1
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. Behav Brain Res 2024; 470:115071. [PMID: 38806099 DOI: 10.1016/j.bbr.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Samantha L Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Justin M Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
2
|
Plas SL, Oleksiak CR, Pitre C, Melton C, Moscarello JM, Maren S. Acute stress yields a sex-dependent facilitation of signaled active avoidance in rats. Neurobiol Stress 2024; 31:100656. [PMID: 38994219 PMCID: PMC11238190 DOI: 10.1016/j.ynstr.2024.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Claire Pitre
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Chance Melton
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Plas SL, Oleksiak CR, Pitre C, Melton C, Moscarello JM, Maren S. Acute stress yields a sex-dependent facilitation of signaled active avoidance in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591470. [PMID: 38746268 PMCID: PMC11092500 DOI: 10.1101/2024.04.27.591470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Claire Pitre
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Chance Melton
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| |
Collapse
|
4
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585627. [PMID: 38562746 PMCID: PMC10983994 DOI: 10.1101/2024.03.18.585627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| |
Collapse
|
5
|
Met Hoxha E, Robinson PK, Greer KM, Trask S. Generalization and discrimination of inhibitory avoidance differentially engage anterior and posterior retrosplenial subregions. Front Behav Neurosci 2024; 18:1327858. [PMID: 38304851 PMCID: PMC10832059 DOI: 10.3389/fnbeh.2024.1327858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction In a variety of behavioral procedures animals will show selective fear responding in shock-associated contexts, but not in other contexts. However, several factors can lead to generalized fear behavior, where responding is no longer constrained to the conditioning context and will transfer to novel contexts. Methods Here, we assessed memory generalization using an inhibitory avoidance paradigm to determine if generalized avoidance behavior engages the retrosplenial cortex (RSC). Male and female Long Evans rats received inhibitory avoidance training prior to testing in the same context or a shifted context in two distinct rooms; one room that had fluorescent lighting (Light) and one that had red LED lighting (Dark). Results We found that animals tested in a light context maintained context-specificity; animals tested in the same context as training showed longer latencies to cross and animals tested in the shifted context showed shorter latencies to cross. However, animals tested in the dark generalized their avoidance behavior; animals tested in the same context and animals tested in the shifted context showed similarly-high latencies to cross. We next examined expression of the immediate early gene zif268 and perineuronal nets (PNNs) following testing and found that while activity in the basolateral amygdala corresponded with overall levels of avoidance behaviors, anterior RSC (aRSC) activity corresponded with learned avoidance generally, but posterior RSC (pRSC) activity seemed to correspond with generalized memory. PNN reduction in the RSC was associated with memory formation and retrieval, suggesting a role for PNNs in synaptic plasticity. Further, PNNs did not reduce in the RSC in animals who showed a generalized avoidance behavior, in line with their hypothesized role in memory consolidation. Discussion These findings suggest that there is differential engagement of retrosplenial subregions along the rostrocaudal axis to generalization and discrimination.
Collapse
Affiliation(s)
- Erisa Met Hoxha
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
| | - Payton K. Robinson
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
| | - Kaitlyn M. Greer
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
| | - Sydney Trask
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
- Purdue University Institute for Integrative Neuroscience, West Lafayette, IN, United States
- Purdue University Center on Aging and the Life Course, West Lafayette, IN, United States
| |
Collapse
|
6
|
Piquet R, Faugère A, Parkes SL. Contribution of dorsal versus ventral hippocampus to the hierarchical modulation of goal-directed actions in rats. Eur J Neurosci 2023; 58:3737-3750. [PMID: 37697949 DOI: 10.1111/ejn.16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Adaptive behaviour often necessitates that animals learn about events in a manner that is specific to a particular context or environment. These hierarchical organisations allow the animal to decide which action is the most appropriate when faced with ambiguous or conflicting possibilities. This study examined the role of hippocampus in enabling animals to use the context to guide action selection. We used a hierarchical instrumental outcome devaluation task in which male rats learn that the context provides information about the unique action-outcome relations that are in effect. We first confirmed that rats encode and use hierarchical context-(action-outcome) relations. We then show that chemogenetic inhibition of ventral hippocampus impairs both the encoding and retrieval of these associations, while inhibition of dorsal hippocampus impairs only the retrieval. Importantly, neither dorsal nor ventral hippocampus was required for goal-directed behaviour per se as these impairments only emerged when rats were forced to use the context to identify the current action-outcome relationships. These findings are discussed with respect to the role of the hippocampus and its broader circuitry in the contextual modulation of goal-directed behaviour and the importance of hierarchical associations in flexible behaviour.
