1
|
Cross ZR, Helfrich RF, Corcoran AW, Dede AJO, Kohler MJ, Coussens SW, Zou-Williams L, Schlesewsky M, Gaskell GM, Knight RT, Bornkessel-Schlesewsky I. Slow Oscillation-Spindle Coupling Predicts Sequence-Based Language Learning. J Neurosci 2025; 45:e2193232024. [PMID: 39572236 PMCID: PMC11735671 DOI: 10.1523/jneurosci.2193-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 01/18/2025] Open
Abstract
Sentence comprehension involves the decoding of both semantic and grammatical information, a process fundamental to communication. As with other complex cognitive processes, language comprehension relies, in part, on long-term memory. However, the electrophysiological mechanisms underpinning the encoding and generalization of higher-order linguistic knowledge remain elusive, particularly from a sleep-based consolidation perspective. One candidate mechanism that may support the consolidation of higher-order language is the coordination of slow oscillations (SO) and sleep spindles during nonrapid eye movement sleep (NREM). To examine this hypothesis, we analyzed electroencephalographic (EEG) data recorded from 35 participants (M age = 25.4; SD = 7.10; 16 males) during an artificial language learning task, contrasting performance between individuals who were given an 8 h nocturnal sleep period or an equivalent period of wake. We found that sleep relative to wake was associated with superior performance for sequence-based word order rules. Postsleep sequence-based word order processing was further associated with less task-related theta desynchronization, an electrophysiological signature of successful memory consolidation, as well as cognitive control and working memory. Frontal NREM SO-spindle coupling was also positively associated with behavioral sensitivity to sequence-based word order rules, as well as with task-related theta power. As such, theta activity during retrieval of previously learned information correlates with SO-spindle coupling, thus linking neural activity in the sleeping and waking brain. Taken together, this study presents converging behavioral and neurophysiological evidence for a role of NREM SO-spindle coupling and task-related theta activity as signatures of memory consolidation and retrieval in the context of higher-order language learning.
Collapse
Affiliation(s)
- Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Randolph F Helfrich
- Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Andrew W Corcoran
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, Victoria 3800, Australia
| | - Adam J O Dede
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Mark J Kohler
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Scott W Coussens
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Lena Zou-Williams
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
| | - Gareth M Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Robert T Knight
- Department of Psychology, UC Berkeley, Berkeley, California 94720-1650
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California 94720-1650
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
| |
Collapse
|
2
|
Markiewicz R, Segaert K, Mazaheri A. Brain-to-brain coupling forecasts future joint action outcomes. iScience 2024; 27:110802. [PMID: 39290842 PMCID: PMC11407023 DOI: 10.1016/j.isci.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In this study, we investigated whether brain-to-brain coupling patterns could predict performance in a time-estimation task that requires two players to cooperate. The participant pairs were tasked with synchronizing button presses after converging on a shared representation of "short," "medium," and "long" time intervals while utilizing feedback to adjust responses. We employed electroencephalogram (EEG)-hyperscanning and focused on post-feedback brain activity. We found that negative feedback led to increased frontal mid-line theta activity across individuals. Moreover, a correlation in post-feedback theta power between players forecasted failed joint action, while an anti-correlation forecasted success. These findings suggest that temporally coupled feedback-related brain activity between two individuals serves as an indicator of redundancy in adjustment of a common goal representation. Additionally, the anti-correlation of this activity reflects cognitive strategic mechanisms that ensure optimal joint action outcomes. Rather than a paired overcompensation, successful cooperation requires flexible strategic agility from both partners.
Collapse
Affiliation(s)
- Roksana Markiewicz
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Katrien Segaert
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
McGill MB, Kieffaber PD. Event-related theta and gamma band oscillatory dynamics during visuo-spatial sequence memory in younger and older adults. PLoS One 2024; 19:e0297995. [PMID: 38564573 PMCID: PMC10986947 DOI: 10.1371/journal.pone.0297995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Visuo-spatial working memory (VSWM) for sequences is thought to be crucial for daily behaviors. Decades of research indicate that oscillations in the gamma and theta bands play important functional roles in the support of visuo-spatial working memory, but the vast majority of that research emphasizes measures of neural activity during memory retention. The primary aims of the present study were (1) to determine whether oscillatory dynamics in the Theta and Gamma ranges would reflect item-level sequence encoding during a computerized spatial span task, (2) to determine whether item-level sequence recall is also related to these neural oscillations, and (3) to determine the nature of potential changes to these processes in healthy cognitive aging. Results indicate that VSWM sequence encoding is related to later (∼700 ms) gamma band oscillatory dynamics and may be preserved in healthy older adults; high gamma power over midline frontal and posterior sites increased monotonically as items were added to the spatial sequence in both age groups. Item-level oscillatory dynamics during the recall of VSWM sequences were related only to theta-gamma phase amplitude coupling (PAC), which increased monotonically with serial position in both age groups. Results suggest that, despite a general decrease in frontal theta power during VSWM sequence recall in older adults, gamma band dynamics during encoding and theta-gamma PAC during retrieval play unique roles in VSWM and that the processes they reflect may be spared in healthy aging.
