This study aimed to explore the behavior of male and female rats during the habituation and learning of a spatial memory task performed in the Morris Water Maze (MWM). The study included a large sample of 89 males and 85 females. We found that females searched slightly faster than males during habituation with a visible platform. During learning, both male and female rats decreased the latency and distance traveled to find the hidden platform over the days, with males outperforming females in the distance traveled. Females swam faster but did not find the platform earlier, suggesting a less directed navigational strategy. Both sexes increased time spent in the target zone over the days, with no sex differences. Although females swam more in the periphery during the first days of the task, both sexes decreased the time spent in this area. Finally, only males increased swimming in the pool's center over the days, spending more time than females in this area across the entire training. In conclusion, we need to register several variables in the MWM and analyze path strategies to obtain more robust results concerning sex differences. Research on spatial learning should include both sexes to achieve a more equitable, representative, and translational science.
Collapse
Affiliation(s)
- Candela Zorzo
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003, Oviedo, Asturias, Spain.
- Instituo de Neurociencias del Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003, Oviedo, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011, Oviedo, Asturias, Spain.
| | - Jorge L Arias
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003, Oviedo, Asturias, Spain
- Instituo de Neurociencias del Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011, Oviedo, Asturias, Spain
| | - Marta Méndez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003, Oviedo, Asturias, Spain
- Instituo de Neurociencias del Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011, Oviedo, Asturias, Spain
| |
Collapse
|
5
|
Liu A, Borisyuk A. Investigating navigation strategies in the Morris Water Maze through deep reinforcement learning. Neural Netw 2024; 172:106050. [PMID: 38232429 DOI: 10.1016/j.neunet.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Navigation is a complex skill with a long history of research in animals and humans. In this work, we simulate the Morris Water Maze in 2D to train deep reinforcement learning agents. We perform automatic classification of navigation strategies, analyze the distribution of strategies used by artificial agents, and compare them with experimental data to show similar learning dynamics as those seen in humans and rodents. We develop environment-specific auxiliary tasks and examine factors affecting their usefulness. We suggest that the most beneficial tasks are potentially more biologically feasible for real agents to use. Lastly, we explore the development of internal representations in the activations of artificial agent neural networks. These representations resemble place cells and head-direction cells found in mouse brains, and their presence has correlation to the navigation strategies that artificial agents employ.
Collapse
Affiliation(s)
- Andrew Liu
- Department of Mathematics, 155 E 1400 S, Salt Lake City, UT 84109, USA.
| | - Alla Borisyuk
- Department of Mathematics, 155 E 1400 S, Salt Lake City, UT 84109, USA.
| |
Collapse
|
6
|
Schneider I, Schönfeld R, Hanert A, Philippen S, Tödt I, Granert O, Mehdorn M, Becktepe J, Deuschl G, Berg D, Paschen S, Bartsch T. Deep brain stimulation of the subthalamic nucleus restores spatial reversal learning in patients with Parkinson's disease. Brain Commun 2024; 6:fcae068. [PMID: 38560516 PMCID: PMC10979721 DOI: 10.1093/braincomms/fcae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Spatial learning and navigation are supported by distinct memory systems in the human brain such as the hippocampus-based navigational system and the striatum-cortex-based system involved in motor sequence, habit and reversal learning. Here, we studied the role of subthalamic circuits in hippocampus-associated spatial memory and striatal-associated spatial reversal learning formation in patients with Parkinson's disease, who underwent a deep brain stimulation of the subthalamic nucleus. Deep brain stimulation patients (Parkinson's disease-subthalamic nucleus: n = 26) and healthy subjects (n = 15) were tested in a novel experimental spatial memory task based on the Morris water maze that assesses both hippocampal place memory as well as spatial reversal learning. All subjects were trained to navigate to a distinct spatial location hidden within the virtual environment during 16 learning trials in a subthalamic nucleus Stim-On condition. Patients were then randomized into two groups with either a deep brain stimulation On or Off condition. Four hours later, subjects were retested in a delayed recall and reversal learning condition. The reversal learning was realized with a new hidden location that should be memorized during six consecutive trials. The performance was measured by means of an index indicating the improvement during the reversal learning. In the delayed recall condition, neither patients, healthy subjects nor the deep brain stimulation On- versus Off groups showed a difference in place memory performance of the former trained location. In the reversal learning condition, healthy subjects (reversal index 2.0) and patients in the deep brain stimulation On condition (reversal index 1.6) showed a significant improvement. However, patients in the deep brain stimulation Off condition (reversal index 1.1) performed significantly worse and did not improve. There were no differences between all groups in a final visual guided navigation task with a visible target. These results suggest that deep brain stimulation of subthalamic nucleus restores spatial reversal learning in a virtual navigation task in patients with Parkinson's disease and gives insight into the neuromodulation effects on cognition of subthalamic circuits in Parkinson's disease.
Collapse
Affiliation(s)
- Isabel Schneider
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Robby Schönfeld
- Institute of Psychology, Martin-Luther-University Halle-Wittenberg, Halle 06108, Germany
| | - Annika Hanert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Sarah Philippen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Inken Tödt
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Oliver Granert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Maximilian Mehdorn
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Jos Becktepe
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Günther Deuschl
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Daniela Berg
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Steffen Paschen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Thorsten Bartsch
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
7
|
Mollusky A, Reynolds-Lallement N, Lee D, Zhong JY, Magnusson KR. Investigating the effects of age and prior military service on fluid and crystallized cognitive functions using virtual morris water maze (vMWM) and NIH Toolbox tasks. Arch Gerontol Geriatr 2024; 116:105156. [PMID: 37604015 DOI: 10.1016/j.archger.2023.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Much of current knowledge of aging involves war veterans and research about age-related cognitive changes in veterans involves generalized or single function tests or health or neurological disorders. The current study examined military service within the context of comparisons of young and old humans involving generally healthy individuals to address normal age-associated cognitive changes. Adult participants included 11 young females (8 non-veterans; 3 veterans; 21-31 years), 5 young males (non-veterans, 21-24 years), 9 older females (non-veterans, 62-80 years), and 21 older males (11 non-veterans; 10 veterans; 60-86 years). They were tested in virtual Morris water maze (vMWM) tasks, which were designed to test spatial learning, cognitive flexibility and working memory, similar to rodent studies, and were validated by correlations with specific NIH Toolbox (NIH-TB) Cognitive Battery or Wechsler Memory Scale (WMS) Logical Memory I and II tests. Significant age-related deficits were seen on multiple vMWM tasks and NIH-TB fluid cognition tasks. Among older males, vMWM tasks appeared to be more sensitive, based on finding statistical differences, to prior military service than NIH Toolbox tasks. Compared with male non-veterans of comparable age and younger, older male veterans exhibited significant deficits in spatial learning, cognitive flexibility, and working memory on vMWM tasks. Our findings support continued development and characterization of vMWM tasks that are comparable between rodents and humans for translating aging interventions between species, and provide impetus for larger investigations examining the extent to which prior military service can serve as a "hidden" variable in normal biological declines of cognitive functions.