Collapse
Affiliation(s)
- Robin Piquet
- University of Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
7
|
Fernández-Teruel A, McNaughton N. Post-encounter freezing during approach-avoidance conflict: the role of the hippocampus. Nat Rev Neurosci 2023:10.1038/s41583-023-00703-y. [PMID: 37161023 DOI: 10.1038/s41583-023-00703-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Alberto Fernández-Teruel
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine and Institute of Neurosciences, Autonomous University of Barcelona, Barcelona, Spain.
| | - Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Khani F, Pourmotabbed A, Veisi M, Hosseinmardi N, Fathollahi Y, Azizi H. Adolescent morphine exposure impairs dark avoidance memory and synaptic potentiation of ventral hippocampal CA1 during adulthood in rats. Life Sci 2023; 314:121344. [PMID: 36587788 DOI: 10.1016/j.lfs.2022.121344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Adolescence is a neurobiological critical period for neurodevelopmental processes. Adolescent opioid exposure can affect cognitive abilities via regional-specific lasting changes in brain structure and function. The current study was therefore designed to assess the long-term effects of adolescent morphine exposure on dark avoidance memory and synaptic plasticity of the ventral hippocampal CA1. Adolescent Wistar rats received escalating doses of morphine for 10 days. Morphine injections were started with an incremental dose of 2.5 mg/kg to reach a dose of 25 mg/kg. 30 days after the last injection, inhibitory memory and in vitro field potential recording were evaluated. Also, the weight of the animals was measured during drug and post-drug exposure. We found that adolescent morphine exposure decreased weight gain during morphine and post-morphine exposure. Passive avoidance memory was impaired in the morphine group. Moreover, adolescent morphine exposure caused an increase in baseline synaptic responsiveness and failed long-term potentiation (LTP) in the ventral hippocampal CA1 during adulthood. In the morphine group, the mean values of the field excitatory postsynaptic potential (fEPSP) slopes required to elicit a half-maximal population spike (PS) amplitude were significantly greater than that of the saline group. Therefore, adolescent morphine exposure has a durable effect on memory functions, synaptic activity, and plasticity of ventral hippocampal CA1. Adults with adolescent morphine exposures may experience maladaptive behaviors and cognitive disabilities.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozhgan Veisi
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Experiences Shape Hippocampal Neuron Morphology and the Local Levels of CRHR1 and OTR. Cell Mol Neurobiol 2022:10.1007/s10571-022-01292-7. [PMID: 36239833 DOI: 10.1007/s10571-022-01292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/26/2022] [Indexed: 11/03/2022]
Abstract
The dorsal hippocampus is involved in behavioral avoidance regulation. It is unclear how experiences such as the neonatal stress of maternal deprivation (MD) and post-weaning environmental enrichment (EE) affect avoidance behavior and the dorsal hippocampal parameters, including neuronal morphology, corticotrophin-releasing hormone (CRH) signaling, and oxytocin receptor (OTR) level. In male BALB/c mice, we found that MD impaired avoidance behavior in the step-on test compared to non-MD and EE rearing conditions could alleviate that partially. MD increased neuronal branches in the CA1 but decreased synaptic connection levels in the CA2, CA3, and DG. Meanwhile, MD increased the CA1's OTR levels, which negatively correlated with nucleus densities. MD also increased the CA1's and CA2's CRH levels, which positively correlated with CRHR1 levels. However, MD statistically elevated the CA3's CRH receptor 1 (CRHR1) levels, which negatively correlated with nucleus densities and, probably, synaptic connection levels in the CA3. The additive effects of MD and EE maintained similar CRH levels and CRHR1 levels as well as OTR levels in the hippocampal areas as the additive of non-MD and non-EE. However, the presence of MD and EE still decreased the CA1's neuronal branches and the CA2's and DG's synaptic connection levels. The study illustrates how MD and EE affect avoidance behaviors, hippocampal neuron morphology, and CRH and OTR levels. The results indicate that the late-life environmental improvement partially restores the alterations in dorsal hippocampal areas induced by early life stress.
