1
|
Liu J, Hall AF, Wang DV. Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation. Nat Commun 2024; 15:9248. [PMID: 39461946 PMCID: PMC11513146 DOI: 10.1038/s41467-024-53665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Memories are crucial for daily life, yet the network-level organizing principles governing neural representations of experiences remain unknown. Employing dual-site in vivo recording in freely behaving male mice, here we show that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies for novel experiences. A small assembly of BLA neurons emerged active during memory acquisition and persisted through consolidation, whereas most dCA1 neurons were engaged in both processes. Machine learning decoding revealed that dCA1 population spikes predicted BLA assembly firing rate, suggesting that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communication with a specific BLA assembly - a process we term "many-to-one weighted mapping." We also found that dCA1 reactivations preceded BLA assembly activity preferably during elongated and enlarged dCA1 ripples. Using a closed-loop strategy, we demonstrated that suppressing BLA activity after large dCA1 ripples impaired memory. These findings highlight a many-to-one weighted mapping mechanism underlying both the acquisition and consolidation of new memories.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
2
|
Lim H, Zhang Y, Peters C, Straub T, Mayer JL, Klein R. Genetically- and spatially-defined basolateral amygdala neurons control food consumption and social interaction. Nat Commun 2024; 15:6868. [PMID: 39127719 PMCID: PMC11316773 DOI: 10.1038/s41467-024-50889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The basolateral amygdala (BLA) contains discrete neuronal circuits that integrate positive or negative emotional information and drive the appropriate innate and learned behaviors. Whether these circuits consist of genetically-identifiable and anatomically segregated neuron types, is poorly understood. Also, our understanding of the response patterns and behavioral spectra of genetically-identifiable BLA neurons is limited. Here, we classified 11 glutamatergic cell clusters in mouse BLA and found that several of them were anatomically segregated in lateral versus basal amygdala, and anterior versus posterior regions of the BLA. Two of these BLA subpopulations innately responded to valence-specific, whereas one responded to mixed - aversive and social - cues. Positive-valence BLA neurons promoted normal feeding, while mixed selectivity neurons promoted fear learning and social interactions. These findings enhance our understanding of cell type diversity and spatial organization of the BLA and the role of distinct BLA populations in representing valence-specific and mixed stimuli.
Collapse
Affiliation(s)
- Hansol Lim
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Yue Zhang
- Department Synapses - Circuits - Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Christian Peters
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tobias Straub
- Biomedical Center Core Facility Bioinformatics, LMU, Munich, Germany
| | - Johanna Luise Mayer
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Rüdiger Klein
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
3
|
Sias AC, Jafar Y, Goodpaster CM, Ramírez-Armenta K, Wrenn TM, Griffin NK, Patel K, Lamparelli AC, Sharpe MJ, Wassum KM. Dopamine projections to the basolateral amygdala drive the encoding of identity-specific reward memories. Nat Neurosci 2024; 27:728-736. [PMID: 38396258 PMCID: PMC11110430 DOI: 10.1038/s41593-024-01586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
To make adaptive decisions, we build an internal model of the associative relationships in an environment and use it to make predictions and inferences about specific available outcomes. Detailed, identity-specific cue-reward memories are a core feature of such cognitive maps. Here we used fiber photometry, cell-type and pathway-specific optogenetic manipulation, Pavlovian cue-reward conditioning and decision-making tests in male and female rats, to reveal that ventral tegmental area dopamine (VTADA) projections to the basolateral amygdala (BLA) drive the encoding of identity-specific cue-reward memories. Dopamine is released in the BLA during cue-reward pairing; VTADA→BLA activity is necessary and sufficient to link the identifying features of a reward to a predictive cue but does not assign general incentive properties to the cue or mediate reinforcement. These data reveal a dopaminergic pathway for the learning that supports adaptive decision-making and help explain how VTADA neurons achieve their emerging multifaceted role in learning.
