1
|
He Y, Qiu Y, Xiong Y, Shen Y, Jiang K, Yi H, Huang P, Zhu Y, Zhu M, Zhou M, Hong D, Tan D. Clinical and genetic characteristics of myotonia congenita in Chinese population. Channels (Austin) 2024; 18:2349823. [PMID: 38720415 PMCID: PMC11086022 DOI: 10.1080/19336950.2024.2349823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024] Open
Abstract
Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.
Collapse
Affiliation(s)
- Yuting He
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Shen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hancun Yi
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Elaraby NM, Ahmed HA, Dawoud H, Ashaat NA, Azmy A, Galal ER, Elhusseny Y, Awady HE, Metwally AM, Ashaat EA. Clinical and molecular characterization of myotonia congenita using whole-exome sequencing in Egyptian patients. Mol Biol Rep 2024; 51:766. [PMID: 38877370 DOI: 10.1007/s11033-024-09646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.
Collapse
Affiliation(s)
- Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Hoda A Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba Dawoud
- Pediatric Department, Tanta University, Gharbia, Egypt
| | - Neveen A Ashaat
- Professor of Human Genetics, Ain Shams University, Cairo, Egypt
| | - Ashraf Azmy
- Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Eman Reda Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Yasmine Elhusseny
- Lecturer of Medical Biochemistry and Molecular Biology, School of Medicine, Newgiza University, Giza, Egypt
| | - Heba El Awady
- Pediatric Department, Fayoum University Hospitals, Fayoum, Egypt
| | - Ammal M Metwally
- Community Medicine Research Department/Medical Research, Clinical Studies Institute/National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Zhong H, Zeng L, Yu X, Ke Q, Dong J, Chen Y, Luo L, Chang X, Guo J, Wang Y, Xiong H, Liu R, Liu C, Wu J, Lin J, Xi J, Zhu W, Tan S, Liu F, Lu J, Zhao C, Luo S. Clinical features and genetic spectrum of a multicenter Chinese cohort with myotonic dystrophy type 1. Orphanet J Rare Dis 2024; 19:103. [PMID: 38454488 PMCID: PMC10918885 DOI: 10.1186/s13023-024-03114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND As the most common subtype of adult muscular dystrophy worldwide, large cohort reports on myotonic dystrophy type I (DM1) in China are still lacking. This study aims to analyze the genetic and clinical characteristics of Chinese Han DM1 patients. METHODS Based on the multicenter collaborating effort of the Pan-Yangtze River Delta Alliance for Neuromuscular Disorders, patients with suspected clinical diagnoses of DM1 were genetically confirmed from January 2020 to April 2023. Peak CTG repeats in the DMPK gene were analyzed using triplet repeat-primed PCR (TP-PCR) and flanking PCR. Time-to-event analysis of onset age in females and males was performed. Additionally, detailed clinical features and longitudinal changes from the disease onset in 64 DM1 patients were retrospectively collected and analyzed. The Epworth Sleepiness Scale and Fatigue Severity Scale were used to quantify the severity of daytime sleepiness and fatigue. RESULTS Among the 211 genetically confirmed DM1 patients, the mean age at diagnosis was 40.9 ± 12.2 (range: 12-74) with a male-to-female ratio of 124:87. The average size of CTG repeats was 511.3 (range: 92-1945). Among the DM1 patients with comprehensive clinical data (n = 64, mean age 41.0 ± 12.0), the age at onset was significantly earlier in males than in females (4.8 years earlier, p = 0.026). Muscle weakness (92.2%), myotonia (85.9%), and fatigue (73.4%) were the most prevalent clinical features. The predominant involved muscles at onset are hands (weakness or myotonia) (52.6%) and legs (walking disability) (42.1%). Of them, 70.3% of patients had daytime sleepiness, 14.1% had cataract surgery, 7.8% used wheelchairs, 4.7% required ventilatory support, and 1.6% required gastric tubes. Regarding the comorbidities, 4.7% of patients had tumors, 17.2% had diabetes, 23.4% had dyspnea, 28.1% had intermittent insomnia, 43.8% experienced dysphagia, and 25% exhibited cognitive impairment. Chinese patients exhibited smaller size of CTG repeats (468 ± 139) than those reported in Italy (613 ± 623), the US (629 ± 386), and Japan (625 [302, 1047]), and milder phenotypes with less multisystem involvement. CONCLUSION The Chinese Han DM1 patients presented milder phenotypes compared to their Caucasian and Japanese counterparts. A male predominance and an early age of onset were identified in male Chinese Han DM1 patients.