Collapse
Affiliation(s)
- Adina Mollusky
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Nadjalisse Reynolds-Lallement
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Dylan Lee
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Jimmy Y Zhong
- Department of Psychology, School of Social and Health Sciences, James Cook University, Australia (Singapore campus), Singapore 387380, Singapore; College of Healthcare Sciences, James Cook University, Australia (Singapore campus), Singapore 387380, Singapore; Georgia State/Georgia Tech Center for Advanced Brain Imaging (CABI), Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
8
|
Hanert A, Schönfeld R, Weber FD, Nowak A, Döhring J, Philippen S, Granert O, Burgalossi A, Born J, Berg D, Göder R, Häussermann P, Bartsch T. Reduced overnight memory consolidation and associated alterations in sleep spindles and slow oscillations in early Alzheimer's disease. Neurobiol Dis 2024; 190:106378. [PMID: 38103701 DOI: 10.1016/j.nbd.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Spatial navigation critically underlies hippocampal-entorhinal circuit function that is early affected in Alzheimer's disease (AD). There is growing evidence that AD pathophysiology dynamically interacts with the sleep/wake cycle impairing hippocampal memory. To elucidate sleep-dependent consolidation in a cohort of symptomatic AD patients (n = 12, 71.25 ± 2.16 years), we tested hippocampal place learning by means of a virtual reality task and verbal memory by a word-pair association task before and after a night of sleep. Our results show an impaired overnight memory retention in AD compared with controls in the verbal task, together with a significant reduction of sleep spindle activity (i.e., lower amplitude of fast sleep spindles, p = 0.016) and increased duration of the slow oscillation (SO; p = 0.019). Higher spindle density, faster down-to-upstate transitions within SOs, and the time delay between SOs and nested spindles predicted better memory performance in healthy controls but not in AD patients. Our results show that mnemonic processing and memory consolidation in AD is slightly impaired as reflected by dysfunctional oscillatory dynamics and spindle-SO coupling during NonREM sleep. In this translational study based on experimental paradigms in animals and extending previous work in healthy aging and preclinical disease stages, our results in symptomatic AD further deepen the understanding of the memory decline within a bidirectional relationship of sleep and AD pathology.
Collapse
Affiliation(s)
- Annika Hanert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robby Schönfeld
- Institute of Psychology, Division of Clinical Psychology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Frederik D Weber
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Alexander Nowak
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Juliane Döhring
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany; Institute for General Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Oliver Granert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Werner-Reichardt Center for Integrative Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Peter Häussermann
- Department of Geriatric Psychiatry, LVR Klinik Köln, Academic Teaching Hospital, University of Cologne, Köln, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany.
| |
Collapse
|
9
|
Philippen S, Hanert A, Schönfeld R, Granert O, Yilmaz R, Jensen-Kondering U, Splittgerber M, Moliadze V, Siniatchkin M, Berg D, Bartsch T. Transcranial direct current stimulation of the right temporoparietal junction facilitates hippocampal spatial learning in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2024; 157:48-60. [PMID: 38056370 DOI: 10.1016/j.clinph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Spatial memory deficits are an early symptom in Alzheimer's disease (AD), reflecting the neurodegenerative processes in the neuronal navigation network such as in hippocampal and parietal cortical areas. As no effective treatment options are available, neuromodulatory interventions are increasingly evaluated. Against this backdrop, we investigated the neuromodulatory effect of anodal transcranial direct current stimulation (tDCS) on hippocampal place learning in patients with AD or mild cognitive impairment (MCI). METHODS In this randomized, double-blind, sham-controlled study with a cross-over design anodal tDCS of the right temporoparietal junction (2 mA for 20 min) was applied to 20 patients diagnosed with AD or MCI and in 22 healthy controls while they performed a virtual navigation paradigm testing hippocampal place learning. RESULTS We show an improved recall performance of hippocampal place learning after anodal tDCS in the patient group compared to sham stimulation but not in the control group. CONCLUSIONS These results suggest that tDCS can facilitate spatial memory consolidation via stimulating the parietal-hippocampal navigation network in AD and MCI patients. SIGNIFICANCE Our findings suggest that tDCS of the temporoparietal junction may restore spatial navigation and memory deficits in patients with AD and MCI.
Collapse
Affiliation(s)
- S Philippen
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Hanert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Schönfeld
- Psychology Department, Halle University, Germany
| | - O Granert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Yilmaz
- Dept. of Neurology, University of Ankara, Medical School, Ankara, Turkey
| | - U Jensen-Kondering
- Dept. of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany; Dept. of Neuroradiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - M Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany; Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, University Clinics OWL, Bielefeld University, Germany
| | - D Berg
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - T Bartsch
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
10
|
Breinbauer HA, Arévalo-Romero C, Villarroel K, Lavin C, Faúndez F, Garrido R, Alarcón K, Stecher X, Zamorano F, Billeke P, Delano PH. Functional Dizziness as a Spatial Cognitive Dysfunction. Brain Sci 2023; 14:16. [PMID: 38248231 PMCID: PMC10813051 DOI: 10.3390/brainsci14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Persistent postural-perceptual dizziness (PPPD) is a common chronic dizziness disorder with an unclear pathophysiology. It is hypothesized that PPPD may involve disrupted spatial cognition processes as a core feature. (2) Methods: A cohort of 19 PPPD patients underwent psycho-cognitive testing, including assessments for anxiety, depression, memory, attention, planning, and executive functions, with an emphasis on spatial navigation via a virtual Morris water maze. These patients were compared with 12 healthy controls and 20 individuals with other vestibular disorders but without PPPD. Vestibular function was evaluated using video head impulse testing and vestibular evoked myogenic potentials, while brain magnetic resonance imaging was used to exclude confounding pathology. (3) Results: PPPD patients demonstrated unique impairments in allocentric spatial navigation (as evidenced by the virtual Morris water maze) and in other high-demand visuospatial cognitive tasks that involve executive functions and planning, such as the Towers of London and Trail Making B tests. A factor analysis highlighted spatial navigation and advanced visuospatial functions as being central to PPPD, with a strong correlation to symptom severity. (4) Conclusions: PPPD may broadly impair higher cognitive functions, especially in spatial cognition. We discuss a disruption in the creation of enriched cognitive spatial maps as a possible pathophysiology for PPPD.
Collapse
Affiliation(s)
- Hayo A. Breinbauer
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
- Department of Otolaryngology, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610615, Chile
| | - Camilo Arévalo-Romero
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Karen Villarroel
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Claudio Lavin
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago 7610615, Chile (P.B.)
| | - Felipe Faúndez
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Rosario Garrido
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Kevin Alarcón
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Ximena Stecher
- Department of Radiology, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610615, Chile; (X.S.); (F.Z.)
| | - Francisco Zamorano
- Department of Radiology, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610615, Chile; (X.S.); (F.Z.)
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 8420524, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago 7610615, Chile (P.B.)
| | - Paul H. Delano
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Servicio de Otorrinolaringología, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| |
Collapse
|
11
|
Centofante E, Fralleoni L, Lupascu CA, Migliore M, Rinaldi A, Mele A. Specific patterns of neural activity in the hippocampus after massed or distributed spatial training. Sci Rep 2023; 13:13357. [PMID: 37587232 PMCID: PMC10432541 DOI: 10.1038/s41598-023-39882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Training with long inter-session intervals, termed distributed training, has long been known to be superior to training with short intervals, termed massed training. In the present study we compared c-Fos expression after massed and distributed training protocols in the Morris water maze to outline possible differences in the learning-induced pattern of neural activation in the dorsal CA1 in the two training conditions. The results demonstrate that training and time lags between learning opportunities had an impact on the pattern of neuronal activity in the dorsal CA1. Mice trained with the distributed protocol showed sustained neuronal activity in the postero-distal component of the dorsal CA1. In parallel, in trained mice we found more active cells that tended to constitute spatially restricted clusters, whose degree increased with the increase in the time lags between learning trials. Moreover, activated cell assemblies demonstrated increased stability in their spatial organization after distributed as compared to massed training or control condition. Finally, using a machine learning algorithm we found that differences in the number of c-Fos positive cells and their location in the dorsal CA1 could be predictive of the training protocol used. These results suggest that the topographic organization and the spatial location of learning activated cell assemblies might be critical to promote the increased stability of the memory trace induced by distributed training.
