1
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2024:10.1007/s11302-024-09988-9. [PMID: 38367178 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Akiyoshi K, Fujimori T, Fu X, Shah AP, Yamaguchi A, Steenbergen C, Santhanam L, Berkowitz D, Tuday E, Baraban JM, Das S. Adenosine A 2A Receptor Regulates microRNA-181b Expression in Aorta: Therapeutic Implications for Large-Artery Stiffness. J Am Heart Assoc 2023; 12:e028421. [PMID: 37421280 PMCID: PMC10382090 DOI: 10.1161/jaha.122.028421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/05/2023] [Indexed: 07/10/2023]
Abstract
Background The identification of large-artery stiffness as a major, independent risk factor for cardiovascular disease-associated morbidity and death has focused attention on identifying therapeutic strategies to combat this disorder. Genetic manipulations that delete or inactivate the translin/trax microRNA-degrading enzyme confer protection against aortic stiffness induced by chronic ingestion of high-salt water (4%NaCl in drinking water for 3 weeks) or associated with aging. Therefore, there is heightened interest in identifying interventions capable of inhibiting translin/trax RNase activity, as these may have therapeutic efficacy in large-artery stiffness. Methods and Results Activation of neuronal adenosine A2A receptors (A2ARs) triggers dissociation of trax from its C-terminus. As A2ARs are expressed by vascular smooth muscle cells (VSMCs), we investigated whether stimulation of A2AR on vascular smooth muscle cells promotes the association of translin with trax and, thereby increases translin/trax complex activity. We found that treatment of A7r5 cells with the A2AR agonist CGS21680 leads to increased association of trax with translin. Furthermore, this treatment decreases levels of pre-microRNA-181b, a target of translin/trax, and those of its downstream product, mature microRNA-181b. To check whether A2AR activation might contribute to high-salt water-induced aortic stiffening, we assessed the impact of daily treatment with the selective A2AR antagonist SCH58261 in this paradigm. We found that this treatment blocked aortic stiffening induced by high-salt water. Further, we confirmed that the age-associated decline in aortic pre-microRNA-181b/microRNA-181b levels observed in mice also occurs in humans. Conclusions These findings suggest that further studies are warranted to evaluate whether blockade of A2ARs may have therapeutic potential in treating large-artery stiffness.
Collapse
Affiliation(s)
- Kei Akiyoshi
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Tomonari Fujimori
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Xiuping Fu
- Department of Intelligent Medical Engineering, School of Life ScienceTiangong UniversityTianjinChina
| | - Aparna P. Shah
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical CenterJichi Medical UniversitySaitamaJapan
| | | | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Dan Berkowitz
- Department of Anesthesiology and Perioperative MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Eric Tuday
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of MedicineUniversity of UtahSalt Lake CityUTUSA
- Geriatric Research, Education and Clinical CenterVA Salt Lake City Health Care SystemSalt Lake CityUTUSA
| | - Jay M. Baraban
- Department of Intelligent Medical Engineering, School of Life ScienceTiangong UniversityTianjinChina
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Samarjit Das
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
- Department of PathologyJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
3
|
Huang KY, Huang YJ, Chen SJ, Lin CH, Lane HY. The associations between cognitive functions and TSNAX genetic variations in patients with schizophrenia. Pharmacol Biochem Behav 2023; 225:173554. [PMID: 37030547 DOI: 10.1016/j.pbb.2023.173554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND The translin-associated factor X (TSNAX) gene, located adjacent to the DISC1 gene, has been implicated in schizophrenia. While cognitive impairment determines long-term the functional outcome of schizophrenia, the role of TSNAX in cognitive dysfunction of schizophrenia patients remains elusive. This study aimed to explore the genetic effect of TSNAX on cognitive functions of schizophrenia. METHODS We recruited 286 chronic schizophrenia patients who had been stabilized with antipsychotics for at least 2 months and genotyped three TSNAX SNPs (rs1630250, rs766288, rs6662926). Clinical symptoms and seven cognitive domains were assessed. The score of cognitive tests was standardized to T score. RESULTS Clinical symptoms were similar among genotypes of all the three SNPs. The GLM analysis demonstrated that TSNAX genetic polymorphisms influenced cognitive function of schizophrenia patients after adjustment for gender, age, and education. The patients with the rs1630250 C/G genotype performed better than the G/G homozygotes in the Trail Making A (p = 0.034). Those with the rs766288 G/T genotype also performed better than the G/G homozygotes in the Trail Making A (p = 0.012). The patients with the G/G genotype of rs6662926 also performed better than the C/C homozygotes in verbal learning and memory test (p = 0.044). CONCLUSIONS This study suggests that the TSNAX gene variation may influence the cognitive functions of the patients with schizophrenia.