Collapse
Affiliation(s)
- Makenna B. McGill
- Department of Psychological Sciences, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Paul D. Kieffaber
- Department of Psychological Sciences, College of William & Mary, Williamsburg, Virginia, United States of America
| |
Collapse
|
4
|
Dyck S, Klaes C. Training-related changes in neural beta oscillations associated with implicit and explicit motor sequence learning. Sci Rep 2024; 14:6781. [PMID: 38514711 PMCID: PMC10958048 DOI: 10.1038/s41598-024-57285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
Many motor actions we perform have a sequential nature while learning a motor sequence involves both implicit and explicit processes. In this work, we developed a task design where participants concurrently learn an implicit and an explicit motor sequence across five training sessions, with EEG recordings at sessions 1 and 5. This intra-subject approach allowed us to study training-induced behavioral and neural changes specific to the explicit and implicit components. Based on previous reports of beta power modulations in sensorimotor networks related to sequence learning, we focused our analysis on beta oscillations at motor-cortical sites. On a behavioral level, substantial performance gains were evident early in learning in the explicit condition, plus slower performance gains across training sessions in both explicit and implicit sequence learning. Consistent with the behavioral trends, we observed a training-related increase in beta power in both sequence learning conditions, while the explicit condition displayed stronger beta power suppression during early learning. The initially stronger beta suppression and subsequent increase in beta power specific to the explicit component, correlated with enhanced behavioral performance, possibly reflecting higher cortical excitability. Our study suggests an involvement of motor-cortical beta oscillations in the explicit component of motor sequence learning.
Collapse
Affiliation(s)
- Susanne Dyck
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| | - Christian Klaes
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- Neurosurgery, University hospital Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
5
|
Millon EM, Haddad AE, Chang HYM, Najafizadeh L, Shors TJ. The Feeling of Time Passing Is Associated with Recurrent Sustained Activity and Theta Rhythms Across the Cortex. Brain Connect 2024; 14:39-47. [PMID: 38019079 DOI: 10.1089/brain.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Introduction: We are constantly estimating how much time has passed, and yet know little about the brain mechanisms through which this process occurs. In this pilot study, we evaluated so-called subjective time estimation with the temporal bisection task, while recording brain activity from electroencephalography (EEG). Methods: Nine adult participants were trained to distinguish between two durations of visual stimuli as either "short" (400 msec) or "long" (1600 msec). They were then presented with stimulus durations in between the long and short stimuli. EEG data from 128 electrodes were examined with a novel analytical method that identifies segments of sustained cortical activity during the task. Results: Participants tended to categorize intermediate durations as "long" more frequently than "short" and were thus experiencing time as moving faster while overestimating the amount of time passing. Their mean bisection point (during which frequency of selecting short vs. long is equal) was closer to the geometric mean of task stimuli (800 msec) rather than the arithmetic mean (1000 msec). In contrast, sustained brain activity occurred closer to the arithmetic mean. The recurrence rate of this activity was highly related to the bisection point, especially when analyzed within naturally occurring theta oscillations (4-8 Hz) (r = -0.90). Discussion: Sustained activity across the cortex within the theta range may reflect temporal durations, whereas its repeated appearance relates to the subjective feeling of time passing.
Collapse
Affiliation(s)
- Emma M Millon
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Current affiliations: Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, Department of Integrative Health, NYU Langone Health, New York, USA
| | - Ali E Haddad
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, USA
- Department of Computer Engineering, University of Basrah, Basrah, Iraq
| | - Han Yan M Chang
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Tracey J Shors
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Zhou T, Kawasaki K, Suzuki T, Hasegawa I, Roe AW, Tanigawa H. Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance. Cell Rep 2023; 42:113169. [PMID: 37740917 DOI: 10.1016/j.celrep.2023.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
Interaction between the inferotemporal (ITC) and prefrontal (PFC) cortices is critical for retrieving information from memory and maintaining it in working memory. Neural oscillations provide a mechanism for communication between brain regions. However, it remains unknown how information flow via neural oscillations is functionally organized in these cortices during these processes. In this study, we apply Granger causality analysis to electrocorticographic signals from both cortices of monkeys performing visual association tasks to map information flow. Our results reveal regions within the ITC where information flow to and from the PFC increases via specific frequency oscillations to form clusters during memory retrieval and maintenance. Theta-band information flow in both directions increases in similar regions in both cortices, suggesting reciprocal information exchange in those regions. These findings suggest that specific subregions function as nodes in the memory information-processing network between the ITC and the PFC.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Keisuke Kawasaki
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan; Osaka University, Suita, Osaka 565-0871, Japan
| | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan.