Collapse
Affiliation(s)
- Eleonora Centofante
- Department of Biology and Biotechnology 'C. Darwin' - Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, P.Le A. Moro, 5, 00185, Rome, Italy
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Luca Fralleoni
- Department of Biology and Biotechnology 'C. Darwin' - Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, P.Le A. Moro, 5, 00185, Rome, Italy
| | - Carmen A Lupascu
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Arianna Rinaldi
- Department of Biology and Biotechnology 'C. Darwin' - Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, P.Le A. Moro, 5, 00185, Rome, Italy
| | - Andrea Mele
- Department of Biology and Biotechnology 'C. Darwin' - Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, P.Le A. Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
12
|
Jeung S, Hilton C, Berg T, Gehrke L, Gramann K. Virtual Reality for Spatial Navigation. Curr Top Behav Neurosci 2023; 65:103-129. [PMID: 36512288 DOI: 10.1007/7854_2022_403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immersive virtual reality (VR) allows its users to experience physical space in a non-physical world. It has developed into a powerful research tool to investigate the neural basis of human spatial navigation as an embodied experience. The task of wayfinding can be carried out by using a wide range of strategies, leading to the recruitment of various sensory modalities and brain areas in real-life scenarios. While traditional desktop-based VR setups primarily focus on vision-based navigation, immersive VR setups, especially mobile variants, can efficiently account for motor processes that constitute locomotion in the physical world, such as head-turning and walking. When used in combination with mobile neuroimaging methods, immersive VR affords a natural mode of locomotion and high immersion in experimental settings, designing an embodied spatial experience. This in turn facilitates ecologically valid investigation of the neural underpinnings of spatial navigation.
Collapse
Affiliation(s)
- Sein Jeung
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher Hilton
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Timotheus Berg
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Lukas Gehrke
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Klaus Gramann
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany.
- Center for Advanced Neurological Engineering, University of California, San Diego, CA, USA.
| |
Collapse
|
13
|
Virtual Reality Water Maze Navigation in Children with Neurofibromatosis Type 1 and Reading Disability: an Exploratory Study. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2022. [DOI: 10.1007/s40817-022-00132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Yang X, Liu W, Dang P, Wang Y, Ge X, Huang X, Wang M, Zheng J, Ding X, Wang X. Decreased brain noradrenaline in minimal hepatic encephalopathy is associated with cognitive impairment in rats. Brain Res 2022; 1793:148041. [DOI: 10.1016/j.brainres.2022.148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
|
15
|
Bastian L, Samanta A, Ribeiro de Paula D, Weber FD, Schoenfeld R, Dresler M, Genzel L. Spindle-slow oscillation coupling correlates with memory performance and connectivity changes in a hippocampal network after sleep. Hum Brain Mapp 2022; 43:3923-3943. [PMID: 35488512 PMCID: PMC9374888 DOI: 10.1002/hbm.25893] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
After experiences are encoded, post‐encoding reactivations during sleep have been proposed to mediate long‐term memory consolidation. Spindle–slow oscillation coupling during NREM sleep is a candidate mechanism through which a hippocampal‐cortical dialogue may strengthen a newly formed memory engram. Here, we investigated the role of fast spindle‐ and slow spindle–slow oscillation coupling in the consolidation of spatial memory in humans with a virtual watermaze task involving allocentric and egocentric learning strategies. Furthermore, we analyzed how resting‐state functional connectivity evolved across learning, consolidation, and retrieval of this task using a data‐driven approach. Our results show task‐related connectivity changes in the executive control network, the default mode network, and the hippocampal network at post‐task rest. The hippocampal network could further be divided into two subnetworks of which only one showed modulation by sleep. Decreased functional connectivity in this subnetwork was associated with higher spindle–slow oscillation coupling power, which was also related to better memory performance at test. Overall, this study contributes to a more holistic understanding of the functional resting‐state networks and the mechanisms during sleep associated to spatial memory consolidation.
Collapse
Affiliation(s)
- Lisa Bastian
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anumita Samanta
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Demetrius Ribeiro de Paula
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frederik D Weber
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Martin Dresler
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
16
|
The neural substrate of spatial memory stabilization depends on the distribution of the training sessions. Proc Natl Acad Sci U S A 2022; 119:e2120717119. [PMID: 35349340 PMCID: PMC9168842 DOI: 10.1073/pnas.2120717119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Distributed training has long been known to lead to more robust memory formation as compared to massed training. Using the water maze, a well-established task for assessing memory in laboratory rodents, we found that distributed and massed training differentially engage the dorsolateral and dorsomedial striatum, and optogenetic priming of dorsolateral striatum can artificially increase the robustness of massed training to the level of distributed training. Overall, our findings demonstrate that spatial memory consolidation engages different neural substrates depending on the training regimen, identifying a therapeutic avenue for memory enhancement. Distributed training is known to lead to more robust memory formation as compared to training experiences with short intervals. Although this phenomenon, termed distributed practice effect, ubiquitous over a wide variety of tasks and organisms, has long been known by psychologists, its neurobiological underpinning is still poorly understood. Using the striatum as a model system here we tested the hypothesis that the ability of distributed training to optimize memory might depend upon the recruitment of different neural substrates compared to those engaged by massed training. First, by contrasting the medial and the lateral domains of the dorsal striatum after massed and distributed training we demonstrated that neuronal activity, as assessed using c-Fos expression, is differentially affected by the training protocol in the two striatal subregions. Next, by blocking the AMPA receptors before recall we provide evidence to support a selective role of the medial and the lateral striatum in the storage of information acquired by massed and distributed training, respectively. Finally, we found that optogenetic stimulation of the dorsolateral striatum during massed training enables the formation of an enduring memory similar to what is observed with distributed learning. Overall, these findings identify a possible mechanism for the distributed practice effect, a still poorly understood aspect of learning.
Collapse
|
17
|
Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies. Cells 2022; 11:cells11030479. [PMID: 35159288 PMCID: PMC8833923 DOI: 10.3390/cells11030479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Ginkgo biloba extract (GBE) has been widely used to treat central nervous system and cardiovascular diseases. Accumulating evidence has revealed the therapeutic potential of GBE against AD; however, no systematic evaluation has been performed; (2) Methods: a total of 17 preclinical studies and 20 clinical trials assessing the therapeutic effects of GBE against AD were identified from electronic databases. The data in the reports were extracted to conduct a meta-analysis of the AD-related pathological features or symptoms; (3) Results: For the preclinical reports, 45 animals treated with GBE, in six studies, were subjected to cognitive function assessments by the Morris water maze. GBE was shown to reduce the escape latencies in several studies, in both rats and mice (I2 > 70%, p < 0.005). For the clinical trials, eight trials, including 2100 individuals, were conducted. The results show that GBE improved the SKT and ADAS-Cog scores in early-stage AD patients after high doses and long-term administration; (4) Conclusions: GBE displayed generally consistent anti-AD effects in animal experiments, and it might improve AD symptoms in early-stage AD patients after high doses and long-term administration. A lack of sample size calculations and the poor quality of the methods are two obvious limitations of the studies. Nevertheless, the preclinical and clinical data suggest that further large-scale clinical trials may be needed in order to examine the effects of long-term GEB administration on early-stage AD.