Collapse
|
10
|
Turner VS, O'Sullivan RO, Kheirbek MA. Linking external stimuli with internal drives: A role for the ventral hippocampus. Curr Opin Neurobiol 2022; 76:102590. [PMID: 35753108 PMCID: PMC9818033 DOI: 10.1016/j.conb.2022.102590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
The ventral hippocampus (vHPC) has long been thought of as the "emotional" hippocampus. Over the past several years, the complexity of vHPC has come to light, highlighting the diversity of cell types, inputs, and outputs that coordinate a constellation of positively and negatively motivated behaviors. Here, we review recent work on how vCA1 contributes to a network that associates external stimuli with internal motivational drive states to promote the selection of adaptive behavioral responses. We propose a model of vHPC function that emphasizes its role in the integration and transformation of internal and external cues to guide behavioral selection when faced with multiple potential outcomes.
Collapse
Affiliation(s)
- Victoria S Turner
- Neuroscience Graduate Program, University of California, San Francisco, USA. https://twitter.com/vs_turner
| | - Rachel O O'Sullivan
- Neuroscience Graduate Program, University of California, San Francisco, USA. https://twitter.com/itsROsulli
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California, San Francisco, USA; Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience and Weill Institute for Neurosciences, University of California, San Francisco, USA.
| |
Collapse
|
11
|
Todd TP, Leaton RN, Helmstetter FJ. Introduction to the Special Issue to Commemorate the Scientific Legacy of David J. Bucci. Neurobiol Learn Mem 2022; 190:107612. [PMID: 35358678 DOI: 10.1016/j.nlm.2022.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Travis P Todd
- Department of Psychological Science, University of Vermont, Burlington, VT, United States.
| | - Robert N Leaton
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
12
|
Sambuco N, Bradley MM, Lang PJ. Narrative imagery: Emotional modulation in the default mode network. Neuropsychologia 2022; 164:108087. [PMID: 34785150 DOI: 10.1016/j.neuropsychologia.2021.108087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022]
Abstract
The default mode network (DMN) is activated when constructing and imagining narrative events, with functional brain activity in the medial-prefrontal cortex hypothesized to be modulated during emotional processing by adding value (or pleasure) to the episodic representation. However, since enhanced reactivity during emotional, compared to neutral, content is a more frequent finding in both the brain and body in physiological, neural, and behavioral measures, the current study directly assesses the effects of pleasure and emotion during narrative imagery in the DMN by using a within-subject design to first identify the DMN during resting state and then assess activation during pleasant, neutral, or unpleasant imagery. Replicating previous findings, enhanced functional activity in the medial prefrontal cortex was found when imagining pleasant, compared to unpleasant, events. On the other hand, emotion-related activation was found when imagining either pleasant or unpleasant, compared to neutral, events in other nodes of the DMN including the posterior cingulate cortex (PCC), angular gyrus, anterior hippocampus, lateral temporal cortex, temporal pole, dorsomedial prefrontal cortex (dmPFC), and ventrolateral prefrontal cortex (vlPFC). Pervasive emotional modulation in the DMN is consistent with the view that a primary function of event retrieval and construction is to remember, recreate, and imagine motivationally relevant events important for planning adaptive behavior.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA.
| | - Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA
| | - Peter J Lang
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Campese VD, Brannigan LA, LeDoux JE. Conditional Control of Instrumental Avoidance by Context Following Extinction. Front Behav Neurosci 2021; 15:730113. [PMID: 34650411 PMCID: PMC8505733 DOI: 10.3389/fnbeh.2021.730113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Using rodents, three training arrangements (i.e., ABB vs. ABA, AAA vs. AAB and ABB vs. ABC) explored whether extinction influences the expression of avoidance in a manner controlled by context. Retention testing following extinction showed that more avoidance responding (i.e., renewal) was observed when extinguished cues were tested outside of the context where they had undergone extinction. In contrast, response rates were significantly lower when stimuli were tested within the context where extinction learning had occurred. These findings add to the emerging literature assessing the role of Pavlovian extinction processes in the development of instrumental avoidance responding by demonstrating conditional control over extinguished responding by context. This study was conducted using a within-subjects approach that minimized the potential for context-outcome associations to bias responding, and thus, reflects hierarchical control over behavior based on the specific associative status of each tested cue in each training context.
Collapse
Affiliation(s)
- Vincent D Campese
- Department of Psychology, University of Evansville, Evansville, IN, United States
| | - Lauren A Brannigan
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph E LeDoux
- Center for Neural Science, New York University, New York, NY, United States.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|