| |
Collapse
|
7
|
Lu Y, Guo X, Weng X, Jiang H, Yan H, Shen X, Feng Z, Zhao X, Li L, Zheng L, Liu Z, Men W, Gao JH. Theta Signal Transfer from Parietal to Prefrontal Cortex Ignites Conscious Awareness of Implicit Knowledge during Sequence Learning. J Neurosci 2023; 43:6760-6778. [PMID: 37607820 PMCID: PMC10552945 DOI: 10.1523/jneurosci.2172-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
Unconscious acquisition of sequence structure from experienced events can lead to explicit awareness of the pattern through extended practice. Although the implicit-to-explicit transition has been extensively studied in humans using the serial reaction time (SRT) task, the subtle neural activity supporting this transition remains unclear. Here, we investigated whether frequency-specific neural signal transfer contributes to this transition. A total of 208 participants (107 females) learned a sequence pattern through a multisession SRT task, allowing us to observe the transitions. Session-by-session measures of participants' awareness for sequence knowledge were conducted during the SRT task to identify the session when the transition occurred. By analyzing time course RT data using switchpoint modeling, we identified an increase in learning benefit specifically at the transition session. Electroencephalogram (EEG)/magnetoencephalogram (MEG) recordings revealed increased theta power in parietal (precuneus) regions one session before the transition (pretransition) and a prefrontal (superior frontal gyrus; SFG) one at the transition session. Phase transfer entropy (PTE) analysis confirmed that directional theta transfer from precuneus → SFG occurred at the pretransition session and its strength positively predicted learning improvement at the subsequent transition session. Furthermore, repetitive transcranial magnetic stimulation (TMS) modulated precuneus theta power and altered transfer strength from precuneus to SFG, resulting in changes in both transition rate and learning benefit at that specific point of transition. Our brain-stimulation evidence supports a role for parietal → prefrontal theta signal transfer in igniting conscious awareness of implicitly acquired knowledge.SIGNIFICANCE STATEMENT There exists a pervasive phenomenon wherein individuals unconsciously acquire sequence patterns from their environment, gradually becoming aware of the underlying regularities through repeated practice. While previous studies have established the robustness of this implicit-to-explicit transition in humans, the refined neural mechanisms facilitating conscious access to implicit knowledge remain poorly understood. Here, we demonstrate that prefrontal activity, known to be crucial for conscious awareness, is triggered by neural signal transfer originating from the posterior brain region, specifically the precuneus. By employing brain stimulation techniques, we establish a causal link between neural signal transfer and the occurrence of awareness. Our findings unveil a mechanism by which implicit knowledge becomes consciously accessible in human cognition.
Collapse
Affiliation(s)
- Yang Lu
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Xiuyan Guo
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
| | - Xue Weng
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Haoran Jiang
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
| | - Huidan Yan
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Xianting Shen
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Department of Psychology, Fudan University, Shanghai, China, 200433
| | - Zhengning Feng
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Xinyue Zhao
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Lin Li
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Li Zheng
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
| | - Zhiyuan Liu
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China, 710062
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China, 100871
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China, 100871
| | - Jia-Hong Gao
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China, 100871
- Center for MRI Research and McGovern Institute for Brain Research, Peking University, Beijing, China, 100871
| |
Collapse
|
8
|
Onishi H, Yokosawa K. Differential working memory function between phonological and visuospatial strategies: a magnetoencephalography study using a same visual task. Front Hum Neurosci 2023; 17:1218437. [PMID: 37680265 PMCID: PMC10480614 DOI: 10.3389/fnhum.2023.1218437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Previous studies have reported that, in working memory, the processing of visuospatial information and phonological information have different neural bases. However, in these studies, memory items were presented via different modalities. Therefore, the modality in which the memory items were presented and the strategy for memorizing them were not rigorously distinguished. In the present study, we explored the neural basis of two working memory strategies. Nineteen right-handed young adults memorized seven sequential directions presented visually in a task in which the memory strategy was either visuospatial or phonological (visuospatial/phonological condition). Source amplitudes of theta-band (5-7 Hz) rhythm were estimated from magnetoencephalography during the maintenance period and further analyzed using cluster-based permutation tests. Behavioral results revealed that the accuracy rates showed no significant differences between conditions, while the reaction time in the phonological condition was significantly longer than that in the visuospatial condition. Theta activity in the phonological condition was significantly greater than that in the visuospatial condition, and the cluster in spatio-temporal matrix with p < 5% difference extended to right prefrontal regions in the early maintenance period and right occipito-parietal regions in the late maintenance period. The theta activity results did not indicate strategy-specific neural bases but did reveal the dynamics of executive function required for phonological processing. The functions seemed to move from attention control and inhibition control in the prefrontal region to inhibition of irrelevant information in the occipito-parietal region.