Collapse
Affiliation(s)
- Huahua Zhong
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Li Zeng
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan, China
| | - Xuefan Yu
- Department of Neurology and Neuroscience Center, The First Affiliated Hospital of Jilin University, Jilin, China
| | - Qing Ke
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yan Chen
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Lijun Luo
- Department of Neurology, Wuhan No.1 Hospital, Huazhong University of Science and Technology, Hubei, China
| | - Xueli Chang
- Department of Neurology, The First Hospital of Shanxi Medical University, Shanxi, China
| | - Junhong Guo
- Department of Neurology, The First Hospital of Shanxi Medical University, Shanxi, China
| | - Yiqi Wang
- Department of Neurology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Rongrong Liu
- Department of Neurology, Shaoxing Second Hospital, Zhejiang, China
| | - Changxia Liu
- Department of Neurology, Yancheng First People's Hospital, Jiangsu, China
| | - Jibao Wu
- Department of Neurology, Chenzhou First People's Hospital, Hunan, China
| | - Jie Lin
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Jianying Xi
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Wenhua Zhu
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan, China
| | - Fuchen Liu
- Department of Neurology, Qilu Hospital, Shandong University, Shangdong, China
| | - Jiahong Lu
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China.
| | - Sushan Luo
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Intergenerational Influence of Gender and the DM1 Phenotype of the Transmitting Parent in Korean Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13081465. [PMID: 36011377 PMCID: PMC9408469 DOI: 10.3390/genes13081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common autosomal-dominant disorder caused by the CTG repeat expansion of the DMPK, and it has been categorized into three phenotypes: mild, classic, and congenital DM1. Here, we reviewed the intergenerational influence of gender and phenotype of the transmitting parent on the occurrence of Korean DM1. A total of 44 parent–child pairs matched for the gender of the transmitting parent and the affected child and 29 parent–child pairs matched for the gender and DM1 phenotype of the transmitting parent were reviewed. The CTG repeat size of the DMPK in the affected child was found to be significantly greater when transmitted by a female parent to a female child (DM1-FF) (median, 1309 repeats; range, 400–2083) than when transmitted by a male parent to a male child (650; 160–1030; p = 0.038 and 0.048 using the Tukey HSD and the Bonferroni test) or by a male parent to a female child (480; 94–1140; p = 0.003). The difference in the CTG repeat size of the DMPK between the transmitting parent and the affected child was also lower when transmitted from a male parent with classic DM1 (−235; −280 to 0) compared to when it was transmitted from a female parent with mild DM1 (866; 612–905; p = 0.015 and 0.019) or from a female parent with classic DM1 (DM1-FC) (605; 10–1393; p = 0.005). This study highlights that gender and the DM1 phenotype of the transmitting parent had an impact on the CTG repeat size of the DMPK in the affected child, with greater increases being inherited from the DM1-FF or DM1-FC situations in Korean DM1.
Collapse
|
5
|
Li Y, Li M, Wang Z, Yang F, Wang H, Bai X, Sun B, Chen S, Huang X. Clinical and molecular characteristics of myotonia congenita in China: Case series and a literature review. Channels (Austin) 2022; 16:35-46. [PMID: 35170402 PMCID: PMC8855856 DOI: 10.1080/19336950.2022.2041292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Myotonia congenita (MC) is a rare genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1), encoding the voltage-gated chloride channel ClC-1 in skeletal muscle. Our study reported the clinical and molecular characteristics of six patients with MC and systematically review the literature on Chinese people. We retrospectively analyzed demographics, clinical features, family history, creatine kinase (CK), electromyography (EMG), treatment, and genotype data of our patients and reviewed the clinical data and CLCN1 mutations in literature. The median ages at examination and onset were 26.5 years (range 11–50 years) and 6.5 years (range 1.5–11 years), respectively, in our patients, and 21 years (range 3.5–65 years, n = 45) and 9 years (range 0.5–26 years, n = 50), respectively, in literature. Similar to previous reports, myotonia involved limb, lids, masticatory, and trunk muscles to varying degrees. Warm-up phenomenon (5/6), percussion myotonia (3/5), and grip myotonia (6/6) were common. Menstruation triggered myotonia in females, not observed in Chinese patients before. The proportion of abnormal CK levels (4/5) was higher than data from literature. Electromyography performed in six patients revealed myotonic changes (100%). Five novel CLCN1 mutations, including a splicing mutation (c.853 + 4A>G), a deletion mutation (c.2010_2014del), and three missense mutations (c.2527C>T, c.1727C>T, c.2017 G > C), were identified. The c.892 G > A (p.A298T) mutation was the most frequent mutation in the Chinese population. Our study expanded the clinical and genetic spectrum of patients with MC in the China. The MC phenotype in Chinese people is not different from that found in the West, while the genotype is different.