Collapse
|
18
|
Guo L, Du QQ, Cheng PQ, Yang TT, Xing CQ, Luo XZ, Peng XC, Qian F, Huang JR, Tang FR. Neuroprotective Effects of Lycium barbarum Berry on Neurobehavioral Changes and Neuronal Loss in the Hippocampus of Mice Exposed to Acute Ionizing Radiation. Dose Response 2021; 19:15593258211057768. [PMID: 34887716 PMCID: PMC8649475 DOI: 10.1177/15593258211057768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Brain exposure to ionizing radiation during the
radiotherapy of brain tumor or metastasis of peripheral cancer cells to the
brain has resulted in cognitive dysfunction by reducing neurogenesis in
hippocampus. The water extract of Lycium barbarum berry (Lyc),
containing water-soluble Lycium barbarum polysaccharides and
flavonoids, can protect the neuronal injury by reducing oxidative stress and
suppressing neuroinflammation. Reseach Design: To demonstrate the long-term radioprotective effect
of Lyc, we evaluated the neurobehavioral alterations and the numbers of NeuN,
calbindin (CB), and parvalbumin (PV) immunopositive hippocampal neurons in
BALB/c mice after acute 5.5 Gy radiation with/without oral administration of Lyc
at the dosage of 10 g/kg daily for 4 weeks. Results: The results showed that Lyc could improve
irradiation-induced animal weight loss, depressive behaviors, spatial memory
impairment, and hippocampal neuron loss. Immunohistochemistry study demonstrated
that the loss of NeuN-immunopositive neuron in the hilus of the dentate gyrus,
CB-immunopositive neuron in CA1 strata radiatum, lacunosum moleculare and
oriens, and PV-positive neuron in CA1 stratum pyramidum and stratum granulosum
of the dentate gyrus after irradiation were significantly improved by Lyc
treatment. Conclusion: The neuroprotective effect of Lyc on those hippocampal
neurons may benefit the configuration of learning related neuronal networks and
then improve radiation induced neurobehavioral changes such as cognitive
impairment and depression. It suggests that Lycium
barbarum berry may be an alternative food supplement to prevent
radiation-induced neuron loss and neuropsychological disorders.
Collapse
Affiliation(s)
- Lei Guo
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Qian-Qian Du
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Piao-Qin Cheng
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Chao-Qun Xing
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xue-Zhi Luo
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jiang-Rong Huang
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
19
|
Zhang S, Zhao J, Bai Z, Luo L, Wu F, Li B, Shan Y. Sulforaphane inhibits the production of Aβ partially through the activation of Nrf2-regulated oxidative stress. Food Funct 2021; 12:11482-11490. [PMID: 34699582 DOI: 10.1039/d1fo02651h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, presents a potential role in improving Alzheimer's disease (AD)-specific symptoms. However, the regulation mechanism of SFN in AD is poorly understood. Here, we established AD models both in vitro and in vivo. Animal behaviors were tested by the Morris water maze test. The pathology of the hippocampus and the content of Aβ were detected. SFN (40 mg kg-1) decreased the escape latency (24.96 ± 7.43 s) and increased the target-zone frequency (3.19 ± 1.19) in rats. SFN improved the pathological morphology and the number of neurons in the hippocampus. Additionally, SFN significantly upregulated the contents of thioredoxin and glutathione as well as the activities of antioxidant enzymes, along with the expression of the Nrf2 protein. Conversely, SFN lowered the Aβ content and ROS level in N2a/APP cells. After silencing the Nrf2 by SiRNA, the inhibitory effects of SFN on ROS and Aβ production were partially weakened. In conclusion, the improvement of AD by SFN was closely related with Nrf2 activation.
Collapse
Affiliation(s)
- Shunxi Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jiahe Zhao
- Center of Drug Safety and Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Zhihuai Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Lina Luo
- Center of Drug Safety and Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Fan Wu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Baolong Li
- Center of Drug Safety and Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
20
|
Sharma S, Raj K, Singh S. Protective effects of cerebrolysin against chemotherapy (carmustine) induced cognitive impairment in Albino mice. Drug Chem Toxicol 2021; 45:2769-2779. [PMID: 34674598 DOI: 10.1080/01480545.2021.1991195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) comprises different neurological problems, including difficulty in learning new things, concentrating and making decisions that affect daily life activities. Clinical reports indicate that around 70% of cancer patients receiving chemotherapy suffer from cognitive impairment. The purpose of the present study is to examine the effects of widely used anticancer medication (Carmustine) on cognitive function using mice model and investigation of the neuroprotective effects of Cerebrolysin (CBN). Cerebrolysin (CBN) is a mixture of several neurotrophic factors and active peptides with anti-inflammatory, antioxidant, and neuroprotective actions. Our study aimed to establish a mice model of Carmustine (BCNU)-induced cognitive deficits and determine the protective effects of CBN. BCNU (10 mg/kg, i.v.) was administered to mice for 28 days, and behavioral parameters were measured on a weekly basis. CBN (44 and 88 mg/kg, i.p.) was administered daily from day 1 to 28 to BCNU treatment mice. All animals were sacrificed on day 29 and brain hippocampus tissues were used for biochemical, neuroinflammatory, neurotransmitters analysis. BCNU administration animals showed impaired cognition and memory, confirmed from behavioral analysis. Further, BCNU increased oxidative stress, inflammatory cytokines release and altered neurotransmitters concentration as compared to the control group (p < 0.01). However, mice treated with CBN (44 and 88 mg/kg, i.p.) significantly and dose-dependently improved cognitive functions, reduced oxidative stress markers, inflammatory cytokines and restored neurotransmitters concentration as compared to BCNU administered mice (p < 0.05). The finding of current study suggested that CBN could be the promising compound to reverse cognitive impairment associated with use of chemotherapy.
Collapse
Affiliation(s)
- Suraj Sharma
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
21
|
proNGF Involvement in the Adult Neurogenesis Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221910744. [PMID: 34639085 PMCID: PMC8509282 DOI: 10.3390/ijms221910744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
In recent decades, neurogenesis in the adult brain has been well demonstrated in a number of animal species, including humans. Interestingly, work with rodents has shown that adult neurogenesis in the dentate gyrus (DG) of the hippocampus is vital for some cognitive aspects, as increasing neurogenesis improves memory, while its disruption triggers the opposite effect. Adult neurogenesis declines with age and has been suggested to play a role in impaired progressive learning and memory loss seen in Alzheimer's disease (AD). Therefore, therapeutic strategies designed to boost adult hippocampal neurogenesis may be beneficial for the treatment of AD. The precursor forms of neurotrophins, such as pro-NGF, display remarkable increase during AD in the hippocampus and entorhinal cortex. In contrast to mature NGF, pro-NGF exerts adverse functions in survival, proliferation, and differentiation. Hence, we hypothesized that pro-NGF and its p75 neurotrophin receptor (p75NTR) contribute to disrupting adult hippocampal neurogenesis during AD. To test this hypothesis, in this study, we took advantage of the availability of mouse models of AD (APP/PS1), which display memory impairment, and AD human samples to address the role of pro-NGF/p75NTR signaling in different aspects of adult neurogenesis. First, we observed that DG doublecortin (DCX) + progenitors express p75NTR both, in healthy humans and control animals, although the percentage of DCX+ cells are significantly reduced in AD. Interestingly, the expression of p75NTR in these progenitors is significantly decreased in AD conditions compared to controls. In order to assess the contribution of the pro-NGF/p75NTR pathway to the memory deficits of APP/PS1 mice, we injected pro-NGF neutralizing antibodies (anti-proNGF) into the DG of control and APP/PS1 mice and animals are subjected to a Morris water maze test. Intriguingly, we observed that anti-pro-NGF significantly restored memory performance of APP/PS1 animals and significantly increase the percentage of DCX+ progenitors in the DG region of these animals. In summary, our results suggest that pro-NGF is involved in disrupting spatial memory in AD, at least in part by blocking adult neurogenesis. Moreover, we propose that adult neurogenesis alteration should be taken into consideration for better understanding of AD pathology. Additionally, we provide a new molecular entry point (pro-NGF/p75NTR signaling) as a promising therapeutic target in AD.
Collapse
|
22
|
Samanta A, van Rongen LS, Rossato JI, Jacobse J, Schoenfeld R, Genzel L. Sleep Leads to Brain-Wide Neural Changes Independent of Allocentric and Egocentric Spatial Training in Humans and Rats. Cereb Cortex 2021; 31:4970-4985. [PMID: 34037203 PMCID: PMC8491695 DOI: 10.1093/cercor/bhab135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
Sleep is important for memory consolidation and systems consolidation in particular, which is thought to occur during sleep. While there has been a significant amount of research regarding the effect of sleep on behavior and certain mechanisms during sleep, evidence that sleep leads to consolidation across the system has been lacking until now. We investigated the role of sleep in the consolidation of spatial memory in both rats and humans using a watermaze task involving allocentric- and egocentric-based training. Analysis of immediate early gene expression in rodents, combined with functional magnetic resonance imaging in humans, elucidated similar behavioral and neural effects in both species. Sleep had a beneficial effect on behavior in rats and a marginally significant effect in humans. Interestingly, sleep led to changes across multiple brain regions at the time of retrieval in both species and in both training conditions. In rats, sleep led to increased gene expression in the hippocampus, striatum, and prefrontal cortex. In the humans, sleep led to an activity increase in brain regions belonging to the executive control network and a decrease in activity in regions belonging to the default mode network. Thus, we provide cross-species evidence for system-level memory consolidation occurring during sleep.