Collapse
Affiliation(s)
- Hayate Onishi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Ruggeri P, Miehlbradt J, Kabbara A, Hassan M. Dynamic rewiring of electrophysiological brain networks during learning. Netw Neurosci 2023; 7:578-603. [PMID: 37397886 PMCID: PMC10312289 DOI: 10.1162/netn_a_00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2024] Open
Abstract
Human learning is an active and complex process. However, the brain mechanisms underlying human skill learning and the effect of learning on the communication between brain regions, at different frequency bands, are still largely unknown. Here, we tracked changes in large-scale electrophysiological networks over a 6-week training period during which participants practiced a series of motor sequences during 30 home training sessions. Our findings showed that brain networks become more flexible with learning in all the frequency bands from theta to gamma ranges. We found consistent increase of flexibility in the prefrontal and limbic areas in the theta and alpha band, and over somatomotor and visual areas in the alpha band. Specific to the beta rhythm, we revealed that higher flexibility of prefrontal regions during the early stage of learning strongly correlated with better performance measured during home training sessions. Our findings provide novel evidence that prolonged motor skill practice results in higher, frequency-specific, temporal variability in brain network structure.
Collapse
Affiliation(s)
- Paolo Ruggeri
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Switzerland
| | - Jenifer Miehlbradt
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Switzerland
| | - Aya Kabbara
- Lebanese Association for Scientific Research, Tripoli, Lebanon
- MINDig, F-35000 Rennes, France
| | - Mahmoud Hassan
- School of Engineering, University of Reykjavik, Reykjavik, Iceland
- MINDig, F-35000 Rennes, France
| |
Collapse
|
10
|
Kanishka, Jha SK. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. AGING BRAIN 2023; 3:100061. [PMID: 36911258 PMCID: PMC9997140 DOI: 10.1016/j.nbas.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Specialized individual circuits in the brain are recruited for specific functions. Interestingly, multiple neural circuitries continuously compete with each other to acquire the specialized function. However, the dominant among them compete and become the central neural network for that particular function. For example, the hippocampal principal neural circuitries are the dominant networks among many which are involved in learning processes. But, in the event of damage to the principal circuitry, many times, less dominant networks compensate for the primary network. This review highlights the psychopathologies of functional loss and the aspects of functional recuperation in the absence of the hippocampus.
Collapse
Affiliation(s)
- Kanishka
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Williams AB, Liu X, Hsieh F, Hurtado M, Lesh T, Niendam T, Carter C, Ranganath C, Ragland JD. Memory-Based Prediction Deficits and Dorsolateral Prefrontal Dysfunction in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:71-78. [PMID: 35618258 PMCID: PMC10036169 DOI: 10.1016/j.bpsc.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Theories suggest that people with schizophrenia (SZ) have problems generating predictions based on past experiences. The dorsolateral prefrontal cortex (DLPFC) and hippocampus participate in memory-based prediction. We used functional magnetic resonance imaging to investigate DLPFC and hippocampal function in healthy control (HC) subjects and people with SZ during memory-based prediction. METHODS Prior to scanning, HC subjects (n = 54) and people with SZ (n = 31) learned 5-object sequences presented in fixed or random orders on each repetition. During scanning, participants made semantic decisions (e.g., "Can this object fit in a shoebox?") on a continuous stream of objects from fixed and random sequences. Sequence prediction was demonstrated by faster semantic decisions for objects in fixed versus random sequences because memory could be used to anticipate and more efficiently process semantic information about upcoming objects in fixed sequences. Representational similarity analyses were used to determine how each sequence type was represented in the posterior hippocampus and DLPFC. RESULTS Sequence predictions were reduced in individuals with SZ relative to HC subjects. Representational similarity analyses revealed stronger memory-based predictions in the DLPFC of HC subjects than people with SZ, and DLPFC representations correlated with more successful predictions in HC subjects only. For the posterior hippocampus, voxel pattern similarity was increased for fixed versus random sequences in HC subjects only, but no significant between-group differences or correlations with prediction success were observed. CONCLUSIONS Individuals with SZ are capable of learning temporal sequences; however, they are impaired using memory to predict upcoming events as efficiently as HC subjects. This deficit appears related to disrupted neural representation of sequence information in the DLPFC.