Collapse
Affiliation(s)
- Yifan Li
- Geriatric Neurological Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese Pla General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology of the First Medical Center, Chinese Pla General Hospital, Beijing, China
| | - Zhenfu Wang
- Geriatric Neurological Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese Pla General Hospital, Beijing, China
| | - Fei Yang
- Department of Neurology of the First Medical Center, Chinese Pla General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology of the First Medical Center, Chinese Pla General Hospital, Beijing, China
| | - Xiujuan Bai
- Geriatric Neurological Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese Pla General Hospital, Beijing, China
| | - Bo Sun
- Geriatric Neurological Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese Pla General Hospital, Beijing, China
| | - Siyu Chen
- Geriatric Neurological Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese Pla General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology of the First Medical Center, Chinese Pla General Hospital, Beijing, China
| |
Collapse
|
6
|
Abstract
Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. These disorders cause lifetime disability and impact quality of life. Despite advances in understanding of the molecular pathology of these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis, therapeutic, genetic counseling, and research planning. Electrodiagnostic testing is useful in directing the diagnosis, but has several limitations: patient discomfort, time consuming, and significant overlap of findings in muscle channelopathies. Although genetic testing is the gold standard in making a definitive diagnosis, a mutation might not be identified in many patients with a well-supported clinical diagnosis of periodic paralysis. In the recent past, there have been landmark clinical trials in non-dystrophic myotonia and periodic paralysis which are encouraging as they demonstrate the ability of robust clinical research consortia to conduct well-controlled trials of rare diseases.
Collapse
Affiliation(s)
- Lauren Phillips
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA
| | - Jaya R Trivedi
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA.
| |
Collapse
|
7
|
Rudnik-Schöneborn S, Witsch-Baumgartner M, Zerres K. Influences of Pregnancy on Different Genetic Subtypes of Non-Dystrophic Myotonia and Periodic Paralysis. Gynecol Obstet Invest 2016; 81:472-6. [DOI: 10.1159/000446944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/16/2016] [Indexed: 11/19/2022]
|
8
|
Dogan C, De Antonio M, Hamroun D, Varet H, Fabbro M, Rougier F, Amarof K, Arne Bes MC, Bedat-Millet AL, Behin A, Bellance R, Bouhour F, Boutte C, Boyer F, Campana-Salort E, Chapon F, Cintas P, Desnuelle C, Deschamps R, Drouin-Garraud V, Ferrer X, Gervais-Bernard H, Ghorab K, Laforet P, Magot A, Magy L, Menard D, Minot MC, Nadaj-Pakleza A, Pellieux S, Pereon Y, Preudhomme M, Pouget J, Sacconi S, Sole G, Stojkovich T, Tiffreau V, Urtizberea A, Vial C, Zagnoli F, Caranhac G, Bourlier C, Riviere G, Geille A, Gherardi RK, Eymard B, Puymirat J, Katsahian S, Bassez G. Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study. PLoS One 2016; 11:e0148264. [PMID: 26849574 PMCID: PMC4744025 DOI: 10.1371/journal.pone.0148264] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/16/2016] [Indexed: 01/06/2023] Open
Abstract
Background Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity. Methods We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (>18y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). Results Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate. Conclusion Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trials.
Collapse
Affiliation(s)
- Celine Dogan
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Marie De Antonio
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
- INSERM U1138, Centre de recherche des cordeliers, Paris Descartes university, UPMC university, Paris, France
| | - Dalil Hamroun
- Direction de la Recherche et de l'Innovation, CHU Montpellier, Montpellier, France
| | - Hugo Varet
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Marianne Fabbro
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Felix Rougier
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Khadija Amarof
- Neuromuscular Reference Center, CHU Fort-de-France, Fort de France, France
| | | | | | - Anthony Behin
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Remi Bellance
- Neuromuscular Reference Center, CHU Fort-de-France, Fort de France, France
| | | | - Celia Boutte
- Neuromuscular Reference Center, CHU Grenoble, Grenoble, France
| | - François Boyer
- Neuromuscular Reference Center, CHU Reims, Reims, France
| | | | | | - Pascal Cintas
- Neuromuscular Reference Center, CHU Toulouse, Toulouse, France
| | | | - Romain Deschamps
- Neuromuscular Reference Center, CHU Fort-de-France, Fort de France, France
| | | | - Xavier Ferrer
- Neuromuscular Reference Center, CHU Bordeaux, Bordeaux, France
| | | | - Karima Ghorab
- Neuromuscular Reference Center, CHU Limoges, Limoges, France
| | - Pascal Laforet
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Armelle Magot
- Neuromuscular Reference Center, CHU Nantes, Nantes, France
| | - Laurent Magy
- Neuromuscular Reference Center, CHU Limoges, Limoges, France
| | | | | | | | | | - Yann Pereon
- Neuromuscular Reference Center, CHU Nantes, Nantes, France
| | | | - Jean Pouget
- Neuromuscular Reference Center, GH Timone, AP-HM, Marseille, France
