1
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
2
|
Mutation update for myelin protein zero-related neuropathies and the increasing role of variants causing a late-onset phenotype. J Neurol 2019; 266:2629-2645. [DOI: 10.1007/s00415-019-09453-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023]
|
3
|
Mehta P, Küspert M, Bale T, Brownstein CA, Towne MC, De Girolami U, Shi J, Beggs AH, Darras BT, Wegner M, Piao X, Agrawal PB. Novel mutation in CNTNAP1 results in congenital hypomyelinating neuropathy. Muscle Nerve 2017; 55:761-765. [PMID: 27668699 DOI: 10.1002/mus.25416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Congenital hypomyelinating neuropathy (CHN) is a rare congenital neuropathy that presents in the neonatal period and has been linked previously to mutations in several genes associated with myelination. A recent study has linked 4 homozygous frameshift mutations in the contactin-associated protein 1 (CNTNAP1) gene with this condition. METHODS We report a neonate with CHN who was found to have absent sensory nerve and compound muscle action potentials and hypomyelination on nerve biopsy. RESULTS On whole exome sequencing, we identified a novel CNTNAP1 homozygous missense mutation (p.Arg388Pro) in the proband, and both parents were carriers. Molecular modeling suggests that this variant disrupts a β-strand to cause an unstable structure and likely significant changes in protein function. CONCLUSIONS This report links a missense CNTNAP1 variant to the disease phenotype previously associated only with frameshift mutations. Muscle Nerve 55: 761-765, 2017.
Collapse
Affiliation(s)
- Paulomi Mehta
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tejus Bale
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan C Towne
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Umberto De Girolami
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Abstract
Hereditary neuropathies (HN) with onset in childhood are categorized according to clinical presentation, pathogenic mechanism based on electrophysiology, genetic transmission and, in selected cases, pathological findings. Especially relevant to pediatrics are the items "secondary" versus "primary" neuropathy, "syndromic versus nonsyndromic," and "period of life." Different combinations of these parameters frequently point toward specific monogenic disorders. Ruling out a neuropathy secondary to a generalized metabolic disorder remains the first concern in pediatrics. As a rule, metabolic diseases include additional, orienting symptoms or signs, and their biochemical diagnosis is based on logical algorithms. Primary, motor sensory are the most frequent HN and are dominated by demyelinating autosomal dominant (AD) forms (CMT1). Other forms include demyelinating autosomal recessive (AR) forms, axonal AD/AR forms, and forms with "intermediate" electrophysiological phenotype. Peripheral motor neuron disorders are dominated by AR SMN-linked spinal muscular atrophies. (Distal) hereditary motor neuropathies represent <10% of HN but exhibit large clinical and genetic heterogeneity. Sensory/dysautonomic HN involves five classic subtypes, each one related to specific genes. However, genetic heterogeneity is larger than initially suspected. Syndromic HN distinguish "purely neurological syndromes", which are multisystemic, such as spinocerebellar atrophies +, spastic paraplegias +, etc. Peripheral neuropathy is possibly the presenting feature, including in childhood. Autosomal recessive forms, on average, start more frequently in childhood. "Multiorgan syndromes", on the other hand, are more specific to Pediatrics. AR forms, which are clearly degenerative, prompt the investigation of a large set of pleiotropic genes. Other syndromes expressed in the perinatal period are mainly developmental disorders, and can sometimes be related to specific transcription factors. Systematic malformative workup and ethical considerations are necessary. Altogether, >40 genes with various biological functions have been found to be responsible for primary HN. Many are responsible for various phenotypes, including some without the polyneuropathic trait, and some for various types of transmission.
Collapse
Affiliation(s)
- Pierre Landrieu
- Department of Pediatric Neurology, CHU Paris sud, Hôpital Bicêtre, Paris, France.