Collapse
Affiliation(s)
- Ashley B Williams
- Center for Neuroscience, University of California, Davis, Davis, California
| | - Xiaonan Liu
- Center for Neuroscience, University of California, Davis, Davis, California; Departments of Psychology, University of California, Davis, Davis, California
| | - Frank Hsieh
- Department of Psychology, University of California, Berkeley, Berkeley, California; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Mitzi Hurtado
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Tyler Lesh
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Tara Niendam
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cameron Carter
- Departments of Psychology, University of California, Davis, Davis, California; Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, California; Departments of Psychology, University of California, Davis, Davis, California
| | - J Daniel Ragland
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California.
| |
Collapse
|
12
|
Caffeine intoxication: Behavioral and electrocorticographic patterns in Wistar rats. Food Chem Toxicol 2022; 170:113452. [DOI: 10.1016/j.fct.2022.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
|
13
|
Berger A, Posner MI. Beyond Infant's Looking: The Neural Basis for Infant Prediction Errors. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:664-674. [PMID: 36269781 DOI: 10.1177/17456916221112918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Contemporary conceptualizations on infant cognitive development focus on predictive processes; the basic idea is that the brain continuously creates predictions about what is expected and that the divergence between predicted and actual perceived data yields a prediction error. This prediction error updates the model from which the predictions are generated and therefore is a basic mechanism for learning and adaptation to the dynamics of the ever-changing environment. In this article, we review the types of available empirical evidence supporting the idea that predictive processes can be found in infancy, especially emphasizing the contribution of electrophysiology as a potential method for testing the similarity of the brain mechanisms for processing prediction errors in infants to those of adults. In infants, as with older children, adolescents, and adults, predictions involve synchronization bursts of middle-central theta reflecting brain activity in the anterior cingulate cortex. We discuss how early in development such brain mechanisms develop and open questions that still remain to be empirically investigated.
Collapse
Affiliation(s)
- Andrea Berger
- Department of Psychology, Ben-Gurion University of the Negev.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev
| | | |
Collapse
|
14
|
Computational Investigations of Learning and Synchronization in Cognitive Control. J Cogn 2022; 5:44. [PMID: 36246581 PMCID: PMC9524294 DOI: 10.5334/joc.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Complex cognition requires binding together of stimulus, action, and other features, across different time scales. Several implementations of such binding have been proposed in the literature, most prominently synaptic binding (learning) and synchronization. Biologically plausible accounts of how these different types of binding interact in the human brain are still lacking. To this end, we adopt a computational approach to investigate the impact of learning and synchronization on both behavioral (reaction time, error rate) and neural (θ power) measures. We train four models varying in their ability to learn and synchronize for an extended period of time on three seminal action control paradigms varying in difficulty. Learning, but not synchronization, proved essential for behavioral improvement. Synchronization however boosts performance of difficult tasks, avoiding the computational pitfalls of catastrophic interference. At the neural level, θ power decreases with practice but increases with task difficulty. Our simulation results bring new insights in how different types of binding interact in different types of tasks, and how this is translated in both behavioral and neural metrics.
Collapse
|
15
|
Cross ZR, Corcoran AW, Schlesewsky M, Kohler MJ, Bornkessel-Schlesewsky I. Oscillatory and Aperiodic Neural Activity Jointly Predict Language Learning. J Cogn Neurosci 2022; 34:1630-1649. [PMID: 35640095 DOI: 10.1162/jocn_a_01878] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Memory formation involves the synchronous firing of neurons in task-relevant networks, with recent models postulating that a decrease in low-frequency oscillatory activity underlies successful memory encoding and retrieval. However, to date, this relationship has been investigated primarily with face and image stimuli; considerably less is known about the oscillatory correlates of complex rule learning, as in language. Furthermore, recent work has shown that nonoscillatory (1/ƒ) activity is functionally relevant to cognition, yet its interaction with oscillatory activity during complex rule learning remains unknown. Using spectral decomposition and power-law exponent estimation of human EEG data (17 females, 18 males), we show for the first time that 1/ƒ and oscillatory activity jointly influence the learning of word order rules of a miniature artificial language system. Flexible word-order rules were associated with a steeper 1/ƒ slope, whereas fixed word-order rules were associated with a shallower slope. We also show that increased theta and alpha power predicts fixed relative to flexible word-order rule learning and behavioral performance. Together, these results suggest that 1/ƒ activity plays an important role in higher-order cognition, including language processing, and that grammar learning is modulated by different word-order permutations, which manifest in distinct oscillatory profiles.
Collapse
|
16
|
Using EEG to study sensorimotor adaptation. Neurosci Biobehav Rev 2022; 134:104520. [PMID: 35016897 DOI: 10.1016/j.neubiorev.2021.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Sensorimotor adaptation, or the capacity to flexibly adapt movements to changes in the body or the environment, is crucial to our ability to move efficiently in a dynamic world. The field of sensorimotor adaptation is replete with rigorous behavioural and computational methods, which support strong conceptual frameworks. An increasing number of studies have combined these methods with electroencephalography (EEG) to unveil insights into the neural mechanisms of adaptation. We review these studies: discussing EEG markers of adaptation in the frequency and the temporal domain, EEG predictors for successful adaptation and how EEG can be used to unmask latent processes resulting from adaptation, such as the modulation of spatial attention. With its high temporal resolution, EEG can be further exploited to deepen our understanding of sensorimotor adaptation.