Collapse
Affiliation(s)
- Anumita Samanta
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Laurens S van Rongen
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Janine I Rossato
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Justin Jacobse
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Robby Schoenfeld
- Institute of Psychology, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Lisa Genzel
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.,Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Blümel L, Brosda J, Bert B, Hamann M, Dietz GPH. Moderately aged OFA rats as a novel model for mild age-related alterations in learning and memory. Brain Cogn 2021; 154:105799. [PMID: 34543909 DOI: 10.1016/j.bandc.2021.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
Aged rodents have been used as preclinical models of age-associated cognitive decline. Most of those models displayed substantial impairments in learning and memory. The initial, more subtle changes that precede more severe losses in cognitive abilities have not been well characterized. Here, we established a model detecting initial subtle cognitive changes by comparing the performance of moderately aged Oncins France Strain A Sprague Dawley rats with young rats in the Morris water maze (MWM) and the Open Field (OF) test. Both age groups improved their performance during the training period at a similar rate; however, the older rats performed worse in several parameters measured in the MWM. Our results suggest that already at the age of 18-20 months rats show changes in their approach to solve the spatial memory task while their ability to learn is not yet diminished. The disparate spatial information processing of the moderately aged rats provides a novel animal model for early age-related cognitive alterations that could be useful to test the effect of early intervention strategies. Moreover, our results suggest that the sensitivity of cognitive tests in the elderly could be substantially enhanced if they assess both the improvement after several trials, and the strategy used to solve a certain task.
Collapse
Affiliation(s)
- Linda Blümel
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Jan Brosda
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Bettina Bert
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Melanie Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Gunnar P H Dietz
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| |
Collapse
|
24
|
Han Q, Chen K, Su C, Liu X, Luo X. Puerarin Loaded PLGA Nanoparticles: Optimization Processes of Preparation and Anti-alcohol Intoxication Effects in Mice. AAPS PharmSciTech 2021; 22:217. [PMID: 34386832 DOI: 10.1208/s12249-021-02092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
To improve the bioavailability of puerarin in liver, the optimized preparation method of puerarin-PLGA nanoparticles (Pue-PLGA-nps) and the effect of Pue-PLGA-nps on alcoholism mice were studied. The preparation of Pue-PLGA-nps was optimized by the Box-Behnken design and response surface methodology (RSM). To estimate the anti-alcoholism of Pue-PLGA-nps in vivo, drunkenness incubation period and sober time of mice were detected, and Morris water maze (MWM) test was performed. AST, ALT, and SOD were used to determine the damages and oxidative stress in the liver, as well as histopathological observation of the liver. The optimal preparation conditions of Pue-PLGA-nps in RSM were as follows: the drug-material ratio was 1:1.4, the reaction temperature was 65°C, and the reaction time was 13 min. The drug entrapment efficiency of Pue-PLGA-nps was 90.6% and closely up to 98.9% of the standard prediction value. The results in vivo showed that the Pue-PLGA-nps significantly increased the drunkenness incubation period in comparison with the model group and decreased drunkenness sober time and landing time in MWM in comparison with the model group and puerarin group (P<0.05) . The contents of AST and ALT in the liver of Pue-PLGA-nps group were significantly lower than those of model group and Puerarin group (P<0.05), and the activity of SOD in the liver of Pue-PLGA-nps group was higher than that of model group (P<0.05). By histopathological observation, moreover, Pue-PLGA-nps significantly attenuated the impairment of the liver caused by alcoholism. In conclusion, through BBD and RSM, the process conditions of the Pue-PLGA-nps were successfully optimized. The Pue-PLGA-nps exerted higher bioavailability and better effect of anti-alcoholism than puerarin, indicating PLGA nanoparticles could be potential to deliver drug.
Collapse
|
25
|
Zorzo C, Méndez M, Pernía AM, Arias JL. Repetitive transcranial magnetic stimulation during a spatial memory task leads to a decrease in brain metabolic activity. Brain Res 2021; 1769:147610. [PMID: 34380023 DOI: 10.1016/j.brainres.2021.147610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is able to generate causal-based interferences between brain networks and cognitive or behavioral responses. It has been used to improve cognition in several disease models. However, although its exploration in healthy animals is essential to attribute its pure effect in learning and memory processes, studies in this regard are scarce. We aimed to evaluate whether rTMS leads to memory facilitation in healthy rats, and to explore the brain-related oxidative metabolism. We stimulated healthy Wistar rats with a high-frequency (100 Hz) and low-intensity (0.33 T) protocol during three consecutive days and evaluated the effect on the performance of an allocentric spatial reference learning and memory task. Following the last day of learning, we assessed oxidative brain metabolism through quantitative cytochrome c oxidase (CCO) histochemistry. The results showed that rTMS did not improve spatial memory in healthy rats, but the behavioral outcome was accompanied by a CCO reduction in the prefrontal, retrosplenial, parietal, and rhinal cortices, as well as in the striatum, amygdala, septum, mammillary bodies, and the hippocampus, reflecting a lower metabolic activity. In conclusion, rTMS induces a highly efficient use of brain regions associated with spatial memory.
Collapse
Affiliation(s)
- Candela Zorzo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| | - Marta Méndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| | - Alberto M Pernía
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; Electronic Technology Area, University of Oviedo, 33203 Gijón, Spain.
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| |
Collapse
|
26
|
Talbot S, Gerdjikov T, De Lillo C. Two variations and one similarity in memory functions deployed by mice and humans to support foraging. Q J Exp Psychol (Hove) 2021; 75:245-259. [PMID: 33818203 DOI: 10.1177/17470218211010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice's foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting unbaited poles across trials (long-term memory) and revisits to poles within each trial (working memory). Humans tested with a virtual reality version of the task outperformed mice in foraging efficiency, working memory, and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures, interspecies differences were maintained throughout the 3 weeks of testing. By contrast, long-term memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying on archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates requires caution.
Collapse
Affiliation(s)
- Spencer Talbot
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Todor Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Carlo De Lillo
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
27
|
Thornberry C, Cimadevilla JM, Commins S. Virtual Morris water maze: opportunities and challenges. Rev Neurosci 2021; 32:887-903. [PMID: 33838098 DOI: 10.1515/revneuro-2020-0149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/20/2021] [Indexed: 11/15/2022]
Abstract
The ability to accurately recall locations and navigate our environment relies on multiple cognitive mechanisms. The behavioural and neural correlates of spatial navigation have been repeatedly examined using different types of mazes and tasks with animals. Accurate performances of many of these tasks have proven to depend on specific circuits and brain structures and some have become the standard test of memory in many disease models. With the introduction of virtual reality (VR) to neuroscience research, VR tasks have become a popular method of examining human spatial memory and navigation. However, the types of VR tasks used to examine navigation across laboratories appears to greatly differ, from open arena mazes and virtual towns to driving simulators. Here, we examined over 200 VR navigation papers, and found that the most popular task used is the virtual analogue of the Morris water maze (VWM). Although we highlight the many advantages of using the VWM task, there are also some major difficulties related to the widespread use of this behavioural method. Despite the task's popularity, we demonstrate an inconsistency of use - particularly with respect to the environmental setup and procedures. Using different versions of the virtual water maze makes replication of findings and comparison of results across researchers very difficult. We suggest the need for protocol and design standardisation, alongside other difficulties that need to be addressed, if the virtual water maze is to become the 'gold standard' for human spatial research similar to its animal counterpart.