| | | | - Guilhem Sole
- Neuromuscular Reference Center, CHU Bordeaux, Bordeaux, France
| | - Tanya Stojkovich
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - Andoni Urtizberea
- Neuromuscular Reference Center, Hôpital Marin, AP-HP, Hendaye, France
| | | | - Fabien Zagnoli
- Neuromuscular Competence Center, HIA Clermont-Tonnerre, Brest, France
| | | | | | | | - Alain Geille
- CoPil, DM1 patients group, AFM-Téléthon, Evry, France
| | - Romain K. Gherardi
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
| | - Bruno Eymard
- Neuromuscular Reference Center, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jack Puymirat
- Human Genetic Research Unit, CHU Laval, Quebec, Canada
| | - Sandrine Katsahian
- INSERM U1138, Centre de recherche des cordeliers, Paris Descartes university, UPMC university, Paris, France
| | - Guillaume Bassez
- Neuromuscular Reference Center, GH Henri Mondor, AP-HP, Créteil, France, INSERM U955, UPEC university, Créteil, France
- * E-mail:
| |
Collapse
|
9
|
Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations. Sci Rep 2015; 5:15382. [PMID: 26502825 PMCID: PMC4621517 DOI: 10.1038/srep15382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/23/2015] [Indexed: 12/03/2022] Open
Abstract
Mutations in the muscle chloride channel gene (CLCN1) cause myotonia congenita, an inherited condition characterized by muscle stiffness upon sudden forceful movement. We here studied the functional consequences of four disease-causing mutations that predict amino acid substitutions Q43R, S70L, Y137D and Q160H. Wild-type (WT) and mutant hClC-1 channels were heterologously expressed as YFP or CFP fusion protein in HEK293T cells and analyzed by whole-cell patch clamp and fluorescence recordings on individual cells. Q43R, Y137D and Q160H, but not S70L reduced macroscopic current amplitudes, but left channel gating and unitary current amplitudes unaffected. We developed a novel assay combining electrophysiological and fluorescence measurements at the single-cell level in order to measure the probability of ion channel surface membrane insertion. With the exception of S70L, all tested mutations significantly reduced the relative number of homodimeric hClC-1 channels in the surface membrane. The strongest effect was seen for Q43R that reduced the surface insertion probability by more than 99% in Q43R homodimeric channels and by 92 ± 3% in heterodimeric WT/Q43R channels compared to homodimeric WT channels. The new method offers a sensitive approach to investigate mutations that were reported to cause channelopathies, but display only minor changes in ion channel function.
Collapse
|
10
|
Tawadros C, Burnett K, Derbyshire LF, Tawadros T, Clarke NW, Betts CD. External urethral sphincter electromyography in asymptomatic women and the influence of the menstrual cycle. BJU Int 2015; 116:423-31. [PMID: 25600712 DOI: 10.1111/bju.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate by electromyography (EMG), the presence of complex repetitive discharges (CRDs) and decelerating bursts (DBs) in the striated external urethral sphincter during the menstrual cycle in female volunteers with no urinary symptoms and complete bladder emptying. SUBJECTS AND METHODS Healthy female volunteers aged 20-40 years, with regular menstrual cycles and no urinary symptoms were recruited. Volunteers completed a menstruation chart, urinary symptom questionnaires, pregnancy test, urine dipstick, urinary free flow and post-void ultrasound bladder scan. Exclusion criteria included current pregnancy, use of hormonal medication or contraception, body mass index of >35 kg/m(2) , incomplete voiding and a history of pelvic surgery. Eligible participants underwent an external urethral sphincter EMG, using a needle electrode in the early follicular phase and the mid-luteal phase of their menstrual cycles. Serum oestradiol and progesterone were measured at each EMG test. RESULTS In all, 119 women enquired about the research and following screening, 18 were eligible to enter the study phase. Complete results were obtained in 15 women. In all, 30 EMG tests were undertaken in the 15 asymptomatic women. Sphincter EMG was positive for CRDs and DBs at one or both phases of the menstrual cycle in eight (53%) of the women. Three had CRDs and DBs in both early follicular and mid-luteal phases. Five had normal EMG activity in the early follicular phase and CRDs and DBs in the mid-luteal phase. No woman had abnormal EMG activity in the early follicular phase and normal activity in the luteal phase. There was no relationship between EMG activity and age, parity or serum levels of oestradiol and progesterone. CONCLUSIONS CRDs and DB activity in the external striated urethral sphincter is present in a high proportion of asymptomatic young women. This abnormal EMG activity has been shown for the first time to change during the menstrual cycle in individual women. CRDs and DBs are more commonly found in the luteal phase of the menstrual cycle. The importance of CRDs and DBs in the aetiology of urinary retention in young women remains uncertain. The distribution and or quantity of abnormal EMG activity in the external urethral sphincter may be important. In a woman with urinary retention the finding of CRDs and DBs by needle EMG does not automatically establish Fowler's syndrome as the explanation for the bladder dysfunction. Urethral pressure profilometry may be helpful in establishing a diagnosis. Opiate use and psychological stress should be considered in young women with urinary retention.