Collapse
|
17
|
Zheng Y, Liu XL, Hsieh LT, Hurtado M, Wang Y, Niendam TA, Carter CS, Ranganath C, Ragland JD. Disrupted Modulation of Alpha and Low Beta Oscillations Mediates Temporal Sequence Memory Deficits in People With Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1157-1164. [PMID: 33862254 DOI: 10.1016/j.bpsc.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND People with schizophrenia (SZ) exhibit impaired episodic memory when relating objects to each other in time and space. Empirical studies and computational models suggest that low-frequency neural oscillations may be a mechanism by which the brain keeps track of temporal relationships during encoding and retrieval, with modulation of oscillatory power as sequences are learned. It is unclear whether sequence memory deficits in SZ are associated with altered neural oscillations. METHODS Using electroencephalography, this study examined neural oscillations in 51 healthy control subjects and 37 people with SZ during a temporal sequence learning task. Multiple 5-object picture sequences were presented across 4 study-test blocks in either fixed or random order. Participants answered semantic questions for each object (e.g., living/nonliving), and sequence memory was operationalized as faster responses for fixed versus random sequences. Differences in oscillatory power between fixed versus random sequences provided a neural index of temporal sequence memory. RESULTS Although both groups showed reaction time differences in late blocks (blocks 3 and 4), this evidence of sequence memory was reduced in people with SZ relative to healthy control subjects. Decreases in globally distributed prestimulus alpha (8-12 Hz) and beta 1 (13-20 Hz) power for fixed versus random sequences in late blocks were also attenuated in people with SZ relative to healthy control subjects. Moreover, changes in oscillatory power predicted individual reaction time differences and fully mediated the relationship between group and sequence memory. CONCLUSIONS Disrupted modulation of alpha and beta 1 electroencephalography oscillations is a candidate mechanism of temporal sequence memory deficits in people with SZ.
Collapse
Affiliation(s)
- Yicong Zheng
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| | - Xiaonan L Liu
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| | - Liang-Tien Hsieh
- Department of Psychology, University of California, Berkeley, Berkeley, California; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Mitzi Hurtado
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Yan Wang
- Department of Psychology, University of California, Davis, Davis, California
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cameron S Carter
- Department of Psychology, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California.
| |
Collapse
|
18
|
Cruzat J, Torralba M, Ruzzoli M, Fernández A, Deco G, Soto-Faraco S. The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia 2021; 154:107775. [PMID: 33592222 DOI: 10.1016/j.neuropsychologia.2021.107775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022]
Abstract
Several studies have shown that attention and perception can depend upon the phase of ongoing neural oscillations at stimulus onset. Here, we extend this idea to the memory domain. We tested the hypothesis that ongoing fluctuations in neural activity impact memory encoding in two experiments using a picture paired-associates task in order to gauge episodic memory performance. Experiment 1 was behavioural only and capitalized on the principle of phase resetting. We tested if subsequent memory performance fluctuates rhythmically, time-locked to a resetting cue presented before the to-be-remembered pairs at different time intervals. We found an indication that behavioural performance was periodically and selectively modulated at Theta frequency (~4 Hz). In Experiment 2, we focused on pre-stimulus ongoing activity using scalp EEG while participants performed a paired-associates task. The pre-registered analysis, using large electrode clusters and generic Theta and Alpha spectral ranges, returned null results of the pre-stimulus phase-behaviour correlation. However, as expected from prior literature, we found that variations in stimulus-related Theta-power predicted subsequent memory performance. Therefore, we used this post-stimulus effect in Theta power to guide a post-hoc pre-stimulus phase analysis in terms of scalp and frequency of interest. This analysis returned a correlation between the pre-stimulus Theta phase and subsequent memory. Altogether, these results suggest that pre-stimulus Theta activity at encoding may impact later memory performance.
Collapse
Affiliation(s)
- Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain.
| | - Mireia Torralba
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Manuela Ruzzoli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Alba Fernández
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, 3800, Australia
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
19
|
Pan Y, Novembre G, Song B, Zhu Y, Hu Y. Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Soc Cogn Affect Neurosci 2021; 16:210-221. [PMID: 32591830 PMCID: PMC7812617 DOI: 10.1093/scan/nsaa080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Social interactive learning denotes the ability to acquire new information from a conspecific-a prerequisite for cultural evolution and survival. As inspired by recent neurophysiological research, here we tested whether social interactive learning can be augmented by exogenously synchronizing oscillatory brain activity across an instructor and a learner engaged in a naturalistic song-learning task. We used a dual brain stimulation protocol entailing the trans-cranial delivery of synchronized electric currents in two individuals simultaneously. When we stimulated inferior frontal brain regions, with 6 Hz alternating currents being in-phase between the instructor and the learner, the dyad exhibited spontaneous and synchronized body movement. Remarkably, this stimulation also led to enhanced learning performance. These effects were both phase- and frequency-specific: 6 Hz anti-phase stimulation or 10 Hz in-phase stimulation, did not yield comparable results. Furthermore, a mediation analysis disclosed that interpersonal movement synchrony acted as a partial mediator of the effect of dual brain stimulation on learning performance, i.e. possibly facilitating the effect of dual brain stimulation on learning. Our results provide a causal demonstration that inter-brain synchronization is a sufficient condition to improve real-time information transfer between pairs of individuals.