Collapse
Affiliation(s)
- Conor Thornberry
- Department of Psychology, Maynooth University, John Hume Building, North Campus, Maynooth, Co KildareW23 F2H6, Ireland
| | - Jose M Cimadevilla
- Department of Psychology and Health Research Center, University of Almeria, 04120La Cañada, Almería, Spain
| | - Sean Commins
- Department of Psychology, Maynooth University, John Hume Building, North Campus, Maynooth, Co KildareW23 F2H6, Ireland
| |
Collapse
|
28
|
Pike AC, Lowther M, Robinson OJ. The Importance of Common Currency Tasks in Translational Psychiatry. Curr Behav Neurosci Rep 2021; 8:1-10. [PMID: 33708469 PMCID: PMC7904709 DOI: 10.1007/s40473-021-00225-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Purpose of Review Common currency tasks are tasks that investigate the same phenomenon in different species. In this review, we discuss how to ensure the translational validity of common currency tasks, summarise their benefits, present recent research in this area and offer future directions and recommendations. Recent Findings We discuss the strengths and limitations of three specific examples where common currency tasks have added to our understanding of psychiatric constructs—affective bias, reversal learning and goal-based decision making. Summary Overall, common currency tasks offer the potential to improve drug discovery in psychiatry. We recommend that researchers prioritise construct validity above face validity when designing common currency tasks and suggest that the evidence for construct validity is summarised in papers presenting research in this area.
Collapse
Affiliation(s)
- Alexandra C Pike
- Anxiety Lab, Neuroscience and Mental Health Group, University College London Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AR UK
| | - Millie Lowther
- Anxiety Lab, Neuroscience and Mental Health Group, University College London Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AR UK
| | - Oliver J Robinson
- Anxiety Lab, Neuroscience and Mental Health Group, University College London Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AR UK.,Research Department of Clinical, Educational and Health Psychology Department, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
29
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
30
|
Ben-Zeev T, Weiss I, Ashri S, Heled Y, Ketko I, Yanovich R, Okun E. Mild Physical Activity Does Not Improve Spatial Learning in a Virtual Environment. Front Behav Neurosci 2020; 14:584052. [PMID: 33281575 PMCID: PMC7705229 DOI: 10.3389/fnbeh.2020.584052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
It is well-established that physical exercise in humans improves cognitive functions, such as executive functions, pattern separation, and working memory. It is yet unknown, however, whether spatial learning, long known to be affected by exercise in rodents, is also affected in humans. In order to address this question, we recruited 20 healthy young male adults (18-30 years old) divided into exercise and control groups (n = 10 in each group). The exercise group performed three sessions per week of mild-intensity aerobic exercise for 12 weeks, while the control group was instructed not to engage in any physical activity. Both groups performed maximal oxygen uptake (VO2max) tests to assess their cardiovascular fitness at baseline and every 4 weeks through the 12 weeks of the training program. The effects of mild aerobic exercise were tested on performance in two different virtual reality (VR)-based spatial learning tasks: (1) virtual Morris water maze (VMWM) and (2) virtual Radial arm water maze (VRAWM). Subjects were tested in both tasks at baseline prior to the training program and at the end of 12 weeks training program. While the mild-intensity aerobic exercise did not affect subjects' VO2max parameters, mean time to anaerobic threshold increased for the exercise group compared with control. No effect was observed, however, on performance in the VMWM or VRAWM between the two groups. Based on these results, we suggest that mild-intensity aerobic exercise does not improve spatial learning and memory in young, healthy adults.
Collapse
Affiliation(s)
- Tavor Ben-Zeev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Paul Feder Alzheimer's Disease Research Laboratory, Ramat Gan, Israel
| | - Inbal Weiss
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Saar Ashri
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel
| | - Yuval Heled
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel
| | - Itay Ketko
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel
| | - Ran Yanovich
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Paul Feder Alzheimer's Disease Research Laboratory, Ramat Gan, Israel
| |
Collapse
|
31
|
Chinn GA, Pearn ML, Vutskits L, Mintz CD, Loepke AW, Lee JJ, Chen J, Bosnjak ZJ, Brambrink AM, Jevtovic-Todorovic V, Sun LS, Sall JW. Standards for preclinical research and publications in developmental anaesthetic neurotoxicity: expert opinion statement from the SmartTots preclinical working group. Br J Anaesth 2020; 124:585-593. [PMID: 32145876 PMCID: PMC7424895 DOI: 10.1016/j.bja.2020.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
In March 2019, SmartTots, a public-private partnership between the US Food and Drug Administration and the International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal editors, and government agency representatives to discuss the continued need for rigorous preclinical research and the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to answer some of the field's largest questions. The attendees concluded that summarising the benefits and disadvantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new experiments and interpreting results across laboratories. This expert opinion report is a summary of these discussions, and includes a focused review of current animal models and reporting standards for the field of perinatal anaesthetic neurotoxicity. This will serve as a practical guide and road map for novel and rigorous experimental work.
Collapse
Affiliation(s)
- Gregory A Chinn
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Matthew L Pearn
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Laszlo Vutskits
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Cyrus D Mintz
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas W Loepke
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer J Lee
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jerri Chen
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Lena S Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jeffrey W Sall
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Guo T, Fang J, Tong ZY, He S, Luo Y. Transcranial Direct Current Stimulation Ameliorates Cognitive Impairment via Modulating Oxidative Stress, Inflammation, and Autophagy in a Rat Model of Vascular Dementia. Front Neurosci 2020; 14:28. [PMID: 32063834 PMCID: PMC7000631 DOI: 10.3389/fnins.2020.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
To investigate the potential applications and the molecular mechanisms of transcranial direct current stimulation (tDCS) on cognitive impairment in a vascular dementia (VD) animal model. Sprague-Dawley rats were used in this study. VD rat model was induced by modified permanent bilateral common carotid artery occlusion (2-VO) approach. Anodal tDCS was applied to the animals. Morris water maze was used to analyze spatial memory and navigation ability. The pathological changes in the hippocampal CA1 region and cerebral cortex were examined via Hematoxylin-Eosin staining. The rats were sacrificed for the measurement of the level of superoxide (SOD), glutathione (GSH), reactive oxidative species (ROS), malondialdehyd (MDA), Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α level in the hippocampus. Western blot was carried out to measure the hippocampal expression of microtubule-associated protein 1 light chain 3 (LC-3) and p62. Rats with VD have decreased number of neurons in the hippocampus and cerebral cortex, as well as worse cognitive impairment. The proliferation of activated microglia and astroglia, accompanied with attenuation of myelination were observed in the white matter about 1 month after 2-VO operation. These abnormalities were significantly ameliorated by tDCS treatment. Further study revealed that anodal tDCS could suppress the MDA and ROS level, while enhance the SOD and GSH level to reduce the oxidative stress. Anodal tDCS could inhibit hypoperfusion-induced IL-1β, IL-6, and TNF-α expression to attenuate inflammatory response in hippocampus. Moreover, anodal tDCS treatment could alleviate autophagy level. The study has demonstrated a possible therapeutic role of tDCS in the treatment of cognitive impairment in VD.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong Y Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Luo
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Xie Y, Qin S, Zhang R, Wu H, Sun G, Liu L, Hou X. The Effects of High-Altitude Environment on Brain Function in a Seizure Model of Young-Aged Rats. Front Pediatr 2020; 8:561. [PMID: 33072659 PMCID: PMC7534851 DOI: 10.3389/fped.2020.00561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, we examined the effects of high-altitude environment on the brain function of a young-rat seizure model. Two-hundred healthy, 3-week old, male rats were selected and equally divided into the plateau and plain groups. The plateau group was preconditioned in a simulated 5,000-m altitude (barometric pressure [PB], 405 mmHg; partial pressure of oxygen [PO2], 84 mmHg) for 6 h/day for 7 days, while the plain group was kept in the ordinary atmospheric environment (PB, 760 mmHg; PO2, 157 mmHg) for 7 days. After preconditioning, rats were administered pentylenetetrazol (PTZ) to generate level-4 or stronger seizures. Electroencephalogram (EEG) signals were recorded (16 rats/group); the histology and apoptosis of hippocampal tissue were evaluated (6 rats/group); and spatial learning and memory were examined in the Morris water maze (12 rats/group; 6-weeks old). To induce a level 4 or stronger seizure successfully, a significantly higher PTZ dose was used in the plateau (81.32 ± 21.57 mg/kg) than in the plain group (63.41 ± 19.77 mg/kg, p < 0.01); however, the plateau group survival rate was significantly lower than that of the plain group (26.2 vs. 42.9%, p < 0.05). EEG parameters did not differ between the two groups. Histological analysis revealed that in the plateau group, more neurons were observed (p < 0.001), especially in DG and CA1 areas, and less apoptotic cells were found in DG areas (p = 0.035), comparing with the plain group. No differences were found between the two groups in any of the parameters examined in the Morris water maze. Our results show that the disease outcome caused by low pressure and low oxygen environment in the plateau group was different to that in the plain group. The high drug dosage to induce seizures in the plateau group, accompanied by increased mortality rates after seizures, indicates that the seizure threshold may be higher in the plateau than in the plain group. Moreover, based on the histological findings, the plateau environment seems to exert a protective effect on brain development after seizures only for survived individuals with mild conditions.