Collapse
Affiliation(s)
- Cecile Tawadros
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK.,Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Katherine Burnett
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK
| | | | - Thomas Tawadros
- Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Noel W Clarke
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK.,Department of Urology, Christie Hospitals NHS Foundation Trust, Manchester, UK
| | | |
Collapse
|
11
|
Paroxysmal kinesigenic dyskinesia and myotonia congenita in the same family: coexistence of a PRRT2 mutation and two CLCN1 mutations. Neurosci Bull 2014; 30:1010-1016. [PMID: 25205014 DOI: 10.1007/s12264-014-1467-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/28/2014] [Indexed: 10/24/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) and myotonia congenita (MC) are independent disorders that share some clinical features. We aimed to investigate the sequences of PRRT2 and CLCN1 in a proband diagnosed with PKD and suspected MC. Clinical evaluation and auxiliary examinations were performed. Direct sequencing of the entire coding regions of the PRRT2 and CLCN1 genes was conducted. Haplotype analysis confirmed the relationships among the family members. The proband suffered choreoathetosis attacks triggered by sudden movements, and lower-limb weakness and stiffness that worsened in cold weather. Carbamazepine monotherapy completely controlled his choreoathetosis and significantly relieved his limb weakness and stiffness. His father, when young, had similar limb stiffness, while his mother and brother were asymptomatic. Genetic analysis revealed that the proband and his father harbored a PRRT2 c.649dupC mutation, and CLCN1 c.1723C>T and c.2492A>G mutations. His brother carried only the two CLCN1 mutations. None of these mutations were identified in his mother and 150 unrelated controls. This is the first report showing the coexistence of PRRT2 and CLCN1 mutations. Our results also indicate that both the PRRT2 and CLCN1 genes need to be screened if we fail to identify PRRT2 mutations in PKD patients or CLCN1 mutations in MC patients.
Collapse
|
12
|
|
13
|
Asymptomatic myotonia congenita unmasked by severe hypothyroidism. Neuromuscul Disord 2014; 24:365-7. [PMID: 24530047 DOI: 10.1016/j.nmd.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/19/2013] [Accepted: 01/14/2014] [Indexed: 11/20/2022]
Abstract
Myotonia congenita is an inherited muscle disorder sustained by mutations in the skeletal muscle chloride channel gene CLCN1. Symptoms vary from mild to severe and generalized myotonia and worsen with cold, stressful events and hormonal fluctuations. Here we report the case of a young woman who sought medical attention because of subacute onset of diffuse and severe limb myotonia. CLCN1 gene sequencing showed a heterozygous transversion (T550M), two polymorphisms and one silent mutation. Thyroid function screening revealed severe hypothyroidism. She was placed on l-thyroxine replacement therapy which dramatically improved myotonia. We conclude that hypothyroidism unmasked a genetically determined, clinically asymptomatic chloride channelopathy. Diagnostic work-up in patients with clinically isolated myotonia should not be limited to genetic screening of non-dystrophic or dystrophic myotonias. Considering the high prevalence of hypothyroidism in females, systematic thyroid function screening by looking for additional hypothyroid symptoms and serum TSH levels measurement is mandatory in these patients.
Collapse
|
14
|
Ulzi G, Sansone VA, Magri F, Corti S, Bresolin N, Comi GP, Lucchiari S. In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay. Mol Biol Rep 2014; 41:2865-74. [PMID: 24452722 DOI: 10.1007/s11033-014-3142-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/11/2014] [Indexed: 12/21/2022]
Abstract
Mutations in the chloride channel gene CLCN1 cause the allelic disorders Thomsen (dominant) and Becker (recessive) myotonia congenita (MC). The encoded protein, ClC-1, is the primary channel that mediates chloride (Cl-) conductance in skeletal muscle. Mutations in CLCN1 lower the channel's threshold voltage, leading to spontaneous action potentials that are not coupled to neuromuscular transmission and resulting in myotonia. Over 120 mutations in CLCN1 have been described, 10% of which are splicing defects. Biological specimens suitable for RNA extraction are not always available, but obtaining genomic DNA for analysis is easy and non-invasive. This is the first study to evaluate the pathogenic potential of novel splicing mutations using the minigene approach, which is based on genomic DNA analysis. Splicing mutations accounted for 23% of all pathogenic variants in our cohort of MC patients. Four were heterozygous mutations in four unrelated individuals, belonging to this cohort: c.563G>T in exon 5; c.1169-5T>G in intron 10; c.1251+1G>A in intron 11, and c.1931-2A>G in intron 16. These variants were expressed in HEK 293 cells, and aberrant splicing was verified by in vitro transcription and sequencing of the cDNA. Our findings confirm the need to further investigate the nature of rearrangements associated with this class of mutations and their effects on mature transcripts. In particular, splicing mutations predicted to generate in-frame transcripts may generate out-of-frame mRNA transcripts that do not produce functional ClC-1. Clinically, incomplete molecular evaluation could lead to delayed or faulty diagnosis.