| | | |
Collapse
|
5
|
Landrieu P, Baets J, De Jonghe P. Hereditary motor-sensory, motor, and sensory neuropathies in childhood. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1413-32. [PMID: 23622364 DOI: 10.1016/b978-0-444-59565-2.00011-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hereditary neuropathies (HN) are categorized according to clinical presentation, pathogenic mechanism based on electrophysiology, genetic transmission, age of occurrence, and, in selected cases, pathological findings. The combination of these parameters frequently orients towards specific genetic disorders. Ruling out a neuropathy secondary to a generalized metabolic disorder remains the first pediatric concern. Primary, motor-sensory are the most frequent HN and are dominated by demyelinating AD forms (CMT1). Others are demyelinating AR forms, axonal AD/AR forms, and forms with "intermediate" electrophysiological phenotype. Pure motor HN represent<10% of HN but exhibit large clinical and genetic heterogeneity. Sensory/dysautonomic HN cover five classical subtypes, each one related to specific genes. However, genetic heterogeneity is largly greater than initially suspected. Syndromic HN distinguish: "purely neurological syndromes", which are multisystemic, usually AD disorders, such as spinocerebellar atrophies +, spastic paraplegias +, etc. Peripheral Neuropathy may be the presenting feature, including in childhood. Clearly degenerative, AR forms prompt to investigate a large set of pleiotropic genes. Other syndromes, expressed in the perinatal period and comprising malformative features, are mainly developmental disorders, sometimes related to specific transcription factors. Altogether, >40 genes with various biological functions have been found responsible for HN. Many are responsible for various phenotypes, including some without the polyneuropathic trait: for the pediatric neurologist, phenotype/genotype correlations constitute a permanent bidirectional exercise.
Collapse
Affiliation(s)
- Pierre Landrieu
- Department of Paediatric Neurology, Université Paris Sud, Bicêtre Hospital, Paris, France.
| | | | | |
Collapse
|
6
|
Abstract
The prenatal and infantile neuropathies are an uncommon and complex group of conditions, most of which are genetic. Despite advances in diagnostic techniques, approximately half of children presenting in infancy remain without a specific diagnosis. This review focuses on inherited demyelinating neuropathies presenting in the first year of life. We clarify the nomenclature used in these disorders, review the clinical features of demyelinating forms of Charcot-Marie-Tooth disease with early onset, and discuss the demyelinating infantile neuropathies associated with central nervous system involvement. Useful clinical, neurophysiologic, and neuropathologic features in the diagnostic work-up of these conditions are also presented.
Collapse
Affiliation(s)
- Eppie M Yiu
- Children's Neuroscience Centre, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | | |
Collapse
|
7
|
Sevilla T, Lupo V, Sivera R, Marco-Marín C, Martínez-Rubio D, Rivas E, Hernández A, Palau F, Espinós C. Congenital hypomyelinating neuropathy due to a novel MPZ mutation. J Peripher Nerv Syst 2011; 16:347-52. [DOI: 10.1111/j.1529-8027.2011.00369.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Baets J, Deconinck T, De Vriendt E, Zimoń M, Yperzeele L, Van Hoorenbeeck K, Peeters K, Spiegel R, Parman Y, Ceulemans B, Van Bogaert P, Pou-Serradell A, Bernert G, Dinopoulos A, Auer-Grumbach M, Sallinen SL, Fabrizi GM, Pauly F, Van den Bergh P, Bilir B, Battaloglu E, Madrid RE, Kabzińska D, Kochanski A, Topaloglu H, Miller G, Jordanova A, Timmerman V, De Jonghe P. Genetic spectrum of hereditary neuropathies with onset in the first year of life. Brain 2011; 134:2664-76. [PMID: 21840889 PMCID: PMC3170533 DOI: 10.1093/brain/awr184] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine–Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot–Marie–Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot–Marie–Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot–Marie–Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.
Collapse
Affiliation(s)
- Jonathan Baets
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fusco C, Ucchino V, Barbon G, Bonini E, Mostacciuolo ML, Frattini D, Pisani F, Giustina ED. The homozygous ganglioside-induced differentiation-associated protein 1 mutation c.373C > T causes a very early-onset neuropathy: case report and literature review. J Child Neurol 2011; 26:49-57. [PMID: 21212451 DOI: 10.1177/0883073810373142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene may cause severe early-onset inherited neuropathies. Here, the authors report a clinical and neurophysiological follow-up of a Pakistani child with a very early-onset neuropathy carrying a novel homozygous mutation in the GDAP1gene. They discuss the relationship between the several forms of Charcot-Marie-Tooth disease presenting in the first months of life and focus on the literature of GDAP1-associated early-onset neuropathy. This case further expands on the clinical spectrum and the genetic heterogeneity of early-onset inherited neuropathy due to GDAP1 gene mutations.
Collapse
Affiliation(s)
- Carlo Fusco
- Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|