Collapse
Affiliation(s)
- Yao Xie
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Shenglan Qin
- Pediatric Department, People's Hospital of Tibet Autonomous Region, Tibet, China
| | - Rui Zhang
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Hong Wu
- Pediatric Department, People's Hospital of Tibet Autonomous Region, Tibet, China
| | - Guoyu Sun
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Lili Liu
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Xinlin Hou
- Pediatric Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
Wang L, Shi H, Kang Y, Guofeng W. Hippocampal low-frequency stimulation improves cognitive function in pharmacoresistant epileptic rats. Epilepsy Res 2019; 168:106194. [PMID: 31521425 DOI: 10.1016/j.eplepsyres.2019.106194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/28/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The aims of the present study were to observe the changes of cognitive function in a pilocarpine-induced rat model of epilepsy, and to investigate the effects of hippocampal low-frequency stimulation (Hip-LFS) on cognitive function in rats with pharmacoresistant epilepsy. METHODS A total of 100 male Sprague Dawley rats were randomly selected to establish an epilepsy model. Rats with successfully induced epilepsy were injected intraperitoneally with phenobarbital and phenytoin for pharmacoresistance selection. The selected pharmacoresistant epileptic (PRE) rats were assigned to a pharmacoresistant control group (PRC group), or a group that received Hip-LFS (LFS group). The same number of rats with pharmacosensitive epilepsy formed the PSC group, and a normal control (NCR) group was included. A novel object recognition (NOR) test, and a Morris water maze (MWM) task were used to assess cognitive function in all groups. RESULTS The epileptic rats showed decreased abilities of learning and memory compared with normal control. The rats in the LFS group displayed significantly shorter escape latency in place navigation, spent longer times in the target quadrant, and traveled longer distances on the platform in the spatial probe test than PRC group. In the NOR test, compared with the PRC group, the discrimination index of the LFS group was significantly increased. Compared with the PRC group, the average frequency and duration of seizures were also decreased in the LFS group. CONCLUSIONS The present pilocarpine-induced rat model of epilepsy showed impaired cognitive function, especially in rats with PRE. The Hip-LFS treatment could effectively improve the cognitive function of rats with PRE.
Collapse
Affiliation(s)
- Likun Wang
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Haiyan Shi
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Yangting Kang
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Wu Guofeng
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| |
Collapse
|
35
|
Cooke MB, O'Leary TP, Harris P, Ma R, Brown RE, Snyder JS. Pathfinder: open source software for analyzing spatial navigation search strategies. F1000Res 2019; 8:1521. [PMID: 32025289 PMCID: PMC6974928 DOI: 10.12688/f1000research.20352.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2020] [Indexed: 01/04/2023] Open
Abstract
Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Timothy P O'Leary
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Phelan Harris
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Ricky Ma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Richard E Brown
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jason S Snyder
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
36
|
Cooke MB, O'Leary TP, Harris P, Ma R, Brown RE, Snyder JS. Pathfinder: open source software for analyzing spatial navigation search strategies. F1000Res 2019; 8:1521. [PMID: 32025289 DOI: 10.12688/f1000research.20352.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 01/24/2023] Open
Abstract
Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Timothy P O'Leary
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Phelan Harris
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Ricky Ma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Richard E Brown
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jason S Snyder
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
37
|
Effects of glucocorticoid and noradrenergic activity on spatial learning and spatial memory in healthy young adults. Behav Brain Res 2019; 373:112072. [PMID: 31279794 DOI: 10.1016/j.bbr.2019.112072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acute stress leads to a rapid release of noradrenaline and glucocorticoids, which in turn influence cognitive functions such as spatial learning and memory. However, few studies have investigated noradrenergic and glucocorticoid effects on spatial learning and memory in humans. Therefore, we examined the separate and combined effects of noradrenergic and glucocorticoid stimulation on spatial learning and memory. METHODS One hundred and four healthy men (mean age = 24.1 years ±SD 3.5) underwent the virtual Morris Water Maze (vMWM) task to test spatial learning and spatial memory retrieval after receiving either 10 mg hydrocortisone or 10 mg yohimbine (an alpha 2-adrenergic receptor antagonist that increases noradrenergic activity), 10 mg hydrocortisone and 10 mg yohimbine combined, or placebo. The vMWM task took place 90 min after yohimbine was administered and 75 min after hydrocortisone was administered. Placebo was given at the same times. Salivary cortisol and alpha amylase levels were measured to check pharmacological stimulation. RESULTS Hydrocortisone and yohimbine increased salivary cortisol and alpha amylase levels. Participants' task performance improved over time, suggesting successful spatial learning. However, separate and combined noradrenergic and glucocorticoid stimulation had no effect on spatial learning and spatial memory retrieval compared with placebo. CONCLUSIONS In healthy young men, hydrocortisone and/or yohimbine did not alter spatial learning or spatial memory retrieval. Importantly, pharmacological stimulation took place prior to learning. Further studies should examine the effects of glucocorticoid and noradrenergic stimulation during encoding, consolidation, and retrieval.
Collapse
|
38
|
Cortes N, Sabogal-Guaqueta AM, Cardona-Gomez GP, Osorio E. Neuroprotection and improvement of the histopathological and behavioral impairments in a murine Alzheimer's model treated with Zephyranthes carinata alkaloids. Biomed Pharmacother 2018; 110:482-492. [PMID: 30530228 DOI: 10.1016/j.biopha.2018.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 12/02/2018] [Indexed: 01/11/2023] Open
Abstract
In Alzheimer's disease (AD), amyloid beta (Aβ) plaques initiates a cascade of pathological events where the overactivation of N-methyl-d-aspartate receptors (NMDA) by excess glutamate (Glu) triggers oxidative processes that lead to the activation of microglial cells, inflammation, and finally neuronal death. Amaryllidaceae alkaloids exert neuroprotective activities against different neurotoxin-induced injuries in vitro, and although their biological potential is well demonstrated, their neuroprotective activity has not been reported in an in vivo model of AD. The aim of our study was to determine the in vitro and in vivo neuroprotective potential of standardized alkaloidal fractions of Zephyranthes carinata. In this work, the neuroprotective effect of two alkaloidal fractions extracted from Z. carinata (bulbs and leaves) was analyzed in an in vitro excitotoxicity model in order to select the most promising one for subsequent evaluation in a triple transgenic mouse model of AD (3xTg-AD). We found that Z. carinata bulbs protect neurons against a Glu-mediated toxic stimulus in vitro, as evidenced by the decrease in apoptotic nuclei, the reduction in the lipid peroxidation product malondialdehyde and the conservation of dendritic structures. The effects of intraperitoneal administration of Z. carinata bulbs (10 mg/kg) every 12 h for 1 month on 3xTg-AD (18 months old) showed improved learning and spatial memory. Histopathologically, the alkaloidal fraction-treated 3xTg-AD mice exhibited a significant reduction in tauopathy and astrogliosis, as well as a significant decrease in the proinflammatory marker COX-2 and an increase in pAkt. The results suggest that Z. carinata bulbs provide neuroprotective effects both in vitro and in 3xTg-AD mice by intervening in the inflammatory processes, regulating the aggregation of pair helical filaments (PHFs) and activating survival pathways.