Collapse
Affiliation(s)
- Gianna Ulzi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Sforza 35, 20122, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Burge JA, Hanna MG, Schorge S. Nongenomic actions of progesterone and 17β-estradiol on the chloride conductance of skeletal muscle. Muscle Nerve 2013; 48:589-91. [DOI: 10.1002/mus.23887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 11/11/2022]
Affiliation(s)
- James a. Burge
- Medical Research Council Centre for Neuromuscular Diseases; Box 102, National Hospital for Neurology and Neurosurgery Queen Square London WC1N 3BG United Kingdom
| | - Michael G. Hanna
- Medical Research Council Centre for Neuromuscular Diseases; Box 102, National Hospital for Neurology and Neurosurgery Queen Square London WC1N 3BG United Kingdom
| | - Stephanie Schorge
- Medical Research Council Centre for Neuromuscular Diseases; Box 102, National Hospital for Neurology and Neurosurgery Queen Square London WC1N 3BG United Kingdom
| |
Collapse
|
16
|
Trivedi JR, Bundy B, Statland J, Salajegheh M, Rayan DR, Venance SL, Wang Y, Fialho D, Matthews E, Cleland J, Gorham N, Herbelin L, Cannon S, Amato A, Griggs RC, Hanna MG, Barohn RJ. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes. ACTA ACUST UNITED AC 2013; 136:2189-200. [PMID: 23771340 DOI: 10.1093/brain/awt133] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-dystrophic myotonias are rare diseases caused by mutations in skeletal muscle chloride and sodium ion channels with considerable phenotypic overlap between diseases. Few prospective studies have evaluated the sensitivity of symptoms and signs of myotonia in a large cohort of patients. We performed a prospective observational study of 95 participants with definite or clinically suspected non-dystrophic myotonia recruited from six sites in the USA, UK and Canada between March 2006 and March 2009. We used the common infrastructure and data elements provided by the NIH-funded Rare Disease Clinical Research Network. Outcomes included a standardized symptom interview and physical exam; the Short Form-36 and the Individualized Neuromuscular Quality of Life instruments; electrophysiological short and prolonged exercise tests; manual muscle testing; and a modified get-up-and-go test. Thirty-two participants had chloride channel mutations, 34 had sodium channel mutations, nine had myotonic dystrophy type 2, one had myotonic dystrophy type 1, and 17 had no identified mutation. Phenotype comparisons were restricted to those with sodium channel mutations, chloride channel mutations, and myotonic dystrophy type 2. Muscle stiffness was the most prominent symptom overall, seen in 66.7% to 100% of participants. In comparison with chloride channel mutations, participants with sodium mutations had an earlier age of onset of stiffness (5 years versus 10 years), frequent eye closure myotonia (73.5% versus 25%), more impairment on the Individualized Neuromuscular Quality of Life summary score (20.0 versus 9.44), and paradoxical eye closure myotonia (50% versus 0%). Handgrip myotonia was seen in three-quarters of participants, with warm up of myotonia in 75% chloride channel mutations, but also 35.3% of sodium channel mutations. The short exercise test showed ≥10% decrement in the compound muscle action potential amplitude in 59.3% of chloride channel participants compared with 27.6% of sodium channel participants, which increased post-cooling to 57.6% in sodium channel mutations. In evaluation of patients with clinical and electrical myotonia, despite considerable phenotypic overlap, the presence of eye closure myotonia, paradoxical myotonia, and an increase in short exercise test sensitivity post-cooling suggest sodium channel mutations. Outcomes designed to measure stiffness or the electrophysiological correlates of stiffness may prove useful for future clinical trials, regardless of underlying mutation, and include patient-reported stiffness, bedside manoeuvres to evaluate myotonia, muscle specific quality of life instruments and short exercise testing.
Collapse
Affiliation(s)
- Jaya R Trivedi
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Centre, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ke Q, Luo B, Qi M, Du Y, Wu W. Gender differences in penetrance and phenotype in hypokalemic periodic paralysis. Muscle Nerve 2012; 47:41-5. [DOI: 10.1002/mus.23460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2012] [Indexed: 11/12/2022]
|
18
|
Myotonia congenita: novel mutations in CLCN1 gene and functional characterizations in Italian patients. J Neurol Sci 2012; 318:65-71. [PMID: 22521272 DOI: 10.1016/j.jns.2012.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 11/21/2022]
Abstract
Myotonia congenita is an autosomal dominantly or recessively inherited muscle disorder causing impaired muscle relaxation and variable degrees of permanent muscle weakness, abnormal currents linked to the chloride channel gene (CLCN1) encoding the chloride channel on skeletal muscle membrane. We describe 12 novel mutations: c.1606G>C (p.Val536Leu), c.2533G>A (p.Gly845Ser), c.2434C>T (p.Gln812X), c.1499T>G (p.E500X), c.1012C>T (p.Arg338X), c.2403+1G>A, c.2840T>A (p.Val947Glu), c.1598C>T (p.Thr533Ile), c.1110delC, c.590T>A (p.Ile197Arg), c.2276insA Fs800X, c.490T>C (p.Trp164Arg) in 22 unrelated Italian patients. To further understand the functional outcome of selected missense mutations (p.Trp164Arg, p.Ile197Arg and p.Gly845Ser, and the previously reported p.Gly190Ser) we characterized the biophysical properties of mutant ion channels in tsA cell model. In the physiological range of muscle membrane potential, all the tested mutations, except p.Gly845Ser, reduced the open probability, increased the fast and slow components of deactivation and affected pore properties. This suggests a decrease in macroscopic chloride currents impairing membrane potential repolarization and causing hyperexcitability in muscle membranes. Detailed clinical features are given of the 8 patients characterized by cell electrophysiology. These data expand the spectrum of CLCN1 mutations and may contribute to genotype-phenotype correlations. Furthermore, we provide insights into the fine protein structure of ClC-1 and its physiological role in the maintenance of membrane resting potential.