Collapse
Affiliation(s)
- Yafeng Pan
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
- Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Department of Neuroscience, Physiology and Parmacology, University College London, WC1E 6BT London, UK
| | - Bei Song
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
- Department of Musicology, Harbin Conservatory of Music, 150070 Heilongjiang, China
| | - Yi Zhu
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
| | - Yi Hu
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
| |
Collapse
|
20
|
Kim K, Hsieh LT, Parvizi J, Ranganath C. Neural repetition suppression effects in the human hippocampus. Neurobiol Learn Mem 2020; 173:107269. [DOI: 10.1016/j.nlm.2020.107269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023]
|
21
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Takacs A, Zink N, Wolff N, Münchau A, Mückschel M, Beste C. Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Hum Brain Mapp 2020; 41:2862-2877. [PMID: 32150315 PMCID: PMC7294061 DOI: 10.1002/hbm.24983] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
The neurophysiological mechanisms underlying the integration of perception and action are an important topic in cognitive neuroscience. Yet, connections between neurophysiology and cognitive theoretical frameworks have rarely been established. The theory of event coding (TEC) details how perceptions and actions are associated (bound) in a common representational domain (the “event file”), but the neurophysiological mechanisms underlying these processes are hardly understood. We used complementary neurophysiological methods to examine the neurophysiology of event file processing (i.e., event‐related potentials [ERPs], temporal EEG signal decomposition, EEG source localization, time‐frequency decomposition, EEG network analysis). We show that the P3 ERP component and activity modulations in inferior parietal regions (BA40) reflect event file binding processes. The relevance of this parietal region is corroborated by source localization of temporally decomposed EEG data. We also show that temporal EEG signal decomposition reveals a pattern of results suggesting that event file processes can be dissociated from pure stimulus and response‐related processes in the EEG signal. Importantly, it is also documented that event file binding processes are reflected by modulations in the network architecture of theta frequency band activity. That is, when stimulus–response bindings in event files hamper response selection this was associated with a less efficient theta network organization. A more efficient organization was evident when stimulus–response binding in event files facilitated response selection. Small‐world network measures seem to reflect event file processing. The results show how cognitive‐theoretical assumptions of TEC can directly be mapped to the neurophysiology of response selection.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Nicole Wolff
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany
| | | | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany
| |
Collapse
|
23
|
Lee ACH, Thavabalasingam S, Alushaj D, Çavdaroğlu B, Ito R. The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia 2019; 137:107300. [PMID: 31836410 DOI: 10.1016/j.neuropsychologia.2019.107300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Although a large body of research has implicated the hippocampus in the processing of memory for temporal duration, there is an exigent degree of inconsistency across studies that obfuscates the precise contributions of this structure. To shed light on this issue, the present review article surveys both historical and recent cross-species evidence emanating from a wide variety of experimental paradigms, identifying areas of convergence and divergence. We suggest that while factors such as time-scale (e.g. the length of durations involved) and the nature of memory processing (e.g. prospective vs. retrospective memory) are very helpful in the interpretation of existing data, an additional important consideration is the context in which the duration information is experienced and processed, with the hippocampus being preferentially involved in memory for durations that are embedded within a sequence of events. We consider the mechanisms that may underpin temporal duration memory and how the same mechanisms may contribute to memory for other aspects of event sequences such as temporal order.
Collapse
Affiliation(s)
- Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Rotman Research Institute, Baycrest Centre, Toronto, M6A 2E1, Canada.
| | | | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Bilgehan Çavdaroğlu
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, M5S 3G5, Canada
| |
Collapse
|
24
|
Do Carmo-Blanco N, Allen JJB. Neural correlates of cue predictiveness during intentional and incidental associative learning: A time-frequency study. Int J Psychophysiol 2019; 143:80-87. [PMID: 31254544 DOI: 10.1016/j.ijpsycho.2019.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/05/2019] [Accepted: 06/18/2019] [Indexed: 11/30/2022]
Abstract
Incidental learning allows us to extract statistical relations between events in our daily lives without the intention to learn them. Whereas anticipation during intentional associative learning has been linked to increased and decreased theta band activity, comparatively little research has focused on incidental learning. The study of such a pervasive mechanism of incidental learning faces the challenge of finding an appropriate paradigm. Similarly, while posterior alpha band activity has been shown to facilitate attention to a predictable target location, it is not clear whether alpha power could mediate attention given other predictive information; e.g., when the only available information provided by the cue is the likelihood of the target outcome. Here we used a stimulus-stimulus associative learning task to investigate whether a cue carries information on its contingent relationship with a target outcome, not only when their relationship is learned intentionally but also when it could be learned incidentally. Moreover, by presenting the target outcome in a visual search task, we were also able to study whether anticipatory attention can be modulated by the intentional or the incidental knowledge of the likelihood of a target outcome given a predictive (or non-predictive) cue. Participants were exposed to streams of cue-target outcome trials, where one of two possible cues and one of two possible outcomes were displayed. Intention to learn was manipulated by asking participants to assess whether one of the target outcomes (the intentional one) was more likely to appear following one of the cues (the intentional one). Any learning regarding the other cue-outcome relationship would be incidental. We found that frontal and temporal theta band activity were sensitive to the predictive value of a cue (predictive cues elicited lower theta power). Moreover, left temporal theta was sensitive to the intention to learn associations (theta activity elicited by intentional learning cues was higher). Alpha power, by contrast, was not modulated by cue predictiveness of the target outcome. These findings suggest that theta band activity carries information about the predictive value of a cue. The topographical differences between theta for intentional and incidental learning suggest distinct cortical networks activated depending on whether the relationship between a cue and an outcome has been learned intentionally or incidentally.
Collapse
Affiliation(s)
| | - John J B Allen
- University of Arizona, Department of Psychology, Tucson, AZ, USA
| |
Collapse
|
25
|
Roberts BM, Clarke A, Addante RJ, Ranganath C. Entrainment enhances theta oscillations and improves episodic memory. Cogn Neurosci 2019; 9:181-193. [PMID: 30198823 DOI: 10.1080/17588928.2018.1521386] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Neural oscillations in the theta band have been linked to episodic memory, but it is unclear whether activity patterns that give rise to theta play a causal role in episodic retrieval. Here, we used rhythmic auditory and visual stimulation to entrain neural oscillations to assess whether theta activity contributes to successful memory retrieval. In two separate experiments, human subjects studied words and were subsequently tested on memory for the words ('item recognition') and the context in which each had been previously studied ('source memory'). Between study and test, subjects in the entrainment groups were exposed to audiovisual stimuli designed to enhance activity at 5.5 Hz, whereas subjects in the control groups were exposed to white noise (Expt. 1) or 14 Hz entrainment (Expt. 2). Theta entrainment selectively increased source memory performance in both studies. Electroencephalography (EEG) data in Expt. 2 revealed that theta entrainment resulted in band-specific enhancement of theta power during the entrainment period and during post-entrainment memory retrieval. These results demonstrate a direct link between theta activity and episodic memory retrieval. Targeted manipulation of theta activity could be a promising new approach to enhance theta activity and memory performance in healthy individuals and in patients with memory disorders.
Collapse
Affiliation(s)
- Brooke M Roberts
- a Department of Psychology , University of California at Davis , Davis , CA , USA
| | - Alex Clarke
- b Department of Psychology , University of Cambridge , Cambridge , UK.,c Department of Psychology , Anglia Ruskin University , Cambridge , UK
| | - Richard J Addante
- d Department of Psychology , California State University , San Bernardino , CA , USA
| | - Charan Ranganath
- a Department of Psychology , University of California at Davis , Davis , CA , USA.,e Center for Neuroscience , University of California at Davis , Davis , CA , USA
| |
Collapse
|
26
|
Clarke A, Devereux BJ, Tyler LK. Oscillatory Dynamics of Perceptual to Conceptual Transformations in the Ventral Visual Pathway. J Cogn Neurosci 2018; 30:1590-1605. [PMID: 30125217 DOI: 10.1162/jocn_a_01325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Object recognition requires dynamic transformations of low-level visual inputs to complex semantic representations. Although this process depends on the ventral visual pathway, we lack an incremental account from low-level inputs to semantic representations and the mechanistic details of these dynamics. Here we combine computational models of vision with semantics and test the output of the incremental model against patterns of neural oscillations recorded with magnetoencephalography in humans. Representational similarity analysis showed visual information was represented in low-frequency activity throughout the ventral visual pathway, and semantic information was represented in theta activity. Furthermore, directed connectivity showed visual information travels through feedforward connections, whereas visual information is transformed into semantic representations through feedforward and feedback activity, centered on the anterior temporal lobe. Our research highlights that the complex transformations between visual and semantic information is driven by feedforward and recurrent dynamics resulting in object-specific semantics.
Collapse
Affiliation(s)
- Alex Clarke
- University of Cambridge.,Anglia Ruskin University, Cambridge, United Kingdom
| | | | | |
Collapse
|