Collapse
Affiliation(s)
- Natalie Cortes
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquía UdeA, Calle 70 No, 52-21, Medellin, Colombia
| | - Angelica Maria Sabogal-Guaqueta
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No, 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gomez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No, 52-21, Medellin, Colombia
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquía UdeA, Calle 70 No, 52-21, Medellin, Colombia.
| |
Collapse
|
39
|
Vouros A, Gehring TV, Szydlowska K, Janusz A, Tu Z, Croucher M, Lukasiuk K, Konopka W, Sandi C, Vasilaki E. A generalised framework for detailed classification of swimming paths inside the Morris Water Maze. Sci Rep 2018; 8:15089. [PMID: 30305680 PMCID: PMC6180070 DOI: 10.1038/s41598-018-33456-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.
Collapse
Affiliation(s)
| | - Tiago V Gehring
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Kinga Szydlowska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Artur Janusz
- Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Zehai Tu
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | | | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Witold Konopka
- Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, UK.
| |
Collapse
|
40
|
Impact of 1-day and 4-day MWM training techniques on oxidative and neurochemical profile in rat brain: A comparative study on learning and memory functions. Neurobiol Learn Mem 2018; 155:390-402. [PMID: 30195048 DOI: 10.1016/j.nlm.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/11/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
Abstract
Among multiple behavioral tasks used to assess memory performance, Morris water maze (MWM) is a well-known and reliable conventional behavioral task to monitor spatial memory performance in rodents. Although multiple procedures are employed by researchers for spatial learning training in MWM, but less is known about impact of these training protocol variations on oxidative and neurochemical systems. Therefore, this study aimed to examine whether variations in training protocol will influence spatial memory performance and induce changes in oxidative status and cholinergic and aminergic neurotransmission in rat brain. For this, rats were assigned to four groups; control (unexposed), 1-trial (exposed to single training trial), 1-day (exposed to four training trials for a single day) and 4-day (exposed to four training trials for four days). After conducting training, spatial reference memory performance was determined by performing retention and consolidation probe trials. Rats were then decapitated and their brain and plasma samples were collected for biochemical, oxidative and neurochemical analysis. It was found that spatial reference memory was improved following both 1-day and 4-day training protocols, however, corticosterone levels were raised extensively following 4-day training exposure compared to 1-day training protocol. Similarly, a significant improvement in redox profile and cholinergic and aminergic neurotransmitters was also observed following 1-day training procedure. Thus, 1-day training procedure can be suggested as a better procedure for assessing the spatial memory performance in rats as it has a profound impact on antioxidant status and cholinergic and aminergic neurotransmission in brain. Moreover, use of single-day training procedure can provide a rapid and effective tool for assessing spatial memory in rats compared to prolonged and complicated 4-day training protocol.
Collapse
|
41
|
5-HT 6 receptor agonist and memory-enhancing properties of hypidone hydrochloride (YL-0919), a novel 5-HT 1A receptor partial agonist and SSRI. Neuropharmacology 2018; 138:1-9. [PMID: 29805118 DOI: 10.1016/j.neuropharm.2018.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/28/2022]
Abstract
Most current antidepressants are lacking a pro-cognition effect or even impair cognition as a side effect, and there are few effective psychopharmacological options that improve cognitive dysfunction in depression. Our previous studies revealed that hypidone hydrochloride (YL-0919), a novel 5-HT1A receptor partial agonist and SSRI, has antidepressant- and anxiolytic-like effects. Here, further studies found that YL-0919, but not vilazodone (a 5-HT1A receptor partial agonist and SSRI), exerted a significant memory-enhancing effect in the Morris water maze, object recognition test and step-down passive avoidance task. Because the 5-HT6 receptor has emerged as an interesting drug target to improve cognition, we investigated the target profile of YL-0919 using radioligand binding assays, [35S]-GTPγS binding and cAMP stimulation assays. YL-0919 was found to act as a highly effective, full agonist of 5-HT6 receptors. Finally, we observed that the memory-enhancing activities of YL-0919 were completely reversed after co-administration of SB271046 (a selective 5-HT6 receptor antagonist) at a dose that does not alter cognition. In summary, the findings of the current study suggest that YL-0919 has clear memory-enhancing effects, which might be at least partially mediated by 5-HT6 receptor activation.
Collapse
|
42
|
Fritz AK, Amrein I, Wolfer DP. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:380-391. [PMID: 28654717 PMCID: PMC5638061 DOI: 10.1002/ajmg.c.31565] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/04/2023]
Abstract
Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water‐maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water‐maze acquisition and in the open field, males tended to perform less reliably in the water‐maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water‐maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water‐maze are used in preclinical research.
Collapse
Affiliation(s)
- Ann-Kristina Fritz
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - David P Wolfer
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Wang Y, Li Y, Xing Q, Han XG, Dong X, Lu Y, Zhou M. Sevoflurane anesthesia in pregnant rats negatively affects nerve function in offspring potentially via inhibition of the Wnt/β-catenin pathway. Mol Med Rep 2017; 15:2753-2759. [PMID: 28447764 DOI: 10.3892/mmr.2017.6316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/10/2017] [Indexed: 11/06/2022] Open
Abstract
Due to the rapid development of medical technology used to perform intrauterine procedures during pregnancy, the number of patients receiving fetal surgery under general anesthesia is increasing. The aim of the present study was to determine the effects of anesthetics on the offspring of rats, and to identify the potential mechanisms underlying these effects. On day 14 of pregnancy, Sprague‑Dawley rats were equally divided into the following 3 groups (n=9): Control group (n=3), 3% sevoflurane group (n=3) and 4% sevoflurane group (n=3). Following birth of the offspring, the juvenile rats were assessed using an open‑field test, Morris water maze and a continuous passive avoidance test on different days to determine their learning abilities and memory. Western blot and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analyses were used to examine the expression of multiple critical factors associated with the proliferation and apoptosis of nerve cells, including Ki67, nestin, B cell leukemia/lymphoma 2 (Bcl-2), BCL2 associated X (Bax) and caspase‑3. Additionally, the level of adenosine triphosphate production among the 3 groups were compared. Furthermore, expression alterations in of glycogen synthase kinase‑3β (GSK‑3β) and β‑catenin were examined. The Morris water maze experiment revealed that an increased concentration of sevoflurane exposure significantly reduced the learning and memory abilities of the juvenile rats when compared with controls. In addition, western blotting and RT-qPCR analyses determined that the protein and mRNA expression levels of Bax, caspase‑3 and GSK‑3β were significantly increased relative to the controls. By contrast, the expression levels of nestin, Ki‑67, Bcl‑2 and β‑catenin were significantly reduced. The results of the present study suggest that exposure of pregnant mice to sevoflurane anesthesia demonstrates a negative effect on the learning and memory abilities of their offspring, and the Wnt/β-catenin signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Yiyao Wang
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yu Li
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qunzhi Xing
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xuechan G Han
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xu Dong
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yiping Lu
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Mintao Zhou
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|