Collapse
Affiliation(s)
- Ana C Sias
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yousif Jafar
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caitlin M Goodpaster
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Tyler M Wrenn
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas K Griffin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Keshav Patel
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Melissa J Sharpe
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Liu J, Hall AF, Wang DV. Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556568. [PMID: 37732176 PMCID: PMC10508749 DOI: 10.1101/2023.09.06.556568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Memories are crucial for our daily lives, yet the network-level organizing principle that governs neural representations of our experiences remains to be determined. Employing dual-site electrophysiology recording in freely behaving mice, we discovered that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies to represent novel experiences. A small assembly of BLA neurons rapidly emerged during memory acquisition and remained active during subsequent consolidation, whereas the majority of dCA1 neurons engaged in the same processes. Machine learning decoding revealed that dCA1 population spikes predicted the BLA assembly firing rate. This suggests that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communications with a specific BLA assembly, a process we call "many-to-one weighted mapping." Furthermore, we demonstrated that closed-loop optoinhibition of BLA activity triggered by dCA1 ripples after new learning resulted in impaired memory. These findings highlight a new principle of hippocampus-amygdala communication underlying memory formation and provide new insights into how the brain creates and stores memories.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
5
|
Wassum KM. Amygdala-cortical collaboration in reward learning and decision making. eLife 2022; 11:e80926. [PMID: 36062909 PMCID: PMC9444241 DOI: 10.7554/elife.80926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
6
|
Zou X, Zhu Z, Guo Y, Zhang H, Liu Y, Cui Z, Ke Z, Jiang S, Tong Y, Wu Z, Mao Y, Chen L, Wang D. Neural excitatory rebound induced by valproic acid may predict its inadequate control of seizures. EBioMedicine 2022; 83:104218. [PMID: 35970021 PMCID: PMC9399967 DOI: 10.1016/j.ebiom.2022.104218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/02/2023] Open
Abstract
Background Valproic acid (VPA) represents one of the most efficient antiseizure medications (ASMs) for both general and focal seizures, but some patients may have inadequate control by VPA monotherapy. In this study, we aimed to verify the hypothesis that excitatory dynamic rebound induced by inhibitory power may contribute to the ineffectiveness of VPA therapy and become a predictor of post-operative inadequate control of seizures. Methods Awake craniotomy surgeries were performed in 16 patients with intro-operative high-density electrocorticogram (ECoG) recording. The relationship between seizure control and the excitatory rebound was further determined by diagnostic test and univariate analysis. Thereafter, kanic acid (KA)-induced epileptic mouse model was used to confirm that its behavior and neural activity would be controlled by VPA. Finally, a computational simulation model was established to verify the hypothesis. Findings Inadequate control of seizures by VPA monotherapy and post-operative status epilepticus are closely related to a significant excitatory rebound after VPA injection (rebound electrodes≧5/64, p = 0.008), together with increased synchronization of the local field potential (LFP). In addition, the neural activity in the model mice showed a significant rebound on spike firing (53/77 units, 68.83%). The LFP increased the power spectral density in multiple wavebands after VPA injection in animal experiments (p < 0.001). Computational simulation experiments revealed that inhibitory power-induced excitatory rebound is an intrinsic feature in the neural network. Interpretation Despite the limitations, we provide evidence that inadequate control of seizures by VPA monotherapy could be associated with neural excitatory rebounds, which were predicted by intraoperative ECoG analysis. Combined with the evidence from computational models and animal experiments, our findings suggested that ineffective ASMs may be because of the excitatory rebound, which is mediated by increased inhibitory power. Funding This work was supported by National Natural Science Foundation of China (62127810, 81970418), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03) and ZJLab; Science and Technology Commission of Shanghai Municipality (18JC1410403, 19411969000, 19ZR1477700, 20Z11900100); MOE Frontiers Center for Brain Science; Shanghai Key Laboratory of Health Identification and Assessment (21DZ2271000); Shanghai Shenkang (SHDC2020CR3073B).
Collapse
|
7
|
Mazuski C, O'Keefe J. Representation of ethological events by basolateral amygdala neurons. Cell Rep 2022; 39:110921. [PMID: 35675779 PMCID: PMC9638002 DOI: 10.1016/j.celrep.2022.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The accurate interpretation of ethologically relevant stimuli is crucial for survival. While basolateral amygdala (BLA) neuronal responses during fear conditioning are well studied, little is known about how BLA neurons respond during naturalistic events. We recorded from the rat BLA during interaction with ethological stimuli: male or female rats, a moving toy, and rice. Forty-two percent of the cells reliably respond to at least one stimulus, with over half of these exclusively identifying one of the four stimulus classes. In addition to activation during interaction with their preferred stimulus, these cells signal micro-behavioral interactions like social contact. After stimulus removal, firing activity persists in 30% of responsive cells for several minutes. At the micro-circuit level, information flows from highly tuned event-specific neurons to less specific neurons, and connection strength increases after the event. We propose that individual BLA neurons identify specific ethological events, with event-specific neurons driving circuit-wide activity during and after salient events. Basolateral amygdala (BLA) neurons respond selectively to salient stimuli After activation, BLA neurons can be modulated by the behavioral microstructure Firing persists in some BLA neurons long after the removal of the eliciting stimulus In the BLA micro-circuit, information flowed from more tuned to less tuned neurons
Collapse
Affiliation(s)
- Cristina Mazuski
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London W1T4JG, UK.