Collapse
|
4
|
Pillai V, Gupta A, Rao A, Chittela RK. Biochemical characterization of clinically relevant mutations of human Translin. Mol Cell Biochem 2022; 478:821-834. [PMID: 36098897 DOI: 10.1007/s11010-022-04556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
DNA damage in all living cells is repaired with very high efficiency and nucleic acid binding proteins play crucial roles in repair associated processes. Translin is one such evolutionarily conserved nucleic acid interacting protein speculated to be a part of the DNA repair protein network. It is also involved in activation of RNA-induced silencing complex (RISC) along with Translin-associated factor X (TRAX) as the C3PO (component 3 promoter of RISC) complex. In the present work, we characterized ten clinically relevant variants of the human Translin protein using bioinformatic, biochemical, and biophysical tools. Bioinformatic studies using DynaMut revealed 9 out of the 10 selected mutations the Translin protein. Further analysis revealed that some mutations lead to changes in interactions with neighbouring residues in the protein structure. Using site directed mutagenesis, the point substitution variants were generated, corresponding proteins were overexpressed and purified using Ni-NTA affinity chromatography. Purified proteins form octamers similar to wild type (WT) Translin, as observed using native polyacrylamide gel electrophoresis (PAGE), gel filtration, and dynamic light-scattering (DLS) analysis. These octamers are functional and bind to single-stranded DNA (ssDNA) as well as single-stranded RNA (ssRNA) substrates. The mutant Translin proteins interact with wild type TRAX and form corresponding C3PO complexes. The C3PO complexes formed by all Translin variants with TRAX are functional in-vitro and show endoribonuclease activity. However, significant differences were observed in the extent of RNase activity in vitro. In conclusion, the clinically relevant mutations in Translin protein analysed by us exert their effect by modulating the RNase activity of the protein without altering its DNA-dependant function.
Collapse
Affiliation(s)
- Vinayaki Pillai
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Alka Gupta
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Avssn Rao
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
5
|
Weng YT, Chen HM, Chien T, Chiu FL, Kuo HC, Chern Y. TRAX Provides Neuroprotection for Huntington's Disease Via Modulating a Novel Subset of MicroRNAs. Mov Disord 2022; 37:2008-2020. [PMID: 35997316 DOI: 10.1002/mds.29174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease caused by CAG-repeat expansions (>36) in exon 1 of HTT, which dysregulates multiple cellular machineries. Translin-associated protein X (TRAX) is a scaffold protein with diverse functions, including suppressing the microRNA (miRNA)-mediated silencing by degrading pre-miRNA. To date, the role of TRAX in neurodegenerative diseases remains unknown. OBJECTIVES We delineated the role of TRAX upregulation during HD progression. METHODS Expression of TRAX in the brains of humans and three mouse models with HD were analyzed by immunohistochemistry staining, western blot, and quantitative reverse transcription-polymerase chain reaction. Adeno-associated viruses harboring TRAX short hairpin RNA were intrastriatally injected into HD mice to downregulate TRAX. HD-like symptoms were analyzed by behavioral and biochemical assessments. The miRNA-sequencing and RNA-sequencing analyses were used to identify the TRAX- regulated miRNA-messenger RNA (mRNA) axis during HD progression. The identified gene targets were validated biochemically in mouse and human striatal cells. RESULTS We discovered that TRAX was upregulated in the brains of HD patients and three HD mouse models. Downregulation of TRAX enhanced 83 miRNAs (including miR-330-3p, miR-496a-3p) and subsequently changed the corresponding mRNA networks critical for HD pathogenesis (eg, DARPP-32 and brain-derived neurotrophic factor). Disruption of the TRAX-mediated miRNA-mRNA axis accelerated the progression of HD-like symptoms, including the degeneration of motor function, accumulation of mHTT aggregates, and shortened neurite outgrowth. CONCLUSIONS We demonstrated that TRAX upregulation is authentic and protective in HD. Our study provides a novel layer of regulation for HD pathogenesis and may lead to the development of new therapeutic strategies for HD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. J Neurosci 2021; 41:873-882. [PMID: 33446519 PMCID: PMC7880276 DOI: 10.1523/jneurosci.1649-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell. This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use disorder. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epigenome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior relevant to mental health and disease.
Collapse
Affiliation(s)
- Philipp Mews
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10129
| | - Erin S Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37323
| | - Jeremy Day
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Timothy Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
7
|
Deletion of translin (Tsn) induces robust adiposity and hepatic steatosis without impairing glucose tolerance. Int J Obes (Lond) 2019; 44:254-266. [PMID: 30647452 PMCID: PMC6629527 DOI: 10.1038/s41366-018-0315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Objective: Translin knockout (KO) mice display robust adiposity. Recent studies indicate that translin and its partner protein, trax, regulate the microRNA and ATM kinase signaling pathways, both of which have been implicated in regulating metabolism. In the course of characterizing the metabolic profile of these mice, we found that they display normal glucose tolerance despite their elevated adiposity. Accordingly, we investigated why translin KO mice display this paradoxical phenotype. Methods: To help distinguish between the metabolic effects of increased adiposity and those of translin deletion per se, we compared three groups: (1) wild-type (WT), (2) translin KO mice on a standard chow diet, and (3) adiposity-matched WT mice that were placed on a high-fat diet until they matched translin KO adiposity levels. All groups were scanned to determine their body composition and tested to evaluate their glucose and insulin tolerance. Plasma, hepatic and adipose tissue samples were collected and used for histological and molecular analyses. Results: Translin KO mice show normal glucose tolerance whereas adiposity-matched WT mice, placed on a high-fat diet, do not. In addition, translin KO mice display prominent hepatic steatosis that is more severe than that of adiposity-matched WT mice. Unlike adiposity-matched WT mice, translin KO mice display three key features that have been shown to reduce susceptibility to insulin resistance: increased accumulation of subcutaneous fat, increased levels of circulating adiponectin and decreased Tnfα expression in hepatic and adipose tissue. Conclusions: The ability of translin KO mice to retain normal glucose tolerance in the face of marked adipose tissue expansion may be due to the three protective factors noted above. Further studies aimed at defining the molecular bases for this combination of protective phenotypes may yield new approaches to limit the adverse metabolic consequences of obesity.
Collapse
|