Collapse
|
19
|
Physiology and pathophysiology of CLC-1: mechanisms of a chloride channel disease, myotonia. J Biomed Biotechnol 2011; 2011:685328. [PMID: 22187529 PMCID: PMC3237021 DOI: 10.1155/2011/685328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/18/2011] [Accepted: 09/10/2011] [Indexed: 12/22/2022] Open
Abstract
The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Thomsen type) or an autosomal recessive (Becker type) pattern. These mutations are scattered throughout the entire protein sequence, and no clear relationship exists between the inheritance pattern of the mutation and the location of the mutation in the channel protein. The inheritance pattern of some but not all myotonia mutants can be explained by a working hypothesis that these mutations may exert a “dominant negative” effect on the gating function of the channel. However, other mutations may be due to different pathophysiological mechanisms, such as the defect of protein trafficking to membranes. Thus, the underlying mechanisms of myotonia are likely to be quite diverse, and elucidating the pathophysiology of myotonia mutations will require the understanding of multiple molecular/cellular mechanisms of CLC-1 channels in skeletal muscles, including molecular operation, protein synthesis, and membrane trafficking mechanisms.
Collapse
|
20
|
Sun C, Van Ghelue M, Tranebjaerg L, Thyssen F, Nilssen Ø, Torbergsen T. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 2011; 80:574-80. [DOI: 10.1111/j.1399-0004.2010.01616.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Jurkat-Rott K, Lerche H, Weber Y, Lehmann-Horn F. Hereditary channelopathies in neurology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 686:305-34. [PMID: 20824453 DOI: 10.1007/978-90-481-9485-8_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ion channelopathies are caused by malfunction or altered regulation of ion channel proteins due to hereditary or acquired protein changes. In neurology, main phenotypes include certain forms of epilepsy, ataxia, migraine, neuropathic pain, myotonia, and muscle weakness including myasthenia and periodic paralyses. The total prevalence of monogenic channelopathies in neurology is about 35:100,000. Susceptibility-related mutations further increase the relevance of channel genes in medicine considerably. As many disease mechanisms have been elucidated by functional characterization on the molecular level, the channelopathies are regarded as model disorders for pathogenesis and treatment of non-monogenic forms of epilepsy and migraine. As more than 35% of marketed drugs target ion channels, there is a high chance to identify compounds that counteract the effects of the mutations.
Collapse
|
22
|
Skeletal muscle channelopathies: new insights into the periodic paralyses and nondystrophic myotonias. Curr Opin Neurol 2009; 22:524-31. [PMID: 19571750 DOI: 10.1097/wco.0b013e32832efa8f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To summarize advances in our understanding of the clinical phenotypes, genetics, and molecular pathophysiology of the periodic paralyses, the nondystrophic myotonias, and other muscle channelopathies. RECENT FINDINGS The number of pathogenic mutations causing periodic paralysis, nondystrophic myotonias, and ryanodinopathies continues to grow with the advent of exon hierarchy analysis strategies for genetic screening and better understanding and recognition of disease phenotypes. Recent studies have expanded and clarified the role of gating pore current in channelopathy pathogenesis. It has been shown that the gating pore current can account for the molecular and phenotypic diseases observed in the muscle sodium channelopathies, and, given that homologous residues are affected in mutations of calcium channels, it is possible that pore leak represents a pathomechanism applicable to many channel diseases. Improvements in treatment of the muscle channelopathies are on the horizon. A randomized controlled trial has been initiated for the study of mexiletine in nondystrophic myotonias. The class IC antiarrhythmia drug flecainide has been shown to depress ventricular ectopy and improve exercise capacity in patients with Andersen-Tawil syndrome. SUMMARY Recent studies have expanded our understanding of gating pore current as a disease-causing mechanism in the muscle channelopathies and have allowed new correlations to be drawn between disease genotype and phenotype.