| | - John O'Keefe
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London W1T4JG, UK; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Sias AC, Morse AK, Wang S, Greenfield VY, Goodpaster CM, Wrenn TM, Wikenheiser AM, Holley SM, Cepeda C, Levine MS, Wassum KM. A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. eLife 2021; 10:e68617. [PMID: 34142660 PMCID: PMC8266390 DOI: 10.7554/elife.68617] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Adaptive reward-related decision making often requires accurate and detailed representation of potential available rewards. Environmental reward-predictive stimuli can facilitate these representations, allowing one to infer which specific rewards might be available and choose accordingly. This process relies on encoded relationships between the cues and the sensory-specific details of the rewards they predict. Here, we interrogated the function of the basolateral amygdala (BLA) and its interaction with the lateral orbitofrontal cortex (lOFC) in the ability to learn such stimulus-outcome associations and use these memories to guide decision making. Using optical recording and inhibition approaches, Pavlovian cue-reward conditioning, and the outcome-selective Pavlovian-to-instrumental transfer (PIT) test in male rats, we found that the BLA is robustly activated at the time of stimulus-outcome learning and that this activity is necessary for sensory-specific stimulus-outcome memories to be encoded, so they can subsequently influence reward choices. Direct input from the lOFC was found to support the BLA in this function. Based on prior work, activity in BLA projections back to the lOFC was known to support the use of stimulus-outcome memories to influence decision making. By multiplexing optogenetic and chemogenetic inhibition we performed a serial circuit disconnection and found that the lOFC→BLA and BLA→lOFC pathways form a functional circuit regulating the encoding (lOFC→BLA) and subsequent use (BLA→lOFC) of the stimulus-dependent, sensory-specific reward memories that are critical for adaptive, appetitive decision making.
Collapse
Affiliation(s)
- Ana C Sias
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Ashleigh K Morse
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Sherry Wang
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Venuz Y Greenfield
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Caitlin M Goodpaster
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Tyler M Wrenn
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Andrew M Wikenheiser
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Michael S Levine
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
9
|
Representation of Fear of Heights by Basolateral Amygdala Neurons. J Neurosci 2021; 41:1080-1091. [PMID: 33436527 DOI: 10.1523/jneurosci.0483-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Fear of heights is evolutionarily important for survival, yet it is unclear how and which brain regions process such height threats. Given the importance of the basolateral amygdala (BLA) in mediating both learned and innate fear, we investigated how BLA neurons may respond to high-place exposure in freely behaving male mice. We found that a discrete set of BLA neurons exhibited robust firing increases when the mouse was either exploring or placed on a high place, accompanied by increased heart rate and freezing. Importantly, these high-place fear neurons were only activated under height threats, but not looming, acoustic startle, predatory odor, or mild anxiogenic conditions. Furthermore, after a fear-conditioning procedure, these high-place fear neurons developed conditioned responses to the context, but not the cue, indicating a convergence in processing of dangerous/risky contextual information. Our results provide insights into the neuronal representation of the fear of heights and may have implications for the treatment of excessive fear disorders.SIGNIFICANCE STATEMENT Fear can be innate or learned, as innate fear does not require any associative learning or experiences. Previous research mainly focused on studying the neural mechanism of learned fear, often using an associative conditioning procedure such as pairing a tone with a footshock. Only recently scientists started to investigate the neural circuits of innate fear, including the fear of predator odors and looming visual threats; however, how the brain processes the innate fear of heights is unclear. Here we provide direct evidence that the basolateral amygdala (BLA) is involved in representing the fear of heights. A subpopulation of BLA neurons exhibits a selective response to height and contextual threats, but not to other fear-related sensory or anxiogenic stimuli.
Collapse
|
10
|
Tiedemann LJ, Alink A, Beck J, Büchel C, Brassen S. Valence Encoding Signals in the Human Amygdala and the Willingness to Eat. J Neurosci 2020; 40:5264-5272. [PMID: 32457069 PMCID: PMC7329310 DOI: 10.1523/jneurosci.2382-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
One of the strongest drivers of food consumption is pleasure, and with a large variety of palatable food continuously available, there is rarely any necessity to eat something not tasty. The amygdala is involved in hedonic valuation, but its role in valence assignment during food choices is less understood. Given recent evidence for spatially segregated amygdala signatures encoding palatability, we applied a multivariate approach on fMRI data to extract valence-specific signal patterns during an explicit evaluation of food liking. These valence localizers were then used to identify hedonic valuation processes while the same healthy human participants (14 female, 16 male; in overnight fasted state on both scanning days) performed a willingness-to-eat task in a separate fMRI measurement. Valence-specific patterns of amygdala signaling predicted decisions on food consumption significantly. Findings could be validated using the same valence localizers to predict consumption decisions participants made on a separate set of food stimuli that had not been used for localizer identification. Control analyses revealed these findings to be restricted to a multivariate compared with a univariate approach, and to be specific for valence processing in the amygdala. Spatially distributed valuation signals of the amygdala thus appear to modulate appetitive consumption decisions, and may be useful to identify current hedonic valuation processes triggering food choices even when not explicitly instructed.SIGNIFICANCE STATEMENT The expectation of tastiness is a particularly strong driver in everyday decisions on food consumption. The amygdala is important for hedonic valuation processes and involved in valence-related behavior, but the relationship between both processes is less understood. Here, we show that hedonic values of food are represented in spatially distributed activation patterns in the amygdala. The engagement of these patterns during food choices modulates consumption decisions. Findings are stable in a separate stimulus set. These results suggest that valence-specific amygdala signals are integrated into the formation of food choices.
Collapse
Affiliation(s)
- Lena J Tiedemann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Arjen Alink
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Judith Beck
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Stefanie Brassen
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| |
Collapse
|