Collapse
|
23
|
Moon IS, Kim HS, Shin JH, Park YE, Park KH, Shin YB, Bae JS, Choi YC, Kim DS. Novel CLCN1 mutations and clinical features of Korean patients with myotonia congenita. J Korean Med Sci 2009; 24:1038-44. [PMID: 19949657 PMCID: PMC2775849 DOI: 10.3346/jkms.2009.24.6.1038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/22/2009] [Indexed: 11/20/2022] Open
Abstract
Myotonia congenita (MC) is a form of nondystrophic myotonia caused by a mutation of CLCN1, which encodes human skeletal muscle chloride channel (CLC-1). We performed sequence analysis of all coding regions of CLCN1 in patients clinically diagnosed with MC, and identified 10 unrelated Korean patients harboring mutations. Detailed clinical analysis was performed in these patients to identify their clinical characteristics in relation to their genotypes. The CLCN1 mutational analyses revealed nine different point mutations. Of these, six (p.M128I, p.S189C, p.M373L, p.P480S, p.G523D, and p.M609K) were novel and could be unique among Koreans. While some features including predominant lower extremity involvement and normal to slightly elevated creatine kinase levels were consistently observed, general clinical features were highly variable in terms of age of onset, clinical severity, aggravating factors, and response to treatment. Our study is the first systematic study of MC in Korea, and shows its expanding clinical and genetic spectrums.
Collapse
Affiliation(s)
- In-Soo Moon
- Department of Neurology, Dae-Dong Hospital, Busan, Korea
- Department of Neurology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hyang-Sook Kim
- Medical Research Institute, Pusan National University School of Medicine, Yangsan, Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University School of Medicine, Yangsan, Korea
| | - Yeong-Eun Park
- Department of Neurology, Pusan National University School of Medicine, Yangsan, Korea
| | - Kyu-Hyun Park
- Department of Neurology, Pusan National University School of Medicine, Yangsan, Korea
- Medical Research Institute, Pusan National University School of Medicine, Yangsan, Korea
| | - Yong-Bum Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Yangsan, Korea
- Medical Research Institute, Pusan National University School of Medicine, Yangsan, Korea
| | - Jong Seok Bae
- Department of Neurology, College of Medicine, Inje University, Busan, Korea
| | - Young-Chul Choi
- Department of Neurology, College of Medicine, Yonsei University, Seoul, Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University School of Medicine, Yangsan, Korea
- Medical Research Institute, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
24
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Sweetser S, Busciglio IA, Camilleri M, Bharucha AE, Szarka LA, Papathanasopoulos A, Burton DD, Eckert DJ, Zinsmeister AR. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects. Am J Physiol Gastrointest Liver Physiol 2009; 296:G295-301. [PMID: 19033530 PMCID: PMC2643920 DOI: 10.1152/ajpgi.90558.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 microg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in the left colon by flexible sigmoidoscopy and fluoroscopy. We measured treatment effects on colonic sensation and motility with validated methods, with the following end points: colonic compliance, fasting and postprandial tone and motility indexes, pain thresholds, and sensory ratings to distensions. Among participants receiving lubiprostone or placebo, 26 of 30 and 28 of 30, respectively, completed the study. There were no overall effects of lubiprostone on compliance, fasting tone, motility indexes, or sensation. However, there was a treatment-by-sex interaction effect for compliance (P = 0.02), with lubiprostone inducing decreased fasting compliance in women (P = 0.06) and an overall decreased colonic tone contraction after a standard meal relative to fasting tone (P = 0.014), with greater effect in women (P < 0.01). Numerical differences of first sensation and pain thresholds (P = 0.11 in women) in the two groups were not significant. We concluded that oral lubiprostone 24 microg does not increase colonic motor function. The findings of decreased colonic compliance and decreased postprandial colonic tone in women suggest that motor effects are unlikely to cause accelerated colonic transit with lubiprostone, although they may facilitate laxation. Effects of lubiprostone on sensitivity deserve further study.
Collapse
Affiliation(s)
- Seth Sweetser
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Irene A. Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Adil E. Bharucha
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lawrence A. Szarka
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Athanasios Papathanasopoulos
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Duane D. Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Deborah J. Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alan R. Zinsmeister
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Abstract
Myotonia is a symptom of many different acquired and genetic muscular conditions that impair the relaxation phase of muscular contraction. Myotonia congenita is a specific inherited disorder of muscle membrane hyperexcitability caused by reduced sarcolemmal chloride conductance due to mutations in CLCN1, the gene coding for the main skeletal muscle chloride channel ClC-1. The disorder may be transmitted as either an autosomal-dominant or recessive trait with close to 130 currently known mutations. Although this is a rare disorder, elucidation of the pathophysiology underlying myotonia congenita established the importance of sarcolemmal chloride conductance in the control of muscle excitability and demonstrated the first example of human disease associated with the ClC family of chloride transporting proteins.
Collapse
Affiliation(s)
- Christoph Lossin
- Department of Neurology, UC Davis School of Medicine, Sacramento, California 95817
| | - Alfred L George
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|